DSSCs Sensitized with Phenothiazine Derivatives Containing 1H-Tetrazole-5-acrylic Acid as an Anchoring Unit
<p><sup>1</sup>H NMR spectra of (<b>a</b>) <b>PETA</b>, (<b>b</b>) <b>PBTA</b>, and (<b>c</b>) <b>POTA</b>.</p> "> Figure 1 Cont.
<p><sup>1</sup>H NMR spectra of (<b>a</b>) <b>PETA</b>, (<b>b</b>) <b>PBTA</b>, and (<b>c</b>) <b>POTA</b>.</p> "> Figure 2
<p>(<b>a</b>) DSC thermogram of <b>PETA</b>. (<b>b</b>) Thermal investigation data of compounds starting from phenothiazine.</p> "> Figure 3
<p>The voltammograms of the (<b>a</b>) reduction and oxidation process measured in the cyclic voltammetry method and (<b>b</b>) voltammograms of the oxidation process measured in the differential pulse voltammetry method (GC, 0.1 mol/dm<sup>3</sup> Bu<sub>4</sub>NPF<sub>6</sub> in DMF, 100 mV/s; the dashed lines mean reduction, and the solid lines mean oxidation).</p> "> Figure 4
<p>Molecular electrostatic potential surfaces on the molecules of the dyes (scale range −7.03 × 10<sup>−2</sup> (red) to 7.03 × 10<sup>−2</sup> (blue) neural and −0.19 a.u. (red) to 0.19 a.u (blue) anionic form).</p> "> Figure 5
<p>Adsorption of the dyes on Ti<sub>30</sub>O<sub>66</sub>H<sub>12</sub> cluster calculated in acetonitrile solutions (values calculated in the gas phase are given in brackets).</p> "> Figure 5 Cont.
<p>Adsorption of the dyes on Ti<sub>30</sub>O<sub>66</sub>H<sub>12</sub> cluster calculated in acetonitrile solutions (values calculated in the gas phase are given in brackets).</p> "> Figure 6
<p>UV–Vis absorption spectra of the dyes (<b>a</b>) in solution form (c = 2 × 10<sup>−5</sup> mol dm<sup>−3</sup>), (<b>b</b>) adsorbed on TiO<sub>2</sub> surface, and (<b>c</b>) PL spectra of the dyes in solution form.</p> "> Figure 7
<p>Block diagram of ongoing research on DSSCs.</p> "> Figure 8
<p>(<b>a</b>) J–V curves for DSSCs sensitized with PTZ dyes and N719 with and without BL. (<b>b</b>) Schematic energy level diagram of dyes under vacuum in terms of eV.</p> "> Figure 9
<p>J–V characteristics of tandem DSSCs with (<b>a</b>) FTO/BL/TiO<sub>2</sub>@<b>POTA</b> photoanode in top cell, (<b>b</b>) FTO/BL/TiO<sub>2</sub>@<b>POTA</b> photoanode in bottom cell.</p> "> Scheme 1
<p>Scheme of the designed dyes synthesis. (<b>i</b>) Acetone, TBAI, reflux 24 h. (<b>ii</b>) DMF, POCl<sub>3</sub>, 1,2-dichloroethane, reflux 24 h. (<b>iii</b>) Diethylamine, 1H-tetrazole-5-acetic acid, CH<sub>3</sub>CN, reflux 24 h.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
2.3. Fabrication of Solar Cells
2.3.1. Fabrication of DSSCs
2.3.2. Fabrication of Tandem Dye-Sensitized Solar Cells
2.3.3. Dye Loading Analysis
3. Experimental
3.1. General Synthesis of (E)-3-(10-Alkyl-10H-phenothiazin-3-yl)-2-(1H-tetrazol-5-yl)acrylic Acid
3.1.1. (E)-3-(10-Ethyl-10H-phenothiazin-3-yl)-2-(1H-tetrazol-5-yl)acrylic Acid (PETA)
3.1.2. (E)-3-(10-Butyl-10H-phenothiazin-3-yl)-2-(1H-tetrazol-5-yl)acrylic acid (PBTA)
3.1.3. (E)-3-(10-Octyl-10H-phenothiazin-3-yl)-2-(1H-tetrazol-5-yl)acrylic acid (POTA)
4. Results and Discussion
4.1. Synthesis and Structural Characterization
