The Influence of As-Cast Grain Size on the Formation of Recrystallized Grains and the Related Mechanical Properties in Al–Zn–Mg–Cu-Based Alloy Sheets
<p>Schematic of the experimental procedure.</p> "> Figure 2
<p>OM images of the as-cast alloys: alloys (<b>a</b>) A, (<b>b</b>) B, (<b>c</b>) C, and (<b>d</b>) D. When the Ti, Cr and Mn, and ZnO nano-particles are added cumulatively, the average grain size of cast alloys decreases from 163 to 26 μm.</p> "> Figure 3
<p>SEM images of the as-cast alloys: alloys (<b>a</b>) A, (<b>b</b>) B, (<b>c</b>) C, and (<b>d</b>) D. (<b>e</b>) The variation in the volume fraction of eutectic particles plotted with the average grain size of cast alloys. As the average grain size of the cast alloys decreases from 163 to 26 μm, the volume fraction of the eutectic particles increases from 4.86 to 8.03 vol.%.</p> "> Figure 4
<p>SEM images of alloys with heat treatment for homogenization at 430 °C for 12 h: alloys (<b>a</b>) A, (<b>b</b>) B, (<b>c</b>) C, and (<b>d</b>) D. (<b>e</b>) The variation in the particle size and volume fraction of eutectic particles with the average grain size of cast alloys. The average size of the remaining eutectic particles significantly reduces from 46.1 to 20.6 μm as the as-cast grain size decreases.</p> "> Figure 5
<p>SEM images of hot-rolled sheets with thickness of 3 mm: alloy sheets (<b>a</b>) A, (<b>b</b>) B, (<b>c</b>) C, and (<b>d</b>) D. Enlarged images for each specimen are shown in the white rectangle. (<b>e</b>) The variation in the particle size and volume fraction of eutectic particles of the alloy sheets. The average size of eutectic particles decreases from 4.4 to 3.0 μm as the as-cast grain size decreases.</p> "> Figure 6
<p>IPF maps and ODF of alloy sheets recrystallized at 480 °C for 1 h according to their crystallographic direction along the normal direction (ND) of the sheet: alloy sheets (<b>a</b>) A, (<b>b</b>) B, (<b>c</b>) C, and (<b>d</b>) D. The average grain size of alloy sheets A, B, C, and D is 54, 37, 16, and 13 μm, respectively. Maximum intensity decreased from 5.25 to 2.04 as the average grain size decreased from 54 to 13 μm.</p> "> Figure 7
<p>Scanning TEM images of the alloy sheets recrystallized at 480 °C for 1 h: alloy sheets (<b>a</b>) A, (<b>b</b>) B, (<b>c</b>) C, and (<b>d</b>) D. The chemical compositions of the marked particles from S1 to S5 are presented in <a href="#materials-17-05267-t002" class="html-table">Table 2</a>.</p> "> Figure 8
<p>Engineering stress–strain curves of alloy sheets: (<b>a</b>) sheets recrystallized at 480 °C for 1 h and (<b>b</b>) sheets aged at 120 °C for 12 h. Surface images of the deformed tensile specimens were interpolated in (<b>a</b>). When Ti, Cr and Mn, and ZnO nano-particles are cumulatively added (as the average grain size of the alloy sheets decreases), the YS and UTS of recrystallized and aged sheets gradually increase without significant loss of the EL.</p> "> Figure 9
<p>IPF and KAM maps of sheets deformed by 20%: alloy sheets (<b>a</b>) A, (<b>b</b>) B, (<b>c</b>) C, and (<b>d</b>) D. The average grain size of alloy sheets A, B, C, and D was 92, 55, 20, and 19 μm, respectively. The stored strain energy was concentrated at local grain boundaries in the alloy sheets A and B, whereas the stored strain energy was distributed uniformly over the entire grain boundary in the alloy sheets C and D.</p> "> Figure 10
<p>Schematic of the grain refinement mechanism during the conventional TMT processes in coarse- and fine-grained alloys. A larger area of as-cast grain boundary provides numerous potential nucleation sites for recrystallized grains, and the finely dispersed micro-scale particles induce active PSN.</p> "> Figure 11
