Influence of Laser Micro-Texturing and Plasma Treatment on Adhesive Bonding Properties of WC-Co Carbides with Steel
<p>Shape and dimensions of WC-Co carbide grade B2 plates for static tests: shear (<b>a</b>) and pull-off (<b>b</b>).</p> "> Figure 2
<p>Schema of a device for the low-temperature plasma treatment and types of plasma jets depending on plasma gas: He (<b>a</b>), Ar (<b>b</b>), and N<sub>2</sub> (<b>c</b>).</p> "> Figure 3
<p>Model of WC-Co–C45 steel adhesive joints (<b>a</b>); instrumentation and method of fixing samples of adhesive joints for pull-off (<b>b</b>) and shear (<b>c</b>) tests.</p> "> Figure 4
<p>Examples of wettability of WC-Co carbide surfaces with distilled water before and after low-temperature plasma treatment generated from various gasses.</p> "> Figure 5
<p>The wettability angle average value of WC-Co carbides before and after low-temperature plasma treatment.</p> "> Figure 6
<p>Surface profile of WC-Co carbide after laser and plasma treatments (<b>a</b>); example of measuring width (w) and depth (h) of grid texture (<b>b</b>).</p> "> Figure 7
<p>The results of shear strength of WC-Co–C45 steel adhesive joints depending on the method of surface preparation.</p> "> Figure 8
<p>Mixed adhesive–cohesive (AF+CF) fracture mechanism of WC-Co -C45 steel adhesive joints after shear test. Laser (<b>a</b>) and plasma (<b>b</b>) treated surfaces of WC-Co carbides.</p> "> Figure 9
<p>SE (Secondary Electron) image of adhesive joint failure after shear test. WC-Co carbide after laser treatment (<b>a</b>,<b>b</b>) and WC-Co carbide after plasma treatment (<b>c</b>,<b>d</b>): 1—laser grooves, 2—adhesive particles, and 3—WC-Co carbide surface.</p> "> Figure 10
<p>The pull-off strength of WC-Co–C45 steel adhesive joints depending on the method of surface preparation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Properties of Sintered Carbides After Low-Temperature Plasma Treatment
3.2. Surface Properties of Sintered Carbides After Laser Micro-Texturing
3.3. Mechanical Properties of Adhesive Joints
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurlov, A.S.; Gusev, A.I. Tungsten Carbides—Structure, Properties and Applications in Hard Metals; Series in Materials Science; Springer: Cham, Switzerland, 2013; Volume 184. [Google Scholar] [CrossRef]
- Ildiko, P.; Rosso, M. Manufacturing, Composition, Properties and Application of Sintered Hard Metals. In Materials Science, Powder Metallurgy—Fundamentals and Case Studies; Intech: London, UK, 2017; pp. 245–271. [Google Scholar] [CrossRef]
- Jia, K.; Fischer, T.E. Abrasion resistance of nanostructured and conventional cemented carbides. Wear 1996, 200, 206–214. [Google Scholar] [CrossRef]
- McCandlish, L.E.; Kear, B.H.; Kim, B.K. Chemical processing of nanophase WC–Co composite powders. Mater. Sci. Technol. 1990, 6, 953–957. [Google Scholar] [CrossRef]
- Lee, I.C.; Sakuma, T. High-temperature tensile ductility in WC-Co cemented carbides. Metall. Mater. Trans. A 1997, 28, 1843–1847. [Google Scholar] [CrossRef]
- Pierson, H.O. Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Applications; Noyes Publications: Westwood, NJ, USA, 1996. [Google Scholar]
- Tillmann, W.; Elrefaey, A.; Wojarski, L. Brazing of cutting materials. In Advances in Brazing, Science, Technology and Applications; Woodhead Publishing: Cambridge, UK, 2013; pp. 423–471. [Google Scholar] [CrossRef]
- Jones, F.D.; Ryffel, H.H.; Oberg, E.; McCauley, C.J.; Heald, R.M. Machinery’s Handbook; Industrial Press Inc.: Lithia, FL, USA, 2004. [Google Scholar]