4.2. Thermal Properties
4.3. Electrochemical Investigations
4.4. Theoretical Calculations
4.5. Photophysical Properties
a Dye | UV–Vis | PL | ||
---|---|---|---|---|
λmax (nm), (b ε × 103) | c TiO2 | λem (nm) | Stokes Shifts ∆ (cm−1) | |
N719 | 311 (70), 382 (25), 532 (20) | 402, 534 | 570 | 8634 |
PETA | 300 (24), 398 (12) | 408 | 535 | 6434 |
PBTA | 300 (20), 396 (10) | 410 | 535 | 6560 |
POTA | 300 (7), 400 (13) | 434 | 463 | 3401 |
4.6. Photovoltaic Studies
Photoanode | VOC [mV] | JSC [mA cm−2] | FF | PCE [%] | Dye Loading [10−7 mol cm−2] |
---|---|---|---|---|---|
FTO/TiO2@N719 | 720 ± 8.50 | 13.9 ± 0.17 | 0.53 ± 0.03 | 5.30 ± 0.40 | 0.86 |
FTO/TiO2@PETA | 615 ± 8.08 | 3.66 ± 0.98 | 0.54 ± 0.01 | 1.18 ± 0.09 | 5.4 |
FTO/TiO2@PBTA | 654 ± 1.53 | 3.92 ± 0.30 | 0.55 ± 0.03 | 1.34 ± 0.03 | 4.1 |
FTO/TiO2@POTA | 654 ± 3.51 | 7.37 ± 0.63 | 0.52 ± 0.03 | 2.50 ± 0.09 | 3.2 |
FTO/BL/TiO2@POTA | 679 ± 8.19 | 10.59 ± 0.36 | 0.42 ± 0.02 | 3.03 ± 0.25 | 3.2 |
FTO/BL/TiO2@POTA:CDCA | 708 ± 5.03 | 7.42 ± 0.66 | 0.59 ± 0.03 | 3.10 ± 0.15 | 2.9 |
FTO/TiO2@N719:POTA | 723 ± 8.62 | 15.04 ± 0.74 | 0.37 ± 0.02 | 4.00 ± 0.06 | - |
FTO/BL/TiO2@N719:POTA | 734 ± 8.96 | 16.93 ± 1.54 | 0.37 ± 0.03 | 4.56 ± 0.01 | - |
FTO/BL/TiO2@N719:POTA:CDCA | 758 ± 5.03 | 13.13 ± 2.39 | 0.52 ± 0.05 | 5.17 ± 0.78 | - |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Wahed, H.M.; Fadda, A.A.; Abdel-Latif, E.; Abdelmageed, S.M.; Elmorsy, M.R. Novel triphenylamine-based porphyrins: Synthesis, structural characterization, and theoretical investigation for dye-sensitized solar cell applications. J. Mol. Struct. 2023, 1281, 135147. [Google Scholar] [CrossRef]
- Elmorsy, M.R.; Badawy, S.A.; Abdel-Latif, E.; Assiri, M.A.; Ali, T.E. Significant improvement of dye-sensitized solar cell performance using low-band-gap chromophores based on triphenylamine and carbazole as strong donors. Dyes Pigments 2023, 214, 111206. [Google Scholar] [CrossRef]
- Souilah, M.; Hachi, M.; Fitri, A.; Benjelloun, A.; Benzakour, M.; Mcharfi, M.; Zgou, H. Efficient tuning of various coumarin based donor dyes with diketopyrrolopyrrole by forming DA′-π-A structure for high-efficiency solar cells: A DFT/TD-DFT study. Chem. Data Collect. 2023, 45, 101017. [Google Scholar] [CrossRef]
- Ammasi, A.; Munusamy, A.P.; Shkir, M. Computational investigations on acceptor substituent influence of metal-free efficient chromophores for optoelectronic properties. J. Mol. Model. 2022, 28, 349. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Huang, S.; Shao, W.; Kong, X.; Liu, B.; Hu, Z.; Wu, W.; Tan, H. The application of a novel D−A−π−A phenothiazine-based organic dye with N719 in efficient parallel tandem dye-sensitized solar cells. Synth. Met. 2023, 295, 117344. [Google Scholar] [CrossRef]
- Tian, H.; Yang, X.; Chen, R.; Pan, Y.; Li, L.; Hagfeldt, A.; Sun, L. Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chem. Commun. 2007, 3741–3743. [Google Scholar] [CrossRef]