<p>Recrystallized grain size vs. the ratio of the particle size to volume fraction (<math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mi>P</mi> </msub> <mo>/</mo> <msub> <mi>f</mi> <mi>P</mi> </msub> </mrow> </semantics></math>). The effect of grain refinement by micro-scale particles is indicated by solid black line. Thus, the effect of grain refinement contributed by micro-scale particles and grain boundaries can be separated. The alloy A has little effect of grain refinement contributed by grain boundaries, whereas alloys C and D have a large effect.</p> "> Figure 12
<p>The number of nuclei for recrystallized grains induced by grain boundaries (<math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>G</mi> <mo>.</mo> <mi>B</mi> <mo>.</mo> </mrow> </msub> </mrow> </semantics></math>) vs. the area of grain boundary per unit volume (<math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mi>G</mi> <mo>.</mo> <mi>B</mi> <mo>.</mo> </mrow> </msub> </mrow> </semantics></math>). When the as-cast grain size is less than 100 μm, the <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>G</mi> <mo>.</mo> <mi>B</mi> <mo>.</mo> </mrow> </msub> </mrow> </semantics></math> has a linear relationship with the <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mi>G</mi> <mo>.</mo> <mi>B</mi> <mo>.</mo> </mrow> </msub> </mrow> </semantics></math> and is given by <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>G</mi> <mo>.</mo> <mi>B</mi> <mo>.</mo> </mrow> </msub> <mo>=</mo> <mn>2.56</mn> <msup> <mi>E</mi> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> <mo>×</mo> <msub> <mi>A</mi> <mrow> <mi>G</mi> <mo>.</mo> <mi>B</mi> <mo>.</mo> </mrow> </msub> <mo>−</mo> <mn>1.50</mn> <msup> <mi>E</mi> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 13
<p>Estimated strength increment for different strengthening mechanisms in aged alloy sheet D compared to aged alloy sheet A. When the average grain size decreases from 54 to 13 μm, the value of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>σ</mi> <mrow> <mi>G</mi> <mo>.</mo> <mi>B</mi> <mo>.</mo> </mrow> </msub> </mrow> </semantics></math> is 16.7 MPa. The values of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>σ</mi> <mrow> <mi>P</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> <mi>i</mi> <mi>c</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math> contributed by addition of Ti, Cr and Mn, and ZnO nano-particles are 19.6, 24.9, and 16.3 MPa, respectively. The additional precipitate strengthening of 27.4 MPa in alloy D is due to the effect of grain refinement in the recrystallized sheet on the precipitation behavior.</p> ">
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Preparation of Materials
2.2. Evaluation of Mechanical Properties
2.3. Characterization of Microstructures
3. Experimental Results
3.1. Microstructure Evolution of Cast Alloys
3.2. Microstructure Evolution of Alloy Sheets
3.3. Mechanical Properties of Alloy Sheets
3.4. Microstructure Evolution of Deformed Sheets
4. Discussion
4.1. Grain Refinement Mechanism
4.1.1. Grain Refinement of Cast Alloys
4.1.2. Grain Refinement of Recrystallized Sheets
4.2. Mechanical Properties of Alloy Sheets
4.2.1. Strength
4.2.2. Elongation
5. Conclusions
- The addition of Ti, Cr and Mn, and ZnO nano-particles significantly reduced the grain size of the Al–Zn–Mg–Cu cast alloys from 163 to 26 μm. As the as-cast grain size decreased from 163 to 26 μm, the recrystallized grain size decreased correspondingly from 54 to 13 μm. This is because the number of nuclei contributed by the micro-scale particles and as-cast grain boundaries increased simultaneously. As the as-cast grain size decreased, the average size of the eutectic particles decreased from 4.4 to 3.0 μm, resulting in an increase in the . Importantly, we found that the was proportional to the area of as-cast grain boundaries when the as-cast grain size was smaller than 100 μm (e.g., alloys B, C, and D). As the as-cast grain size decreased, the area of as-cast grain boundaries increased, resulting in an increase in the . Consequently, given the size and volume fraction of micro-scale particles and the as-cast grain size, the recrystallized grain size can be estimated using the equations proposed in this study.