- Mirski, Z. Bonding of Sintered Carbides with Steel; Wroclaw University of Technology: Wrocław, Poland, 2011. (In Polish) [Google Scholar]
- Ma, B.; Wang, X.; Chen, C.; Zhou, D.; Xu, P.; Zhao, X. Dissimilar Welding and Joining of Cemented Carbides. Metals 2019, 9, 1161. [Google Scholar] [CrossRef]
- Maizza, G.; Cagliero, R.; Iacobone, A.; Montanari, R.; Varone, A.; Mezzi, A.; Kaciulis, S. Study of steel-WC interface produced by solid-state capacitor discharge sinter-welding. Surf. Interface Anal. 2016, 48, 538–542. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, D.R.; Li, L. Fiber laser welding of WC-Co and carbon steel dissimilar materials. Weld. J. 2017, 96, 1–10. [Google Scholar]
- Yin, G.; Xu, P.; Gong, H.; Cui, H.; Lu, F. Effect of inter-layer thickness on the microstructure and strength of WC-Co/Invar/316L steel joints prepared by fibre laser welding. J. Mater. Process. Technol. 2018, 255, 319–332. [Google Scholar] [CrossRef]
- Voiculescu, I.; Geanta, V.; Binchiciu, H.; Iovanas, D.; Stefanoiu, R. Dissimilar Brazed Joints Between Steel and Tungsten Carbide. IOP Conf. Ser. Mater. Sci. Eng. 2017, 209, 012021. [Google Scholar] [CrossRef]
- Dillard, D.A. Advances in Structural Adhesive Bonding; Woodhead Publishing Limited: Cambridge, UK, 2010. [Google Scholar]
- Mirski, Z.; Piwowarczyk, T. History of gluing—From prehistory to present day. Weld. Technol. Rev. 2008, 80, 3–11. (In Polish) [Google Scholar]
- Czechowski, K. Bonding as an Effective Technique for Joining of Cutting Parts with Tool Bodies; Cracow University of Technology: Kraków, Poland, 2004; pp. 49–56. [Google Scholar]
- Czechowski, K.; Kurleto, A.; Poselska-Filip, I.; Wszołek, J. Gluing of tools working parts as an alternative technology towards brazing. Weld. Technol. Rev. 2007, 79, 142–145. [Google Scholar]
- Kupoluyi, O.J.; Tahir, S.M.; Baharudin, B.T.; Azmah Hanim, M.A.; Anuar, M.S. Mechanical properties of WC-based hardmetals bonded with iron alloys—A review. Mater. Sci. Technol. 2017, 33, 507–517. [Google Scholar] [CrossRef]
- Hegeman, J.; De Hosson, J.T.; De With, G. Grinding of WC–Co hardmetals. Wear 2001, 248, 187–196. [Google Scholar] [CrossRef]
- Santhanam, A.T.; Tierney, P.; Hunt, J.L. Cemented Carbides. Metals Handbook, 10th ed.; ASM International: Materials Park, OH, USA, 1990; pp. 950–977. [Google Scholar]
- Adams, R.D. Adhesive Bonding, Science, Technology and Applications, 2nd ed.; Series in Welding and Other Joining Technologies; Woodhead Publishing: Cambridge, UK, 2021. [Google Scholar]
- Wegman, R.F. Surface Preparation Techniques for Adhesive Bonding; William Andrew Inc.: Norwich, NY, USA, 2012. [Google Scholar]
- Jiang, G.; Zhuang, H.; Li, W. Parameters investigation during simultaneous synthesis and densification WC–Ni composites by field-activated combustion. Mater. Sci. Eng. A 2003, 360, 377–384. [Google Scholar] [CrossRef]
- Rymuszka, D.; Terpiłowski, K.; Borowski, P.; Hołysz, L. Time-dependent changes of surface properties of polyether ether ketone caused by air plasma treatment. Polym. Int. 2016, 65, 827–834. [Google Scholar] [CrossRef]
- Sundriyal, P.; Pandey, M.; Bhattacharya, S. Plasma-assisted surface alteration of industrial polymers for improved adhesive bonding. Int. J. Adhes. Adhes. 2020, 101, 102626. [Google Scholar] [CrossRef]