- Hua, Y.; Chang, S.; Huang, D.; Zhou, X.; Zhu, X.; Zhao, J.; Chen, T.; Wong, W.-Y.; Wong, W.-K. Significant improvement of dye-sensitized solar cell performance using simple phenothiazine-based dyes. Chem. Mater. 2013, 25, 2146–2153. [Google Scholar] [CrossRef]
- Choi, H.; Baik, C.; Kang, S.O.; Ko, J.; Kang, M.S.; Nazeeruddin, M.K.; Grätzel, M. Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. Angew. Chem. Int. Ed. 2008, 47, 327–330. [Google Scholar] [CrossRef]
- Ito, S.; Zakeeruddin, S.M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M.K.; Péchy, P.; Takata, M.; Miura, H. High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv. Mater. 2006, 18, 1202–1205. [Google Scholar] [CrossRef]
- Wang, Z.-S.; Koumura, N.; Cui, Y.; Takahashi, M.; Sekiguchi, H.; Mori, A.; Kubo, T.; Furube, A.; Hara, K. Hexylthiophene-functionalized carbazole dyes for efficient molecular photovoltaics: Tuning of solar-cell performance by structural modification. Chem. Mater. 2008, 20, 3993–4003. [Google Scholar] [CrossRef]
- Zhang, L.; Cole, J.M. Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 3427–3455. [Google Scholar] [CrossRef]
- Urbani, M.; Grätzel, M.; Nazeeruddin, M.K.; Torres, T. Meso-substituted porphyrins for dye-sensitized solar cells. Chem. Rev. 2014, 114, 12330–12396. [Google Scholar] [CrossRef]
- Lu, J.; Xu, X.; Cao, K.; Cui, J.; Zhang, Y.; Shen, Y.; Shi, X.; Liao, L.; Cheng, Y.; Wang, M. D–π–A structured porphyrins for efficient dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 10008–10015. [Google Scholar] [CrossRef]
- Costa, J.C.; Santos, L.M. Hole transport materials based thin films: Topographic structures and phase transition thermodynamics of triphenylamine derivatives. J. Phys. Chem. C 2013, 117, 10919–10928. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Wei, X.; Li, X.; Ågren, H.; Wu, W.; Xie, Y. 2-Diphenylaminothiophene as the donor of porphyrin sensitizers for dye-sensitized solar cells. New J. Chem. 2014, 38, 3227–3235. [Google Scholar] [CrossRef]
- Ripolles-Sanchis, T.; Guo, B.-C.; Wu, H.-P.; Pan, T.-Y.; Lee, H.-W.; Raga, S.R.; Fabregat-Santiago, F.; Bisquert, J.; Yeh, C.-Y.; Diau, E.W.-G. Design and characterization of alkoxy-wrapped push–pull porphyrins for dye-sensitized solar cells. Chem. Commun. 2012, 48, 4368–4370. [Google Scholar] [CrossRef] [PubMed]
- Chermahini, Z.J.; Chermahini, A.N.; Dabbagh, H.A.; Teimouri, A. New tetrazole-based organic dyes for dye-sensitized solar cells. J. Energy Chem. 2015, 24, 770–778. [Google Scholar] [CrossRef]
- Massin, J.; Ducasse, L.; Toupance, T.; Olivier, C.l. Tetrazole as a new anchoring group for the functionalization of TiO2 nanoparticles: A joint experimental and theoretical study. J. Phys. Chem. C 2014, 118, 10677–10685. [Google Scholar] [CrossRef]
- da Silva, L.; Sanchez, M.; Freeman, H.S. New tetrazole based dyes as efficient co-sensitizers for dsscs: Structure-properties relationship. Org. Electron. 2020, 87, 105964. [Google Scholar] [CrossRef]
- Huang, S.; Schlichthörl, G.; Nozik, A.; Grätzel, M.; Frank, A. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 1997, 101, 2576–2582. [Google Scholar] [CrossRef]