- The strengthening effects of the investigated Al–Zn–Mg–Cu sheets can be explained by the grain boundary, particle, and additional precipitate strengthening. The increment in the YS due to grain boundary strengthening was approximately 16.7 MPa when the average grain size decreased from 54 to 13 μm. In addition, the particle strengthening by the addition of Ti, Cr and Mn, and ZnO nano-particles was 19.6, 24.9, and 16.3 MPa, respectively. After the aging treatment, the additional precipitation strengthening in sheet D was 27.4 MPa due to the fine discontinuous GBPs despite similar contents of Zn, Mg, and Cu.
- The grain refinement delayed the formation of large-scale necking by reducing the stress concentration. The stored strain energy was concentrated at the local grain boundary in the coarse-grained sheets, whereas it was distributed uniformly over the entire grain boundary in the fine-grained sheets. Therefore, the trade-off between strength and elongation was overcome through grain refinement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, Y.; Wu, X.; Tang, S.; Zhu, Q.; Song, H.; Guo, M.; Cao, L. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios. J. Mater. Sci. Technol. 2021, 85, 106–117. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, T.; Jia, H.; Ma, P.; Yang, Z.; Xu, J.; Zha, M. Effects of Mg/Zn ratio and pre-aging on microstructure and mechanical properties of Al-Mg-Zn-Cu alloys. J. Mater. Res. Technol. 2023, 27, 1874–1885. [Google Scholar] [CrossRef]
- Wei, S.; Wang, R.; Zhang, H.; Xu, C.; Wu, Y.; Feng, Y. Influence of Cu/Mg ratio on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys. Met. Corros. 2021, 56, 3472–3487. [Google Scholar] [CrossRef]
- Lang, Y.; Cui, H.; Cai, Y.; Zhang, J. Effect of strain-modified particles on the formation of fined grains and the properties of AA7050 alloy. Mater. Des. 2012, 39, 220–225. [Google Scholar] [CrossRef]
- Huo, W.; Shi, J.; Hou, L.; Zhang, J. An improved thermo-mechanical treatment of high-strength Al-Zn-Mg-Cu alloy for effective grain refinement and ductility modification. J. Mater. Process. Technol. 2017, 239, 303–314. [Google Scholar] [CrossRef]
- Huo, W.; Hou, L.; Cui, H.; Zhuang, L.; Zhang, J. Fine-grained AA 7075 processed by different thermo-mechanical processings. Mater. Sci. Eng. A 2014, 618, 244–253. [Google Scholar] [CrossRef]
- Smolej, A.; Gnamuš, M.; Slaček, E. The influence of the thermomechanical processing and forming parameters on superplastic behaviour of the 7475 aluminium alloy. J. Mater. Process. Technol. 2001, 118, 397–402. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Karimi, P.; Sadeghi, E.; Algardh, J.; Keshavarzkermani, A.; Esmaeilizadeh, R.; Toyserkani, E.; Andersson, J. Columnar-to-equiaxed grain transition in powder bed fusion via mimicking casting solidification and promoting in situ recrystallization. Addit. Manuf. 2021, 46, 102086. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, Y.; Ma, Z.; Li, H.; Yu, H. Hot Deformation Behavior and Recrystallization Mechanism in an As-Cast CoNi-Based Superalloy. Met. Mater. Int. 2022, 28, 1488–1498. [Google Scholar] [CrossRef]
- Marthinsen, K. Repeated grain boundary and grain corner nucleated recrystallization in one-and two-dimensional grain structures. Model. Simul. Mater. Sci. Eng. 1996, 4, 87. [Google Scholar] [CrossRef]
