Creep Properties and Corrosion Behavior of TP347H Stainless Steel with Al in Molten Carbonate Salt
<p>Specimen arrangement for the static corrosion test.</p> "> Figure 2
<p>Metallographic structure of the alloy with different Al contents: (<b>a</b>) 0 wt.% Al; (<b>b</b>) 1.5 wt.% Al; (<b>c</b>) 2 wt.% Al; (<b>d</b>) 2.5 wt.% Al.</p> "> Figure 3
<p>SEM images and EDS results for the alloys with different Al contents: (<b>a</b>) 2 wt.% Al; (<b>b</b>) 2.5 wt.% Al.</p> "> Figure 4
<p>(<b>a</b>) Corrosion weight gain curve of the alloys with different Al contents; (<b>b</b>) corrosion rate of the alloys with different Al contents after 1000 h of corrosion.</p> "> Figure 5
<p>Corrosion rate of different alloys in carbonate [<a href="#B36-materials-17-06108" class="html-bibr">36</a>,<a href="#B37-materials-17-06108" class="html-bibr">37</a>,<a href="#B38-materials-17-06108" class="html-bibr">38</a>,<a href="#B39-materials-17-06108" class="html-bibr">39</a>].</p> "> Figure 6
<p>XRD pattern of the alloy with different Al contents after different corrosion times: (<b>a</b>) 200 h; (<b>b</b>) 1000 h.</p> "> Figure 7
<p>SEM image and surface of TP347H steel with different Al contents after corrosion: (<b>a</b>) 0 wt.% Al-200 h; (<b>b</b>) 1.5 wt.% Al-200 h; (<b>c</b>) 2 wt.% Al-200 h; (<b>d</b>) 2.5 wt.% Al-200 h; (<b>e</b>) 0 wt.% Al-1000 h; (<b>f</b>) 1.5 wt.% Al-1000 h; (<b>g</b>) 2 wt.% Al-1000 h; (<b>h</b>) 2.5 wt.% Al-1000 h.</p> "> Figure 8
<p>SEM images of and EDS results for the corrosion cross-section in the alloys with different Al contents after 200 h of corrosion: (<b>a</b>) 0 wt.% Al; (<b>b</b>) 1.5 wt.% Al; (<b>c</b>) 2 wt.% Al; (<b>d</b>) 2.5 wt.% Al.</p> "> Figure 9
<p>SEM images of and EDS results for the corrosion cross-section in the alloys with different Al contents after 1000 h of corrosion: (<b>a</b>) 0 wt.% Al; (<b>b</b>) 1.5 wt.% Al; (<b>c</b>) 2 wt.% Al; (<b>d</b>) 2.5 wt.% Al.</p> "> Figure 10
<p>Creep strain curves and creep rate curves of the alloy with 2 wt.% Al under different stress at 650 °C: (<b>a</b>) creep time–strain curve; (<b>b</b>) creep time–creep rate curve.</p> "> Figure 11
<p>SEM images of the creep fracture morphology of the alloy containing 2 wt.% Al under different stresses: (<b>a</b>,<b>d</b>) 110 MPa; (<b>b</b>,<b>e</b>) 120 MPa; (<b>c</b>,<b>f</b>) 130 MPa.</p> "> Figure 12
<p>Sketch of formation process for corrosion layer: (<b>a</b>) the initial stage of corrosion; (<b>b</b>) stable corrosion stage.</p> "> Figure 13
<p>(<b>a</b>) Logarithmic curve of the minimum creep rate versus creep stress of the alloy with 2 wt.% Al. (<b>b</b>) Variation in minimum creep rate to the power of 1/5 versus creep stress of the alloy with 2 wt.% Al.</p> "> Figure 14
<p>Logarithmic curve of minimum creep rate and true stress of the alloy with 2 wt.% Al.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Corrosion Test
2.3. Creep Property Test
2.4. Microstructure Characterization
3. Results
3.1. Microstructure and Morphology
3.2. Corrosion Resistance Analysis
3.3. Creep Property Analysis
4. Discussion
4.1. Corrosion Resistance
4.2. Creep Properties
5. Conclusions
- 1.
- The matrix microstructure of the TP347H with Al changes from austenite to austenite and martensite. The Al element dissolved in the matrix. The corrosion rate of the TP347H with 2.5 wt.% Al content was 75.09 ± 3.96 μm/year for 1000 h, which was approximately 25% lower than the alloy without the Al element. The addition of the Al element is beneficial for the formation of a continuous and dense Cr2O3, Al2O3, and NiO composite layer in the inner corrosion layer of the alloys. The composite oxide layer effectively protected the matrix, which improved the corrosion performance of the alloy in the molten salt.