- Palomares, E.; Clifford, J.N.; Haque, S.A.; Lutz, T.; Durrant, J.R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 2003, 125, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Park, N.-G.; Kang, M.; Kim, K.; Ryu, K.; Chang, S.; Kim, D.-K.; Van de Lagemaat, J.; Benkstein, K.; Frank, A. Morphological and photoelectrochemical characterization of core− shell nanoparticle films for dye-sensitized solar cells: Zn−O type shell on SnO2 and TiO2 cores. Langmuir 2004, 20, 4246–4253. [Google Scholar] [CrossRef]
- Wu, M.-S.; Yang, R.-S. Post-treatment of porous titanium dioxide film with plasmonic compact layer as a photoanode for enhanced dye-sensitized solar cells. J. Alloys Compd. 2018, 740, 695–702. [Google Scholar] [CrossRef]
- Xu, F.; Testoff, T.T.; Wang, L.; Zhou, X. Cause, regulation and utilization of dye aggregation in dye-sensitized solar cells. Molecules 2020, 25, 4478. [Google Scholar] [CrossRef] [PubMed]
- Yum, J.-H.; Jang, S.-R.; Humphry-Baker, R.; Grätzel, M.; Cid, J.-J.; Torres, T.; Nazeeruddin, M.K. Effect of coadsorbent on the photovoltaic performance of zinc pthalocyanine-sensitized solar cells. Langmuir 2008, 24, 5636–5640. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kurchania, R.; Pockett, A.; Ball, R.; Koukaras, E.; Cameron, P.; Sharma, G. Characterization of metal-free D-(π-A)2 organic dye and its application as cosensitizer along with N719 dye for efficient dye-sensitized solar cells. Indian J. Phys. 2015, 89, 1041–1050. [Google Scholar] [CrossRef]
- Althagafi, I.; El-Metwaly, N. Enhancement of dye-sensitized solar cell efficiency through co-sensitization of thiophene-based organic compounds and metal-based N-719. Arab. J. Chem. 2021, 14, 103080. [Google Scholar] [CrossRef]
- Iqbal, Z.; Wu, W.-Q.; Kuang, D.-B.; Wang, L.; Meier, H.; Cao, D. Phenothiazine-based dyes with bilateral extension of π-conjugation for efficient dye-sensitized solar cells. Dyes Pigments 2013, 96, 722–731. [Google Scholar] [CrossRef]
- De Rossi, U.; Moll, J.; Kriwanek, J.; Daehne, S. Influence of the N-alkyl chain length on the J-aggregation behavior of a cyanine dye. J. Fluoresc. 1994, 4, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.F.; Gnida, P.; Małecki, J.G.; Kotowicz, S.; Pająk, A.K.; Siwy, M.; Schab-Balcerzak, E. Effect of Anchoring Unit, N-Alkyl Chain Length, and Thickness of Titanium Dioxide Layer on the Efficiency of Dye-Sensitized Solar Cells (DSSCs) and Tandem DSSCs. Ind. Eng. Chem. Res. 2024, 63, 19994–20008. [Google Scholar] [CrossRef]
- Fabiańczyk, A.; Gnida, P.; Chulkin, P.; Kula, S.; Filapek, M.; Szlapa-Kula, A.; Janeczek, H.; Schab-Balcerzak, E. Effect of heterocycle donor in 2-cyanoacrylic acid conjugated derivatives for DSSC applications. Sol. Energy 2021, 220, 1109–1119. [Google Scholar] [CrossRef]
- Kim, S.H.; Sakong, C.; Chang, J.B.; Kim, B.; Ko, M.J.; Kim, D.H.; Hong, K.S.; Kim, J.P. The effect of N-substitution and ethylthio substitution on the performance of phenothiazine donors in dye-sensitized solar cells. Dyes Pigments 2013, 97, 262–271. [Google Scholar] [CrossRef]