- Han, F.; Tang, B.; Kou, H.; Cheng, L.; Li, J.; Feng, Y. Static recrystallization simulations by coupling cellular automata and crystal plasticity finite element method using a physically based model for nucleation. J. Mater. Sci. 2014, 49, 3253–3267. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, Y.; Xu, F.; Zhang, J. Effects of Initial Grain Size of Al-Zn-Mg-Cu Alloy on the Recrystallization Behavior and Recrystallization Mechanism in Isothermal Compression. Metals 2019, 9, 110. [Google Scholar] [CrossRef]
- Pierce, D.T.; Field, D.M.; Limmer, K.R.; Muth, T.; Sebeck, K.M. Hot deformation behavior of an industrially cast large grained low density austenitic steel. Mater. Sci. Eng. A 2021, 825, 141785. [Google Scholar] [CrossRef]
- Ferry, M.; Munroe, P. Recrystallization kinetics and final grain size in a cold rolled particulate reinforced Al-based MMC. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1017–1025. [Google Scholar] [CrossRef]
- Duckham, A.; Engler, O.; Knutsen, R. Moderation of the recrystallization texture by nucleation at copper-type shear bands in Al-1Mg. Acta Mater. 2002, 50, 2881–2893. [Google Scholar] [CrossRef]
- Shi, C.; Lai, J.; Chen, X. Microstructural evolution and dynamic softening mechanisms of Al-Zn-Mg-Cu alloy during hot compressive deformation. Materials 2014, 7, 244–264. [Google Scholar] [CrossRef]
- Li, B.; Pan, Q.; Zhang, Z.; Li, C. Characterization of flow behavior and microstructural evolution of Al-Zn-Mg-Sc-Zr alloy using processing maps. Mater. Sci. Eng. A 2012, 556, 844–848. [Google Scholar] [CrossRef]
- Bay, B.; Hansen, N. Recrystallization in commercially pure aluminum. Metall. Trans. A 1984, 15, 287–297. [Google Scholar] [CrossRef]
- Roy, R.K. Recrystallization behavior of commercial purity aluminium alloys. In Light Metal Alloys Applications; IntechOpen: London, UK, 2014. [Google Scholar]
- Park, S.; Kim, W. Difference in the hot compressive behavior and processing maps between the as-cast and homogenized Al-Zn-Mg-Cu (7075) alloys. J. Mater. Sci. Technol. 2016, 32, 660–670. [Google Scholar] [CrossRef]
- Tan, P.; Sui, Y.; Jin, H.; Zhu, S.; Jiang, Y.; Han, L. Effect of Zn content on the microstructure and mechanical properties of as-cast Al-Zn-Mg-Cu alloy with medium Zn content. J. Mater. Res. Technol. 2022, 18, 2620–2630. [Google Scholar] [CrossRef]
- Shin, S.-S.; Yeom, G.-Y.; Kwak, T.-Y.; Park, I.-M. Microstructure and mechanical properties of TiB-containing Al–Zn binary alloys. J. Mater. Sci. Technol. 2016, 32, 653–659. [Google Scholar] [CrossRef]
- Ku, M.-H.; Hung, F.-Y.; Lui, T.-S. Examination of the High Tensile Ductility Improvement in an As-Solutionized AA7075 Alloy with the Aid of a Friction Stir Process. Metals 2019, 9, 196. [Google Scholar] [CrossRef]
- Yoshida, K.; Tadano, Y.; Kuroda, M. Improvement in formability of aluminum alloy sheet by enhancing geometrical hardening. Comput. Mater. Sci. 2009, 46, 459–468. [Google Scholar] [CrossRef]
- Zribi, Z.; Ktari, H.H.; Herbst, F.; Optasanu, V.; Njah, N. EBSD, XRD and SRS characterization of a casting Al-7wt% Si alloy processed by equal channel angular extrusion: Dislocation density evaluation. Mater. Charact. 2019, 153, 190–198. [Google Scholar] [CrossRef]
