Preparation and Properties of Sulfur-Modified Alite Calcium Sulfoaluminate Cement
<p>Formation of the clinker during the sintering process: (<b>a</b>) M0 and (<b>b</b>) M2.</p> "> Figure 2
<p>XRD spectra of clinkers with different SO<sub>3</sub> dosage.</p> "> Figure 3
<p>Contour of mineral compositions as a function of KH values and SO<sub>3</sub> content: (<b>a</b>) C<sub>3</sub>S, (<b>b</b>) C<sub>2</sub>S, (<b>c</b>) f-CaO, and (<b>d</b>) C<sub>4</sub>A<sub>3</sub><span>$</span>.</p> "> Figure 4
<p>Microscopy images of clinkers. C<sub>3</sub>A is alite, C<sub>2</sub>S is belite, A is aluminate, F is ferrite, L is free lime, H is hole, and Inter. denotes interstitial phases.</p> "> Figure 5
<p>Particle size distribution of ACSA clinkers for mechanical strength measurement.</p> "> Figure 6
<p>Compressive strength of all the mortars (<b>a</b>), compressive strength comparison among PII 52.5, MKH-Blank, and MKH2 (<b>b</b>). The inset plot in (<b>b</b>) represents the compressive strength increment of MKH2 compared to MKH-Blank and PII 52.5. For D-Blank, Delta = (MKH2 − MKH-Blank)/MKH-Blank; for D-PII 52.5, Delta = (MKH2 − PII 52.5)/PII 52.5.</p> "> Figure 7
<p>Linear expansion of the mortars.</p> "> Figure 8
<p>Hydration heat evolution of the clinkers: heat flow (<b>a</b>) and accumulative heat (<b>b</b>). The inset plot in (<b>a</b>) represents the heat release during clinker dissolution within the first hour of hydration.</p> "> Figure 9
<p>XRD spectra of the hydration pastes at (<b>a</b>) 1, (<b>b</b>) 3, and (<b>c</b>) 28 d. XRD spectra of hydrated MKH2 from 1 h to 28 d (<b>d</b>).</p> "> Figure 10
<p>Pore volume and pore size distribution of the hydrated pastes.</p> "> Figure 11
<p>SEM of (<b>a</b>) MKH0-1d, (<b>b</b>) MKH2-1d, (<b>c</b>) MKH0-28d, and (<b>d</b>) MKH2-28d.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
2.2.1. X-Ray Diffraction and Rietveld Quantitative Analysis
2.2.2. Microscopy
2.2.3. Particle Size
2.2.4. Compressive Strength Tests
2.2.5. Expansion Tests
2.2.6. Calorimetry
2.2.7. Mercury Intrusion Porosimetry (MIP)
2.2.8. SEM
3. Results and Discussion
3.1. Clinker Sintering
3.1.1. Burnability of the Sulfur-Containing Clinker
3.1.2. Mineral Compositions of the Clinkers
3.1.3. Mineral Microscopy of the Clinkers
3.2. Mortar Properties
3.2.1. Compressive Strength
3.2.2. Expansion Performance
3.3. Analysis of Hydration Products
3.3.1. Heat Release of Hydration
3.3.2. Mineral Composition of the Pastes
3.3.3. Porosity
3.3.4. Microstructure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
References
- Kirgiz, F.P.D. Reduction in ecology, environment, economy and energy in concrete industry using waste materials. J. Adv. Compos. Mater. Constr. Environ. Nano Technol. 2020, 1–7. [Google Scholar]
- Guo, Y.; Luo, L.; Liu, T.; Hao, L.; Li, Y.; Liu, P.; Zhu, T. A review of low-carbon technologies and projects for the global cement industry. J. Environ. Sci. 2024, 136, 682–697. [Google Scholar] [CrossRef] [PubMed]
- Xi, F.; Davis, S.J.; Ciais, P.; Crawford-Brown, D.; Guan, D.; Pade, C.; Shi, T.; Syddall, M.; Lv, J.; Ji, L.; et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 2016, 9, 880–883. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). CO2 Emissions in 2023; IEA: Paris, France, 2024. [Google Scholar]
- Gartner, E. Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 2004, 34, 1489–1498. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Ren, Q.; Zheng, Q.; Jiang, Z. Durability of concrete coupled with life cycle assessment: Review and perspective. Cem. Concr. Compos. 2023, 139, 105041. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hamada, H.M.; Almeshal, I.; Bakar, B.H.A. Durability and mechanical properties of cement concrete comprising pozzolanic materials with alkali-activated binder: A comprehensive review. Case Stud. Constr. Mater. 2022, 17, e01429. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Siddique, R. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res. 2015, 78, 71–80. [Google Scholar] [CrossRef]