- 2.
- The addition of the Al element promoted the formation of a dense LiFeO2 layer on the surface of the alloy in the early stage of corrosion. Al is a strong oxygen-absorbing element, and it promoted the formation of iron and chromium oxides on the specimen surface during high-temperature corrosion. The reaction of iron oxides with molten salt formed LiFeO2. This reduced the formation of chromate, which is highly soluble in carbonate, and thus reduced the dissolution of the matrix elements into the molten salt.
- 3.
- At 650 °C, the fracture characteristic of the alloys was ductile fracture. The lower the creep stress, the longer the fracture time and the lower the steady-state creep rate for alloys containing 2 wt.% Al content. When the creep stress was 110 MPa, the lowest steady-state creep rate was 3.61 × 10−6. The true stress index was 5.791, and the deformation mechanism in the creep process was a lattice diffusion-assisted edge-type dislocation shift control mechanism.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, W.; Bauer, T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants. Engineering 2021, 7, 334–347. [Google Scholar] [CrossRef]
- González-Roubaud, E.; Pérez-Osorio, D.; Prieto, C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renew. Sustain. Energy Rev. 2017, 80, 133–148. [Google Scholar] [CrossRef]
- Mubarrat, M.; Mashfy, M.M.; Farhan, T.; Ehsan, M.M. Research advancement and potential prospects of thermal energy storage in concentrated solar power application. Int. J. Thermofluids 2023, 20, 100431. [Google Scholar] [CrossRef]
- Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the art on high temperature thermal energy storage for power generation. part 1—Concepts, materials and modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- Olivares, R.I.; Chen, C.; Wright, S. The thermal stability of molten lithium-sodium-potassium carbonate and the influence of additives on the melting point. J. Sol. Energy Eng. 2012, 134, 041002. [Google Scholar] [CrossRef]
- Sang, L.; Cai, M.; Ren, N.; Wu, Y.; Burda, C.; Ma, C. Improving the thermal properties of ternary carbonates for concentrating solar power through simple chemical modifications by adding sodium hydroxide and nitrate. Sol. Energy Mater. Sol Cells 2014, 124, 61–66. [Google Scholar] [CrossRef]
- Mehos, M.; Turchi, C.; Vidal, J.; Wagner, M.; Ma, Z.; Ho, C.; Kolb, W.; Andraka, C.; Kruizenga, A. Concentrating Solar Power Gen3 Demonstration Roadmap; National Renewable Energy Lab (NREL): Golden, CO, USA, 2017. [Google Scholar]
- Vignarooban, K.; Xu, X.; Arvay, A.; Hsu, K.; Kannan, A.M. Heat transfer fluids for concentrating solar power systems—A review. Appl. Energy 2015, 146, 383–396. [Google Scholar] [CrossRef]
- Sah, S.P.; Tada, E.; Nishikata, A. Corrosion behaviour of austenitic stainless steels in carbonate melt at 923 K under controlled CO2-O2 environment. Corros. Sci. 2018, 133, 310–317. [Google Scholar] [CrossRef]
- Takeuchi, K.; Nishijima, A.; Ui, K.; Koura, N.; Loong, C.-K. Corrosion behavior of Fe-Cr alloys in Li2CO3-K2CO3 molten carbonate. J. Electrochem. Soc. 2005, 152, B364. [Google Scholar] [CrossRef]
- De Miguel, M.T.; Encinas-Sánchez, V.; Lasanta, M.I.; García-Martín, G.; Pérez, F.J. Corrosion resistance of HR3C to a carbonate molten salt for energy storage applications in CSP plants. Sol. Energy Mater. Sol Cells 2016, 157, 966–972. [Google Scholar] [CrossRef]