- Oguocha, I.; Tiamiyu, A.; Rezaei, M.; Odeshi, A.; Szpunar, J. Experimental investigation of the dynamic impact responses of as-cast and homogenized A535 aluminum alloy. Mater. Sci. Eng. A 2020, 771, 138536. [Google Scholar] [CrossRef]
- Qin, J. Partition the total energy of Al3Ti to characterize the Al3Ti/Al interface properties: A first-principles study. Surf. Sci. 2024, 739, 122398. [Google Scholar] [CrossRef]
- Mondolfo, L.F. Aluminum Alloys: Structure and Properties; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Quested, T. Understanding mechanisms of grain refinement of aluminium alloys by inoculation. Mater. Sci. Technol. 2004, 20, 1357–1369. [Google Scholar] [CrossRef]
- Yongdong, H.; Xinming, Z.; Zhiqiang, C. Effect of minor Cr, Mn, Zr, Ti and B on grain refinement of as-cast Al-Zn-Mg-Cu alloys. Rare Met. Mater. Eng. 2010, 39, 1135–1140. [Google Scholar] [CrossRef]
- Shin, J.; Jeon, J.; Bae, D. Microstructure refining of aluminum alloys using aluminothermic reaction with ZnO nanoparticles. Mater. Lett. 2015, 151, 96–99. [Google Scholar] [CrossRef]
- El-Wazery, M.; Elsad, R.; Khafagy, S.; Meiz, M. Enhancement of microstructure and mechanical properties of hypereutectic Al-16% Si alloy by ZnO nanocrystallites. Appl. Phys. A 2018, 124, 736. [Google Scholar] [CrossRef]
- Chen, G.; Sun, G.-X. Study on in situ reaction-processed Al-Zn/α-Al2O3 (p) composites. Mater. Sci. Eng. A 1998, 244, 291–295. [Google Scholar] [CrossRef]
- Maleki, A.; Panjepour, M.; Niroumand, B.; Meratian, M. Mechanism of zinc oxide-aluminum aluminothermic reaction. J. Mater. Sci. 2010, 45, 5574–5580. [Google Scholar] [CrossRef]
- Tang, L.; Han, B.; Persson, K.; Friesen, C.; He, T.; Sieradzki, K.; Ceder, G. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 2010, 132, 596–600. [Google Scholar] [CrossRef]
- Zhang, G.W.; Nagaumi, H.; Han, Y.; Xu, Y.; Parish, C.M.; Zhai, T.G. Effects of Mn and Cr Additions on the Recrystallization Behavior of Al-Mg-Si-Cu Alloys. In Materials Science Forum; Trans Tech Publications: Wollerau, Switzerland, 2017; pp. 172–179. [Google Scholar]
- Jeon, J.; Lee, S.; Kyeong, J.; Shin, S.; Kang, H. Effect of Geometrical Parameters of Microscale Particles on Particle-Stimulated Nucleation and Recrystallization Texture of Al-Si-Mg-Cu-Based Alloy Sheets. Materials 2022, 15, 7924. [Google Scholar] [CrossRef]
- Bhattacharya, V.; Chattopadhyay, K. Microstructure and wear behaviour of aluminium alloys containing embedded nanoscaled lead dispersoids. Acta Mater. 2004, 52, 2293–2304. [Google Scholar] [CrossRef]
- Mehrer, H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Fras, E.; Górny, M.; Lopez, H.; Tartera, J. Nucleation and grains density in grey cast iron—A theoretical model and experimental verification. Int. J. Cast Met. Res. 2003, 16, 99–104. [Google Scholar] [CrossRef]
- Holm, E.A.; Miodownik, M.A.; Rollett, A.D. On abnormal subgrain growth and the origin of recrystallization nuclei. Acta Mater. 2003, 51, 2701–2716. [Google Scholar] [CrossRef]
- Wert, J. Strength of Metal Alloys; Gifkins, R.C., Ed.; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- Jiang, H.; Xing, H.; Xum, Z.; Yang, B.; Liang, E.; Zhang, J.; Sun, B. Effect of Zn content and Sc, Zr addition on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys. J. Alloys Compd. 2023, 947, 169246. [Google Scholar] [CrossRef]