- Skibsted, J.; Snellings, R. Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem. Concr. Res. 2019, 124, 105799. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Nepal, J.; Das, B.B. Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review. J. Build. Eng. 2023, 79, 107794. [Google Scholar] [CrossRef]
- Chaunsali, P.; Mondal, P.; Bullard, J. Influence of Calcium Sulfoaluminate (CSA) Cement Content on Expansion and Hydration Behavior of Various Ordinary Portland Cement-CSA Blends. J. Am. Ceram. Soc. 2015, 98, 2617–2624. [Google Scholar] [CrossRef]
- Winnefeld, F.; Martin, L.H.J.; Müller, C.J.; Lothenbach, B. Using gypsum to control hydration kinetics of CSA cements. Constr. Build. Mater. 2017, 155, 154–163. [Google Scholar] [CrossRef]
- Zea-Garcia, J.D.; De la Torre, A.G.; Aranda, M.A.G.; Santacruz, I. Processing and characterisation of standard and doped alite-belite-ye’elimite ecocement pastes and mortars. Cem. Concr. Res. 2020, 127, 105911. [Google Scholar] [CrossRef]
- Zea-Garcia, J.D.; Santacruz, I.; Aranda, M.A.G.; De la Torre, A.G. Alite-belite-ye’elimite cements: Effect of dopants on the clinker phase composition and properties. Cem. Concr. Res. 2019, 115, 192–202. [Google Scholar] [CrossRef]
- Ben Haha, M.; Winnefeld, F.; Pisch, A. Advances in understanding ye’elimite-rich cements. Cem. Concr. Res. 2019, 123, 105778. [Google Scholar] [CrossRef]
- Hargis, C.W.; Telesca, A.; Monteiro, P.J.M. Calcium sulfoaluminate (Ye’elimite) hydration in the presence of gypsum, calcite, and vaterite. Cem. Concr. Res. 2014, 65, 15–20. [Google Scholar] [CrossRef]
- Li, X.; Ma, B.; Ji, W.; Dou, S.; Zhou, H.; Zhang, H.; Wang, J.; Hu, Y.; Shen, X. Impact of Lime Saturation Factor on Alite-Ye’Elimite Cement Synthesis and Hydration. Materials 2024, 17, 3035. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Wang, S.; Tang, M.; Shen, X. Effect of SO3 and MgO on Portland cement clinker: Formation of clinker phases and alite polymorphism. Constr. Build. Mater. 2014, 58, 182–192. [Google Scholar] [CrossRef]
- Staněk, T.; Sulovský, P. The influence of the alite polymorphism on the strength of the Portland cement. Cem. Concr. Res. 2002, 32, 1169–1175. [Google Scholar] [CrossRef]
- Segata, M.; Marinoni, N.; Galimberti, M.; Marchi, M.; Cantaluppi, M.; Pavese, A.; De la Torre, Á.G. The effects of MgO, Na2O and SO3 on industrial clinkering process: Phase composition, polymorphism, microstructure and hydration, using a multidisciplinary approach. Mater. Charact. 2019, 155, 109809. [Google Scholar] [CrossRef]
- Long, G.R. Microstructure and chemistry of unhydrated cements. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Sci. 1983, 310, 43–51. [Google Scholar]
- Scrivener, K.L.; Fullmann, A.; Gallucci, E.; Walenta, G.; Bermejo, E. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods. Cem. Concr. Res. 2004, 34, 1541–1547. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Campbell, H.D. Microscopical Examination and Interpretation of Portland Cement and Clinker; PCA: Washington, DC, USA, 1999. [Google Scholar]
- GB/T1346-2011; Test Methods for Water Requirement of Normal Consistency, Setting Time and Soundness of the Portland Cement. China Standard Press: Beijing, China, 2011.
- GB/T17671-2021; Test Method of Cement Mortar Strength (ISO Method). China Standard Press: Beijing, China, 2021.