- Encinas-Sánchez, V.; De Miguel, M.T.; García-Martín, G.; Lasanta, M.I.; Pérez, F.J. Corrosion resistance of Cr/Ni alloy to a molten carbonate salt at various temperatures for the next generation high-temperature CSP plants. Sol. Energy 2018, 171, 286–292. [Google Scholar] [CrossRef]
- Bell, S.; Rhamdhani, M.A.; Steinberg, T.; Will, G. Aggressive corrosion of C-276 nickel superalloy in chloride/sulphate eutectic salt. Sol. Energy 2021, 227, 557–567. [Google Scholar] [CrossRef]
- Vignarooban, K.; Xu, X.; Wang, K.; Molina, E.E.; Li, P.; Gervasio, D.; Kannan, A.M. Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems. Appl. Energy 2015, 159, 206–213. [Google Scholar] [CrossRef]
- Wang, J.-W.; Zhang, C.-Z.; Li, Z.-H.; Zhou, H.-X.; He, J.-X.; Yu, J.-C. Corrosion behavior of nickel-based superalloys in thermal storage medium of molten eutectic Nacl-mgcl2 in atmosphere. Sol. Energy Mater. Sol. Cells 2017, 164, 146–155. [Google Scholar] [CrossRef]
- Ibrahim, A.; Peng, H.; Riaz, A.; Abdul Basit, M.; Rashid, U.; Basit, A. Molten salts in the light of corrosion mitigation strategies and embedded with nanoparticles to enhance the thermophysical properties for CSP plants. Sol. Energy Mater. Sol Cells 2021, 219, 110768. [Google Scholar] [CrossRef]
- De Miguel, M.T.; Lasanta, M.I.I.; García-Martín, G.; Díaz, R.; Pérez, F.J. Temperature effect and alloying elements impact on the corrosion behaviour of the alloys exposed to molten carbonate environments for CSP application. Corros. Sci. 2022, 201, 110274. [Google Scholar] [CrossRef]
- Liu, Q.; Barker, R.; Wang, C.; Qian, J.; Neville, A.; Pessu, F. The corrosion behaviour of stainless steels and Ni-based alloys in nitrate salts under thermal cycling conditions in concentrated solar power plants. Sol. Energy 2022, 232, 169–185. [Google Scholar] [CrossRef]
- Prieto, C.; Fereres, S.; Ruiz-Cabañas, F.J.; Rodriguez-Sanchez, A.; Montero, C. Carbonate molten salt solar thermal pilot facility: Plant design, commissioning and operation up to 700 °C. Renew. Energy 2020, 151, 528–541. [Google Scholar] [CrossRef]
- Gomez-Vidal, J.C.; Noel, J.; Weber, J. Corrosion evaluation of alloys and MCRALX coatings in molten carbonates for thermal solar applications. Sol. Energy Mater. Sol. Cells 2016, 157, 517–525. [Google Scholar] [CrossRef]
- Grosu, Y.; Anagnostopoulos, A.; Navarro, M.E.; Ding, Y.; Faik, A. Inhibiting hot corrosion of molten Li2CO3-Na2CO3-K2CO3 salt through graphitization of construction materials for concentrated solar power. Sol. Energy Mater. Sol Cells 2020, 215, 110650. [Google Scholar] [CrossRef]
- Shi, Z.; Tang, G.; Lei, Y.; Gu, H.; Gan, L. Hot corrosion behavior of co-w coated ferritic stainless steel in molten chloride salt. Surf. Coat. Technol. 2024, 480, 130590. [Google Scholar] [CrossRef]
- Kondaiah, P.; Pitchumani, R. Electrodeposited nickel coatings for exceptional corrosion mitigation in industrial grade molten chloride salts for concentrating solar power. Renew. Sustain. Energy Rev. 2024, 189, 113848. [Google Scholar] [CrossRef]
- Luo, J.; Tariq, N.U.H.; Liu, H.H.; Li, N.; Zhao, L.J.; Cui, X.Y.; Xiong, T.Y. Robust corrosion performance of cold sprayed aluminide coating in ternary molten carbonate salt for concentrated solar power plants. Sol. Energy Mater. Sol. Cells 2022, 237, 111573. [Google Scholar] [CrossRef]
- Han, D.; Hou, Y.; Jiang, B.; Geng, B.; He, X.; Shagdar, E.; Lougou, B.G.; Shuai, Y. Enhanced corrosion resistance of alloy in molten chloride salts by adding nanoparticles for thermal energy storage applications. J. Energy Storage 2023, 64, 107172. [Google Scholar] [CrossRef]