- Nagarajan, B.; Kushwaha, S.; Elumalai, R.; Mandal, S.; Ramanujam, K.; Raghavachari, D. Novel ethynyl-pyrene substituted phenothiazine based metal free organic dyes in DSSC with 12% conversion efficiency. J. Mater. Chem. A 2017, 5, 10289–10300. [Google Scholar] [CrossRef]
- Slodek, A.; Zych, D.; Szafraniec-Gorol, G.; Gnida, P.; Vasylieva, M.; Schab-Balcerzak, E. Investigations of new phenothiazine-based compounds for dye-sensitized solar cells with theoretical insight. Materials 2020, 13, 2292. [Google Scholar] [CrossRef]
- Nhari, L.M.; El-Shishtawy, R.M.; Bouzzine, S.M.; Hamidi, M.; Asiri, A.M. Phenothiazine-based dyes containing imidazole with π-linkers of benzene, furan and thiophene: Synthesis, photophysical, electrochemical and computational investigation. J. Mol. Struct. 2022, 1251, 131959. [Google Scholar] [CrossRef]
- Joo, Y.H.; Shreeve, J.M. Energetic Mono-, Di-, and Trisubstituted Nitroiminotetrazoles. Angew. Chem. Int. Ed. 2009, 48, 564–567. [Google Scholar] [CrossRef]
- Rams-Baron, M.; Jędrzejowska, A.; Jurkiewicz, K.; Matussek, M.; Musiał, M.; Paluch, M. The dielectric response of phenothiazine-based glass-formers with different molecular complexity. Sci. Rep. 2021, 11, 15816. [Google Scholar] [CrossRef] [PubMed]
- Drzewicz, A.; Juszyńska-Gałązka, E.; Deptuch, A.; Kula, P. Effect of alkyl chain length on the phase situation of glass-forming liquid crystals. Crystals 2022, 12, 1401. [Google Scholar] [CrossRef]
- Xu, K. Silicon MOS optoelectronic micro-nano structure based on reverse-biased PN junction. Phys. Status Solidi (A) 2019, 216, 1800868. [Google Scholar] [CrossRef]
- Gnida, P.; Zimosz, S.; Glinka, A.; Ziółek, M.; Zych, D.; Kotowicz, S.; Amin, M.F.; Chulkin, P.; Kulesza-Matlak, G.Y.; Slodek, A. Unexpected Impact of N-Alkyl Chain Length in Bis-2-cyanoacrylic Acid Substituted Phenothiazines on the Photovoltaic Response of DSSCs. Ind. Eng. Chem. Res. 2024, 63, 7133–7153. [Google Scholar] [CrossRef]
- Allab, Y.; Chikhi, S.; Zaater, S.; Brahimi, M.; Djebbar, S. Impact of the functionalized tetrazole ring on the electrochemical behavior and biological activities of novel nickel (II) complexes with a series of tetrazole derivatives. Inorg. Chim. Acta 2020, 504, 119436. [Google Scholar] [CrossRef]
- Leal, J.G.; Sauer, A.C.; Mayer, J.C.; Stefanello, S.T.; Gonçalves, D.F.; Soares, F.A.; Iglesias, B.A.; Back, D.F.; Rodrigues, O.E.; Dornelles, L. Synthesis and electrochemical and antioxidant properties of chalcogenocyanate oxadiazole and 5-heteroarylchalcogenomethyl-1 H-tetrazole derivatives. New J. Chem. 2017, 41, 5875–5883. [Google Scholar] [CrossRef]
- Al-Ghamdi, S.N.; Al-Ghamdi, H.A.; El-Shishtawy, R.M.; Asiri, A.M. Advances in phenothiazine and phenoxazine-based electron donors for organic dye-sensitized solar cells. Dyes Pigments 2021, 194, 109638. [Google Scholar] [CrossRef]
- Słodek, A.; Zych, D.; Kotowicz, S.; Szafraniec-Gorol, G.K.; Zimosz, S.K.; Schab-Balcerzak, E.; Siwy, M.; Grzelak, J.; Maćkowski, S. “Small in size but mighty in force”—The first principle study of the impact of A/D units in A/D-phenyl-π-phenothiazine-π-dicyanovinyl systems on photophysical and optoelectronic properties. Dyes Pigments 2021, 189, 109248. [Google Scholar] [CrossRef]