- Guimarães, B.; Fernandes, C.M.; Figueiredo, D.; Carvalho, O.; Silva, F.S.; Miranda, G. Effect of laser surface texturing on the wettability of WC-Co cutting tools. Int. J. Adv. Manuf. Technol. 2020, 111, 1991–1999. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Bhushan, B. Laser treatment of sintered silicon carbide surface for enhanced hydrophobicity. JOM 2014, 66, 87–94. [Google Scholar] [CrossRef]
- Fang, S.; Llanes, L.; Bähre, D. Wear characterization of cemented carbides (WC–CoNi) processed by laser surface texturing under abrasive machining conditions. Lubricants 2017, 5, 20. [Google Scholar] [CrossRef]
- Kupczyk, M.J. Improvement of adhesion force of hard coatings to cemented carbides by laser heating. J. Adhes. 2020, 96, 33–47. [Google Scholar] [CrossRef]
- Riveiro, A.; Macon, A.; Del Val, J.; Comesaña, R.; Pou, J. Laser surface texturing of polymers for biomedical applications. Front. Phys. 2018, 6, 16. [Google Scholar] [CrossRef]
- Alla, R.K.; Ginjupalli, K.; Upadhya, N.; Shammas, M.; Ravi, R.K.; Sekhar, R. Surface roughness of implants: A review. Trends Biomater. Artif. Organs 2011, 25, 112–118. [Google Scholar]
- Feng, Z.; Zhao, H.; Tan, C. Effect of laser texturing on the surface characteristics and bonding property of 30CrMnSiA steel adhesive joints. J. Manuf. Process. 2019, 47, 219–228. [Google Scholar] [CrossRef]
- Mirski, Z.; Piwowarczyk, T. Analysis of adhesive properties of B2 hardmetal surface. Arch. Civ. Mech. Eng. 2009, 9, 93–104. [Google Scholar] [CrossRef]
- Mirski, Z.; Piwowarczyk, T. Composite adhesive joints of hardmetals with steel. Arch. Civ. Mech. Eng. 2010, 10, 83–94. [Google Scholar] [CrossRef]
- Mirski, Z.; Pigłowski, J.; Piwowarczyk, T. Testing the properties of sintered carbides surface prepared for adhesive bonding process. Weld. Technol. Rev. 2007, 79, 12–16. [Google Scholar]
- Mirski, Z.; Piwowarczyk, T. Comparison of adhesive bonding and brazing techniques for sintered carbides. Weld. Technol. Rev. 2007, 79, 102–108. [Google Scholar]
- Gołombek, K.; Matula, G.; Dobrzański, L.A.; Dołżańska, B. Characteristics of structure and properties of a sintered graded tool materials with cobalt matrix. Arch. Mater. Sci. Eng. 2011, 47, 69–76. [Google Scholar]
- Ban, Z.G.; Shaw, L.L. Synthesis and processing of nanostructured WC-Co materials. J. Mater. Sci. 2002, 37, 3397–3403. [Google Scholar] [CrossRef]
- Baste, U.; Jacobson, S. A new view of the deterioration and wear of WC/Co cemented carbide rock drill buttons. Wear 2008, 264, 1129–1141. [Google Scholar] [CrossRef]
- Blaoui, M.M.; Zemri, M.; Brahami, A. Effect of heat treatment parameters on mechanical properties of medium carbon steel. Mech. Mech. Eng. 2018, 22, 909–918. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Shimizu, R.N.; Demarquette, N.R. Evaluation of surface energy of solid polymers using different models. J. Appl. Polym. Sci. 2000, 76, 1831–1845. [Google Scholar] [CrossRef]
- Frylik, S.; Molnda, S.; Borycki, J. Comparison of methods for determining the surface free energy of polymer coatings that orient liquid crystals. Chemik 2010, 64, 238–245. [Google Scholar]
- Żenkiewicz, M. Methods for the calculation of surface free energy of solids. J. Achiev. Mater. Manuf. Eng. 2007, 24, 137–145. [Google Scholar]
- Baldan, A. Adhesion phenomena in bonded joints. Int. J. Adhes. Adhes. 2012, 38, 95–116. [Google Scholar] [CrossRef]
- ISO 13445; Adhesives—Determination of Shear Strength of Adhesive Bonds Between Rigid Substrates by the Block-Shear Method. European Committee for Standardization: Brussels, Belgium, 2003.