- An, Z.; Yang, W.; Zhan, H.; Hu, B.; Wang, Q.; Matsumura, S.; Sha, G. On the strengthening effect of Al-Cr-Si dispersoid in an Al-Si-Mg-Cu casting alloy with Cr addition. Mater. Charact. 2020, 166, 110457. [Google Scholar] [CrossRef]
- Muggerud, A.M.F.; Mørtsell, E.A.; Li, Y.; Holmestad, R. Dispersoid strengthening in AA3xxx alloys with varying Mn and Si content during annealing at low temperatures. Mater. Sci. Eng. A 2013, 567, 21–28. [Google Scholar] [CrossRef]
- Kemsies, R.H.; Milkereit, B.; Wenner, S.; Holmestad, R.; Kessler, O. In situ DSC investigation into the kinetics and microstructure of dispersoid formation in Al-Mn-Fe-Si (-Mg) alloys. Mater. Des. 2018, 146, 96–107. [Google Scholar] [CrossRef]
- Liu, C.; Du, Q.; Parson, N.; Poole, W.J. The interaction between Mn and Fe on the precipitation of Mn/Fe dispersoids in Al-Mg-Si-Mn-Fe alloys. Scr. Mater. 2018, 152, 59–63. [Google Scholar] [CrossRef]
- Ma, K.; Wen, H.; Hu, T.; Topping, T.D.; Isheim, D.; Seidman, D.N.; Lavernia, E.J.; Schoenung, J.M. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014, 62, 141–155. [Google Scholar] [CrossRef]
- Fang, H.; Chen, K.; Chen, X.; Huang, L.; Peng, G.; Huang, B.; Zr, E.O. Cr and Pr additions on microstructures and properties of ultra-high strength Al-Zn-Mg-Cu alloys. Mater. Sci. Eng. A 2011, 528, 7606–7615. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, D.; Wang, X.; Ma, Q.; Zhuang, L.; Zhang, J. Effects of Cu addition on the precipitation hardening response and intergranular corrosion of Al-5.2 Mg-2.0 Zn (wt.%) alloy. Mater. Charact. 2016, 122, 177–182. [Google Scholar] [CrossRef]
- Zuo, J.; Hou, L.; Shi, J.; Cui, H.; Zhuang, L.; Zhang, J. The mechanism of grain refinement and plasticity enhancement by an improved thermomechanical treatment of 7055 Al alloy. Mater. Sci. Eng. A 2017, 702, 42–52. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, Y.; Tang, J.; Zhang, J. Effect of gradient grain structures on corrosion resistance of extruded Al-Zn-Mg-Cu alloy. J. Alloys Compd. 2020, 832, 154911. [Google Scholar] [CrossRef]
- Fang, H.; Chao, H.; Chen, K. Effect of Zr, Er and Cr additions on microstructures and properties of Al-Zn-Mg-Cu alloys. Mater. Sci. Eng. A 2014, 610, 10–16. [Google Scholar] [CrossRef]
- Hu, T.; Ma, K.; Topping, T.; Schoenung, J.; Lavernia, E. Precipitation phenomena in an ultrafine-grained Al alloy. Acta Mater. 2013, 61, 2163–2178. [Google Scholar] [CrossRef]
- Jeon, J.G.; Shin, J.H.; Shin, S.E.; Bae, D.H. Improvement in the anisotropic mechanical properties and formability of Al-Si-Mg-Cu-based alloy sheets. Mater. Sci. Eng. A 2021, 799, 140199. [Google Scholar] [CrossRef]
- Sabirov, I.; Estrin, Y.; Barnett, M.R.; Timokhina, I.; Hodgson, P.D. Enhanced tensile ductility of an ultra-fine-grained aluminum alloy. Scr. Mater. 2008, 58, 163–166. [Google Scholar] [CrossRef]
- Zuo, J.; Hou, L.; Shi, J.; Cui, H.; Zhuang, L.; Zhang, J. Enhanced plasticity and corrosion resistance of high strength Al-Zn-Mg-Cu alloy processed by an improved thermomechanical processing. J. Alloys Compd. 2017, 716, 220–230. [Google Scholar] [CrossRef]