- Zimosz, S.; Zych, D.; Szafraniec-Gorol, G.; Kotowicz, S.; Malarz, K.; Musioł, R.; Slodek, A. Does the change in the length of the alkyl chain bring us closer to the compounds with the expected photophysical and biological properties?—Studies based on D-π-DA imidazole-phenothiazine system. J. Mol. Liq. 2022, 365, 120076. [Google Scholar] [CrossRef]
- Data, P.; Zassowski, P.; Lapkowski, M.; Grazulevicius, J.; Kukhta, N.; Reghu, R. Electrochromic behaviour of triazine based ambipolar compounds. Electrochim. Acta 2016, 192, 283–295. [Google Scholar] [CrossRef]
- Nagarajan, B.; Athrey, C.; Elumalai, R.; Chandran, S.; Raghavachari, D. Naphthalimide-phenothiazine based A’-π-D-π-A featured organic dyes for dye sensitized solar cell applications. J. Photochem. Photobiol. A Chem. 2021, 404, 112820. [Google Scholar] [CrossRef]
- Fujisawa, J.-I.; Eda, T.; Hanaya, M. Comparative study of conduction-band and valence-band edges of TiO2, SrTiO3, and BaTiO3 by ionization potential measurements. Chem. Phys. Lett. 2017, 685, 23–26. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16 Revision C. 01, 2016; Gaussian Inc.: Wallingford, CT, USA, 2016; Volume 1, p. 572. [Google Scholar]
- Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 1997, 97, 119–124. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M. Cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Law, K.Y. Squaraine chemistry: Effects of structural changes on the absorption and multiple fluorescence emission of bis [4-(dimethylamino) phenyl] squaraine and its derivatives. J. Phys. Chem. 1987, 91, 5184–5193. [Google Scholar] [CrossRef]
- Sil, M.C.; Chen, L.-S.; Lai, C.-W.; Chang, C.-C.; Chen, C.-M. Enhancement in the solar efficiency of a dye-sensitized solar cell by molecular engineering of an organic dye incorporating N-alkyl-attached 1, 8-naphthalamide derivative. J. Mater. Chem. C 2020, 8, 11407–11416. [Google Scholar] [CrossRef]
- Planells, M.; Pellejà, L.; Clifford, J.N.; Pastore, M.; De Angelis, F.; López, N.; Marder, S.R.; Palomares, E. Energy levels, charge injection, charge recombination and dye regeneration dynamics for donor–acceptor π-conjugated organic dyes in mesoscopic TiO2 sensitized solar cells. Energy Environ. Sci. 2011, 4, 1820–1829. [Google Scholar] [CrossRef]
- Pandey, S.S.; Inoue, T.; Fujikawa, N.; Yamaguchi, Y.; Hayase, S. Substituent effect in direct ring functionalized squaraine dyes on near infra-red sensitization of nanocrystalline TiO2 for molecular photovoltaics. J. Photochem. Photobiol. A Chem. 2010, 214, 269–275. [Google Scholar] [CrossRef]
- Miyashita, M.; Sunahara, K.; Nishikawa, T.; Uemura, Y.; Koumura, N.; Hara, K.; Mori, A.; Abe, T.; Suzuki, E.; Mori, S. Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: Combined effects of molecular structure of dyes and electrolytes. J. Am. Chem. Soc. 2008, 130, 17874–17881. [Google Scholar] [CrossRef]