- Kothari, C.; Garg, N. Quantitative phase analysis of anhydrous Portland cement via combined X-ray diffraction and Raman imaging: Synergy and impact of analysis parameters. Cem. Concr. Res. 2024, 186, 107662. [Google Scholar] [CrossRef]
- Dvořák, K.; Všianský, D.; Ravaszová, S.; Jančíků, A. Synthesis of M1 and M3 alite polymorphs and accuracy of their quantification. Cem. Concr. Res. 2023, 163, 107016. [Google Scholar] [CrossRef]
- Li, X.; Shen, X.; Xu, J.; Li, X.; Ma, S. Hydration properties of the alite-ye’elimite cement clinker synthesized by reformation. Constr. Build. Mater. 2015, 99, 254–259. [Google Scholar] [CrossRef]
- Sant, G.; Lothenbach, B.; Juilland, P.; Le Saout, G.; Weiss, J.; Scrivener, K. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures. Cem. Concr. Res. 2011, 41, 218–229. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry; Thomas Telford: London, UK, 1997. [Google Scholar]
- Colombo, A.; Geiker, M.; Justnes, H.; Lauten, R.A.; De Weerdt, K. The effect of calcium lignosulfonate on ettringite formation in cement paste. Cem. Concr. Res. 2018, 107, 188–205. [Google Scholar] [CrossRef]
- Xu, F.; Li, Z.; Li, T.; Wang, S. The Mechanical Properties and Microstructure of Tailing Recycled Aggregate Concrete. Materials 2024, 17, 1058. [Google Scholar] [CrossRef]
Labels | CaO | SiO2 | Al2O3 | Fe2O3 | MgO * | K2O * | SO3 * | KH ** | SM ** | IM ** |
---|---|---|---|---|---|---|---|---|---|---|
MKH-Blank | 66.27 | 21.53 | 5.98 | 1.88 | 2.00 | 0.80 | 0.00 | 0.93 | 2.50 | 3.10 |
MKH-1 | 65.11 | 20.03 | 5.62 | 1.76 | 2.00 | 0.80 | 2.40 | 0.93 | 2.50 | 3.10 |
MKH-2 | 63.97 | 20.11 | 5.66 | 1.71 | 2.00 | 0.80 | 2.70 | 0.93 | 2.50 | 3.10 |
MKH-3 | 64.22 | 20.12 | 5.62 | 1.70 | 2.00 | 0.80 | 3.00 | 0.93 | 2.50 | 3.10 |
MKH-4 | 64.22 | 20.12 | 5.62 | 1.70 | 2.00 | 0.80 | 3.30 | 0.93 | 2.50 | 3.10 |
LKH-2 | 64.62 | 20.42 | 5.62 | 1.81 | 2.00 | 0.80 | 2.70 | 0.90 | 2.50 | 3.10 |
HKH-2 | 65.72 | 19.78 | 5.50 | 1.77 | 2.00 | 0.80 | 2.70 | 0.96 | 2.50 | 3.10 |
M0 | 64.22 | 20.12 | 5.62 | 1.70 | 0 | 0.80 | 3.00 | 0.93 | 2.50 | 3.10 |
M2 | 64.22 | 20.12 | 5.62 | 1.70 | 2.00 | 0.80 | 3.00 | 0.93 | 2.50 | 3.10 |
Samples | C3S | C2S | C3A | C4AF | f-CaO | f-MgO | C4A3$ | Rwp |
---|---|---|---|---|---|---|---|---|
MKH-Blank | 68.07 | 12.94 | 11.68 | 4 | 0.02 | 3.09 | 0 | 8.63 |
MKH1 | 63.74 | 18.17 | 7.54 | 4.51 | 0.51 | 3.38 | 2.02 | 11.87 |
MKH2 | 63.90 | 18.55 | 5.96 | 4.57 | 0.58 | 3.27 | 2.98 | 11.07 |
MKH3 | 64.36 | 18.18 | 3.32 | 5.64 | 0.72 | 3.27 | 4.52 | 10.00 |
MKH4 | 64.65 | 17.62 | 2.42 | 4.86 | 1.38 | 3.14 | 5.61 | 8.51 |
LKH2 | 58.23 | 23.65 | 6.84 | 4.61 | 0 | 3.58 | 2.88 | 8.31 |
HKH2 | 70.63 | 11.69 | 6.47 | 4.56 | 0.50 | 3.28 | 3.26 | 10.81 |
Samples | Porosity (%) | Pore Volume (cm3/g) | ||||
---|---|---|---|---|---|---|
1 Day | 3 Day | 28 Day | 1 Day | 3 Day | 28 Day | |
MKH-Blank | 40.95 | 34.00 | 24.23 | 0.2968 | 0.2319 | 0.1614 |
MKH2 | 34.17 | 31.25 | 24.42 | 0.2217 | 0.2134 | 0.1586 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Kang, G.; Dou, S.; Ma, B.; Tang, J.; Zhou, H.; Zhang, H.; Wang, J.; Shen, X. Preparation and Properties of Sulfur-Modified Alite Calcium Sulfoaluminate Cement. Materials 2024, 17, 6258. https://doi.org/10.3390/ma17246258
Li X, Kang G, Dou S, Ma B, Tang J, Zhou H, Zhang H, Wang J, Shen X. Preparation and Properties of Sulfur-Modified Alite Calcium Sulfoaluminate Cement. Materials. 2024; 17(24):6258. https://doi.org/10.3390/ma17246258
Chicago/Turabian StyleLi, Xiaodong, Guodong Kang, Shang Dou, Bing Ma, Jin Tang, Hao Zhou, Houhu Zhang, Jiaqing Wang, and Xiaodong Shen. 2024. "Preparation and Properties of Sulfur-Modified Alite Calcium Sulfoaluminate Cement" Materials 17, no. 24: 6258. https://doi.org/10.3390/ma17246258
APA StyleLi, X., Kang, G., Dou, S., Ma, B., Tang, J., Zhou, H., Zhang, H., Wang, J., & Shen, X. (2024). Preparation and Properties of Sulfur-Modified Alite Calcium Sulfoaluminate Cement. Materials, 17(24), 6258. https://doi.org/10.3390/ma17246258