- Wang, P.; Du, K.; Yin, H.; Wang, D. Corrosion and protection of metallic materials in molten carbonates for concentrating solar power and molten carbonate electrolysis applications. Corros. Commun. 2023, 11, 58–71. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Santella, M.L.L.; Brady, M.P.P.; Bei, H.; Maziasz, P.J. Effect of Alloying Additions on phase equilibria and creep resistance of alumina-forming austenitic stainless steels. Metall. Mater. Trans. A 2009, 40, 1868–1880. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, Z.; Sun, L.; Ma, Q.; Zhang, H.; Bai, J.; Lin, X.; Yu, L.; Li, H. Review on precipitates and high-temperature properties of alumina-forming austenitic stainless steel. J. Mater. Res. Technol. 2023, 25, 5372–5393. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Brady, M.P.P.; Lu, Z.P.P.; Liu, C.T.; Takeyama, M.; Maziasz, P.J.; Pint, B.A. Alumina-forming austenitic stainless steels strengthened by laves phase and mc carbide precipitates. Metall. Mater. Trans. A 2007, 38, 2737–2746. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Takeyama, M.; Lu, Z.P.P.; Liu, C.T.; Evans, N.D.; Maziasz, P.J.; Brady, M.P. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates. Intermetallics 2008, 16, 453–462. [Google Scholar] [CrossRef]
- Brady, M.P.P.; Yamamoto, Y.; Santella, M.L.L.; Maziasz, P.J.; Pint, B.A.; Liu, C.T.; Lu, Z.P.; Bei, H. The development of alumina-forming austenitic stainless steels for high-temperature structural use. JOM 2008, 60, 12–18. [Google Scholar] [CrossRef]
- Wen, D.H.; Li, Z.; Jiang, B.B.B.; Wang, Q.; Chen, G.Q.; Tang, R.; Zhang, R.Q.; Dong, C.; Liaw, P.K. Effects of Nb/Ti/V/Ta on phase precipitation and oxidation resistance at 1073 K in alumina-forming austenitic stainless steels. Mater. Charact. 2018, 144, 86–98. [Google Scholar] [CrossRef]
- Hamdy, E.; Olovsjö, J.N.; Geers, C. Perspectives on selected alloys in contact with eutectic melts for thermal storage: Nitrates, carbonates and chlorides. Sol. Energy 2021, 224, 1210–1221. [Google Scholar] [CrossRef]
- GB/T 228.2-2015; High-Temperature Tensile Test Method for Metal Materials. Standardization Administration of China: Beijing, China, 2015.
- GB/T 2039-2012; Uniaxial Creep Test Method for Metal Materials. Standardization Administration of China: Beijing, China, 2012.
- Fernández, A.G.; Pineda, F.; Walczak, M.; Cabeza, L.F. Corrosion evaluation of alumina-forming alloys in carbonate molten salt for CSP plants. Renew. Energy 2019, 140, 227–233. [Google Scholar] [CrossRef]
- Grosu, Y.; Anagnostopoulos, A.; Balakin, B.; Krupanek, J.; Navarro, M.E.; González-Fernández, L.; Ding, Y.; Faik, A. Nanofluids based on molten carbonate salts for high-temperature thermal energy storage: Thermophysical properties, stability, compatibility and life cycle analysis. Sol. Energy Mater. Sol. Cells 2021, 220, 110838. [Google Scholar] [CrossRef]
- Zhuang, X.; Liu, W.; Xu, X. Hot corrosion of different alloys in chloride and carbonate molten-salt mixtures under argon atmosphere. Sol. Energy 2019, 189, 254–267. [Google Scholar] [CrossRef]
- Morales, M.; Rezayat, M.; Mateo, A. Enhancing the corrosion resistance of 2205 duplex stainless steel in molten carbonate salts by laser-surface texturing. J. Energy Storage 2024, 78, 110053. [Google Scholar] [CrossRef]
- Audigié, P.; Rodríguez, S.; Agüero, A.; Pedrosa, F.; Paiva, T.; Diamantino, T.C. Comparison of descaling methods to study the corrosion kinetics of ferritic steels after dynamic exposure to molten carbonates. Corros. Sci. 2022, 209, 110786. [Google Scholar] [CrossRef]