- ISO 15870; Adhesives—Determination of Tensile Strength of Butt Joints. European Committee for Standardization: Brussels, Belgium, 2009.
Measuring Liquid | Surface Tension, mN/m | Dispersion Component, mN/m | Polar Component, mN/m | Acid Parameter, mN/m | Alkaline Parameter, mN/m |
---|---|---|---|---|---|
Distilled water | 72.8 | 21.8 | 51.0 | 25.5 | 25.5 |
Diiodomethane | 50.8 | 50.8 | 0 | 0 | 0 |
Surface of WC-Co Carbide, Grade B2 | Surface Free Energy (SFE), γS [mJ/m2] | Dispersion Component, [mJ/m2] | Polar Component, [mJ/m2] |
---|---|---|---|
Without treatment | 41.7 | 36.8 | 4.9 |
Plasma treatment—gas Ar | 58.8 | 42.5 | 16.3 |
Plasma treatment—gas He | 66.9 | 43.1 | 23.8 |
Plasma treatment—gas N2 | 45.4 | 42.2 | 5.1 |
Plasma treatment—mixture Ar + CO2 | 48.4 | 42.7 | 5.6 |
Method of WC-Co Surface Treatment | Ra [µm] | Rz [µm] |
---|---|---|
Without treatment | 1.27 ± 0.23 | 8.60 ± 1.21 |
Mechanical grinding | 0.77 ± 0.41 | 6.28 ± 1.13 |
Electrolytic etching | 1.68 ± 0.20 | 12.48 ± 0.85 |
Plasma treatment—gas Ar | 1.25 ± 0.15 | 8.52 ± 0.71 |
Plasma treatment—gas He | 1.27 ± 0.18 | 8.34 ± 0.87 |
Laser micro-texturing | 3.25 ± 0.22 | 12.60 ± 1.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojdat, T.K.; Piwowarczyk, T. Influence of Laser Micro-Texturing and Plasma Treatment on Adhesive Bonding Properties of WC-Co Carbides with Steel. Materials 2024, 17, 5999. https://doi.org/10.3390/ma17235999
Wojdat TK, Piwowarczyk T. Influence of Laser Micro-Texturing and Plasma Treatment on Adhesive Bonding Properties of WC-Co Carbides with Steel. Materials. 2024; 17(23):5999. https://doi.org/10.3390/ma17235999
Chicago/Turabian StyleWojdat, Tomasz Karol, and Tomasz Piwowarczyk. 2024. "Influence of Laser Micro-Texturing and Plasma Treatment on Adhesive Bonding Properties of WC-Co Carbides with Steel" Materials 17, no. 23: 5999. https://doi.org/10.3390/ma17235999
APA StyleWojdat, T. K., & Piwowarczyk, T. (2024). Influence of Laser Micro-Texturing and Plasma Treatment on Adhesive Bonding Properties of WC-Co Carbides with Steel. Materials, 17(23), 5999. https://doi.org/10.3390/ma17235999