- Gnida, P.; Slodek, A.; Schab-Balcerzak, E. Effect of photoanode structure and sensitization conditions on the photovoltaic response of dye-sensitized solar cells. Opto-Electron. Rev. 2022, e140739. [Google Scholar] [CrossRef]
- Gnida, P.; Slodek, A.; Chulkin, P.; Vasylieva, M.; Pająk, A.K.; Seweryn, A.; Godlewski, M.; Witkowski, B.S.; Szafraniec-Gorol, G.; Schab-Balcerzak, E. Impact of blocking layer on DSSC performance based on new dye-indolo [3,2,1-jk] carbazole derivative and N719. Dyes Pigments 2022, 200, 110166. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, A.; Huang, G.; Yang, M.; Li, D.; Teng, M.; Han, D. Enhanced efficiency with CDCA co-adsorption for dye-sensitized solar cells based on metallosalophen complexes. Sol. Energy 2020, 209, 316–324. [Google Scholar] [CrossRef]
Molecule | Method | Ered1 | Ered1(onset) | Eox1 | Eox1(onset) | EA | LUMO c | IP | HOMO c | Eg |
---|---|---|---|---|---|---|---|---|---|---|
[V] | [V] | [V] | [V] | [eV] | [eV] | [eV] | [eV] | [eV] | ||
PETA | CV | −2.28 a | −2.06 | 0.36 b | 0.23 | −3.04 | −3.03 | −5.33 | −5.53 | 2.29 |
DPV | −2.23 | −2.09 | 0.33 | 0.19 | −3.01 | −5.29 | 2.28 | |||
PBTA | CV | −2.34 a | −2.09 | 0.30 b | 0.18 | −3.01 | −3.07 | −5.28 | −5.53 | 2.27 |
DPV | −2.30 | −2.02 | 0.27 | 0.16 | −3.08 | −5.26 | 2.18 | |||
POTA | CV | −2.32 a | −1.96 | 0.33 b | 0.19 | −3.14 | −3.07 | −5.29 | −5.52 | 2.15 |
DPV | −2.30 | −1.94 | 0.27 | 0.19 | −3.16 | −5.29 | 2.13 | |||
N719 * [40] | CV | −2.26 | −2.15 | 0.27 | 0.20 | −2.65 | −2.95 | −5.00 | −5.30 | 2.35 |
DPV | −2.18 | −2.09 | 0.22 | 0.14 | −2.71 | −4.94 | 2.23 |
T-Device | Photoanode | VOC [mV] | JSC [mA cm−2] | FF [−] | PCE [%] |
---|---|---|---|---|---|
TDSSC1 | FTO/BL/TiO2@POTA Top | 695 | 7.67 | 0.63 | 3.34 |
FTO/BL/TiO2@N719 Bottom | 732 | 6.55 | 0.65 | 3.10 | |
Tandem | 711 | 14.12 | 0.62 | 6.20 | |
TDSSC2 | FTO/BL/TiO2@N719 Top | 753 | 16.92 | 0.48 | 6.08 |
FTO/BL/TiO2@POTA Bottom | 617 | 0.58 | 0.75 | 0.27 | |
Tandem | 717 | 17.59 | 0.51 | 6.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.F.; Gnida, P.; Małecki, J.G.; Kotowicz, S.; Schab-Balcerzak, E. DSSCs Sensitized with Phenothiazine Derivatives Containing 1H-Tetrazole-5-acrylic Acid as an Anchoring Unit. Materials 2024, 17, 6116. https://doi.org/10.3390/ma17246116
Amin MF, Gnida P, Małecki JG, Kotowicz S, Schab-Balcerzak E. DSSCs Sensitized with Phenothiazine Derivatives Containing 1H-Tetrazole-5-acrylic Acid as an Anchoring Unit. Materials. 2024; 17(24):6116. https://doi.org/10.3390/ma17246116
Chicago/Turabian StyleAmin, Muhammad Faisal, Paweł Gnida, Jan Grzegorz Małecki, Sonia Kotowicz, and Ewa Schab-Balcerzak. 2024. "DSSCs Sensitized with Phenothiazine Derivatives Containing 1H-Tetrazole-5-acrylic Acid as an Anchoring Unit" Materials 17, no. 24: 6116. https://doi.org/10.3390/ma17246116
APA StyleAmin, M. F., Gnida, P., Małecki, J. G., Kotowicz, S., & Schab-Balcerzak, E. (2024). DSSCs Sensitized with Phenothiazine Derivatives Containing 1H-Tetrazole-5-acrylic Acid as an Anchoring Unit. Materials, 17(24), 6116. https://doi.org/10.3390/ma17246116