- Hull, D.; Bacon, D.J. Introduction to Dislocations; Butterworth-Heinemann: Oxford, UK, 2001. [Google Scholar]
- Aragon, N.K.; Gravell, J.D.; Ryu, I. Dislocation interactions at the grain boundary in FCC bicrystals: An atomistically-informed dislocation dynamics study. Acta Mater. 2022, 223, 117455. [Google Scholar] [CrossRef]
Sample | Zn | Mg | Cu | Ti | Cr | Mn | Al | Note |
---|---|---|---|---|---|---|---|---|
Alloy A | 6.11 | 2.74 | 1.50 | - | - | - | Bal. | |
Alloy B | 6.02 | 2.62 | 1.41 | 0.18 | - | - | ||
Alloy C | 6.14 | 2.68 | 1.48 | 0.20 | 0.04 | 0.17 | ||
Alloy D | 6.36 | 2.58 | 1.41 | 0.19 | 0.05 | 0.17 | Addition of ZnO nano-particles |
Mark | Al | Zn | Mg | Cu | Fe | Cr | Mn | Ti |
---|---|---|---|---|---|---|---|---|
S1 | 77.59 | 8.59 | 11.44 | 2.38 | - | - | - | - |
S2 | 84.48 | 2.01 | 9.11 | 0.64 | - | - | 0.89 | 2.87 |
S3 | 83.06 | 5.37 | 5.10 | 4.07 | 0.34 | 1.78 | 0.28 | - |
S4 | 91.37 | 3.79 | 3.39 | 1.21 | 0.05 | 0.05 | 0.10 | 0.02 |
S5 | 75.87 | 18.05 | 2.49 | 3.16 | - | 0.13 | 0.27 | 0.02 |
Sample | Recrystallized Sheets | Aged Sheets | |||||
---|---|---|---|---|---|---|---|
Grain Size (µm) | YS (MPa) | UTS (MPa) | EL (%) | YS (MPa) | UTS (MPa) | EL (%) | |
Alloy A | 54 | 151.6 | 317.4 | 24.3 | 401.8 | 525.8 | 6.4 |
Alloy B | 37 | 174.3 | 350.4 | 29.3 | 433.2 | 564.8 | 12.7 |
Alloy C | 16 | 209.5 | 392.8 | 25.2 | 485.5 | 588.0 | 12.3 |
Alloy D | 13 | 229.1 | 421.4 | 28.4 | 506.7 | 606.8 | 13.8 |
Symbol | Meaning | Values | Unit |
---|---|---|---|
As-cast grain size | Measured | μm | |
Recrystallized grain size | [9,15] | μm | |
Recrystallized grain size considering only the effect of micro-scale particles | μm | ||
The average size of micro-scale particles | Measured | μm | |
The volume fraction of micro-scale particles | Measured | Vol.% | |
Total number of nuclei for recrystallized grains | nuclei /3 | ||
Number of nuclei for recrystallized grains induced by micro-scale particles | [42] | nuclei /μm3 | |
Number of nuclei for recrystallized grains induced by grain boundaries | nuclei /μm3 | ||
Grain boundary area of the cast alloy per unit volume | [40] | μm2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, J.; Lee, S.; Jeon, J.; Kang, M.; Kang, H. The Influence of As-Cast Grain Size on the Formation of Recrystallized Grains and the Related Mechanical Properties in Al–Zn–Mg–Cu-Based Alloy Sheets. Materials 2024, 17, 5267. https://doi.org/10.3390/ma17215267
Jeon J, Lee S, Jeon J, Kang M, Kang H. The Influence of As-Cast Grain Size on the Formation of Recrystallized Grains and the Related Mechanical Properties in Al–Zn–Mg–Cu-Based Alloy Sheets. Materials. 2024; 17(21):5267. https://doi.org/10.3390/ma17215267
Chicago/Turabian StyleJeon, Jonggyu, Sangjun Lee, Jeheon Jeon, Maru Kang, and Heon Kang. 2024. "The Influence of As-Cast Grain Size on the Formation of Recrystallized Grains and the Related Mechanical Properties in Al–Zn–Mg–Cu-Based Alloy Sheets" Materials 17, no. 21: 5267. https://doi.org/10.3390/ma17215267
APA StyleJeon, J., Lee, S., Jeon, J., Kang, M., & Kang, H. (2024). The Influence of As-Cast Grain Size on the Formation of Recrystallized Grains and the Related Mechanical Properties in Al–Zn–Mg–Cu-Based Alloy Sheets. Materials, 17(21), 5267. https://doi.org/10.3390/ma17215267