- Luo, J.; Deng, C.K.; Li, N.; Han, R.F.; Liu, H.H.; Wang, J.Q.; Cui, X.Y.; Xiong, T.Y. Corrosion behavior of SS316L in ternary Li2CO3–Na2CO3–K2CO3 eutectic mixture salt for concentrated solar power plants. Sol. Energy Mater. Sol. Cells 2020, 217, 110679. [Google Scholar] [CrossRef]
- Sarvghad, M.; Chenu, T.; Will, G. Comparative interaction of cold-worked versus annealed inconel 601 with molten carbonate salt at 450 °C. Corros. Sci. 2017, 116, 88–97. [Google Scholar] [CrossRef]
- Nikitina, E.V.; Karfidov, E.A. Corrosion of construction materials of separator in molten carbonates of alkali metals. Int. J. Hydrog. Energ. 2021, 46, 16925–16931. [Google Scholar] [CrossRef]
- Behnamian, Y.; Mostafaei, A.; Kohandehghan, A.; Amirkhiz, B.S.; Serate, D.; Sun, Y.; Liu, S.; Aghaie, E.; Zeng, Y.; Chmielus, M. A Comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 °C. Corros. Sci. 2016, 106, 188–207. [Google Scholar] [CrossRef]
- Ostwald, C.; Grabke, H.J. Initial Oxidation and chromium diffusion. i. effects of surface working on 9–20% Cr steels. Corros. Sci. 2004, 46, 1113–1127. [Google Scholar] [CrossRef]
- Li, S.; Eliniyaz, Z.; Dong, X.; Shen, Y.; Zhang, L.; Shan, A. Effect of stress on microstructural evolution and mechanical properties of 12cr3w3co steel during aging and short-term creep. Mater. Sci. Eng. A 2013, 580, 51–57. [Google Scholar] [CrossRef]
- Alsagabi, S.; Shrestha, T.; Charit, I. High temperature tensile deformation behavior of grade 92 steel. J. Nucl. Mater. 2014, 453, 151–157. [Google Scholar] [CrossRef]
Sample | Al | C | Cr | Ni | Mn | Si | Nb | Fe |
---|---|---|---|---|---|---|---|---|
0 wt.% Al | 0 | 0.07 | 18 | 11.5 | 1.18 | 0.5 | 0.7 | Bal. |
1.5 wt.% Al | 1.5 | 0.07 | 9.75 | 11.5 | 1.18 | 0.5 | 0.7 | Bal. |
2 wt.% Al | 2 | 0.07 | 7 | 11.5 | 1.18 | 0.5 | 0.7 | Bal. |
2.5 wt.% Al | 2.5 | 0.07 | 4.25 | 11.5 | 1.18 | 0.5 | 0.7 | Bal. |
EDS (wt.%) | Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
O | 35.0 | 33.7 | 20.6 | 26.9 | 28.0 | 31.4 | 32.0 | 39 | 34.3 | 32.8 |
Al | - | - | 10.5 | 0.7 | 0.4 | 0.2 | - | 0.4 | 0.2 | 0.2 |
Cr | 12.3 | 2.7 | 9.1 | 2.4 | 0.7 | 0.1 | 0.1 | 0.0 | 0 | 0.1 |
Mn | 1.4 | 2.5 | 1.1 | 1.3 | 0.7 | 1.1 | 3.1 | 1.9 | 1.9 | 0.9 |
Fe | 50.3 | 60.3 | 52.4 | 68.0 | 70.0 | 67.0 | 64.3 | 58.4 | 62.5 | 65.3 |
Ni | 0.0 | 0.4 | 6.5 | 0.8 | 0.0 | 0.0 | 0.2 | 0.2 | 0.7 | 0.2 |
Sample | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|
0 wt.% Al | 164 | 266 | 31 |
1.5 wt.% Al | 219 | 277 | 32.5 |
2 wt.% Al | 256 | 278 | 55.5 |
2.5 wt.% Al | 234 | 262 | 46 |
Sample | Stress (MPa) | Creep Time (h) | Minimum Creep Rate (h−1) |
---|---|---|---|
2 wt.% Al | 110 | 106 | 3.61 × 10−6 |
120 | 64.3 | 8.86 × 10−4 | |
130 | 38.9 | 2.49 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Q.; Lai, L.; Rao, W.; Li, A.; Yu, H.; La, P. Creep Properties and Corrosion Behavior of TP347H Stainless Steel with Al in Molten Carbonate Salt. Materials 2024, 17, 6108. https://doi.org/10.3390/ma17246108
Meng Q, Lai L, Rao W, Li A, Yu H, La P. Creep Properties and Corrosion Behavior of TP347H Stainless Steel with Al in Molten Carbonate Salt. Materials. 2024; 17(24):6108. https://doi.org/10.3390/ma17246108
Chicago/Turabian StyleMeng, Qian, Lin Lai, Wan Rao, An Li, Haicun Yu, and Peiqing La. 2024. "Creep Properties and Corrosion Behavior of TP347H Stainless Steel with Al in Molten Carbonate Salt" Materials 17, no. 24: 6108. https://doi.org/10.3390/ma17246108
APA StyleMeng, Q., Lai, L., Rao, W., Li, A., Yu, H., & La, P. (2024). Creep Properties and Corrosion Behavior of TP347H Stainless Steel with Al in Molten Carbonate Salt. Materials, 17(24), 6108. https://doi.org/10.3390/ma17246108