Study on the Curing Behaviors of Benzoxazine Nitrile-Based Resin Featuring Fluorene Structures and the Excellent Properties of Their Glass Fiber-Reinforced Laminates
<p>The synthesis process of the WZ-cn monomer.</p> "> Figure 2
<p>(<b>a</b>) DSC curves and (<b>b</b>) FTIR spectrum of various WZ-cn pre-polymers.</p> "> Figure 3
<p>The chromatograms of various WZ-cn pre-polymers: (<b>a</b>) WZ-cn-30, (<b>b</b>) WZ-cn-60, and (<b>c</b>) WZ-cn-90.</p> "> Figure 4
<p>DSC time sweep of the WZ-cn-90 pre-polymer.</p> "> Figure 5
<p>FTIR spectrum of the WZ-cn-90 pre-polymer cured at various temperatures.</p> "> Figure 6
<p>(<b>a</b>,<b>b</b>) The free hydrogen catalyzes the ring-opening polymerization of the oxazine ring in WZ-cn to form the Mannich bridge structure; (<b>c</b>) the active group in the Mannich bridge catalyzes the ring-forming polymerization of the nitrile group in WZ-cn to form a triazine ring and a phthalocyanine ring; and (<b>d</b>) possible structure of the WZ-cn polymer.</p> "> Figure 7
<p>The TGA analysis curves of WZ-cn/GF composite laminates treated at various temperatures: (<b>a</b>) TGA; (<b>b</b>) zoom into view.</p> "> Figure 8
<p>Schematic diagram of S1, S2, and S3 in the formulas A* and K*.</p> "> Figure 9
<p>The DMA analysis curves of WZ-cn/GF composite laminates treated at various temperatures: (<b>a</b>) storage modulus; (<b>b</b>) Tan δ.</p> "> Figure 10
<p>(<b>a</b>) Flexural strength and (<b>b</b>) flexural modulus of various WZ-cn/GF composite laminates.</p> "> Figure 11
<p>SEM images of the fracture surface of various WZ-cn/GF composite laminates: (<b>a</b>) and (<b>a-1</b>) WZ-cn/GF-200; (<b>b</b>) and (<b>b-1</b>) WZ-cn/GF-240; and (<b>c</b>) and (<b>c-1</b>) WZ-cn/GF-280.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of WZ-cn Monomers
2.3. Preparation of WZ-cn Pre-Polymers
2.4. Preparation of Fiber-Reinforced WZ-cn Composite (WZ-cn/GF) Laminates
2.5. Characterizations
3. Results and Discussion
3.1. Curing Behaviors of Various WZ-cn Pre-Polymers
3.2. The Pre-Polymerization Degree and the Gelation Time of Various WZ-cn
3.3. The Time Sweep and Structural Transformation of the WZ-cn Pre-Polymer
3.4. Thermal Properties of WZ-cn/GF Composite Laminates
3.4.1. Thermal Stability of WZ-cn/GF Composite Laminates
3.4.2. Dynamic Mechanical Analysis of WZ-cn/GF Composite Laminates
3.5. Mechanical Properties of the WZ-cn/GF Composite Laminates
3.6. Micromorphology Analysis of the WZ-cn/GF Composite Laminates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, T.; Ma, Y.; Cui, X. Review on frontal polymerization behavior for thermosetting resins: Materials, modeling and application. Polymers 2024, 16, 185. [Google Scholar] [CrossRef]
- Lan, K.; Deng, Y.; Huang, A.; Li, S.Q.; Liu, G.; Xie, H.L. Highly-performance polyimide as an efficient photothermal material for solar-driven water evaporation. Polymer 2022, 256, 125177. [Google Scholar] [CrossRef]
- Li, J.; Jiang, B.B.; Wei, N.; Liang, W.; Ye, C.P.; Bei, S.X.; Xie, S.L. The effect of substituent group in allyl benzoxazine on the thermal, mechanical and dielectric properties of modified bismaleimide. React. Funct. Polym. 2023, 191, 105673. [Google Scholar]
- Xu, Y.; Yang, N.; Liu, Y.J.; Li, Z.B.; He, Q.; Li, C. Improvement of aldehyde-functional polybenzoxazine processability and mechanical properties achieved by 5-aminoindole/benzoxazine copolymerization. Polym. Int. 2021, 70, 612–618. [Google Scholar] [CrossRef]
- Sha, X.L.; Yuan, L.; Liang, G.Z.; Gu, A.J. Heat-resistant and robust biobased benzoxazine resins developed with a green synthesis strategy. Polym. Chem. 2021, 12, 432–438. [Google Scholar] [CrossRef]
- Xu, M.; Ren, D.; Chen, L.; Li, K.; Liu, X. Understanding of the polymerization mechanism of the phthalonitrile-based resins containing benzoxazine and their thermal stability. Polymer 2018, 143, 28–39. [Google Scholar] [CrossRef]
- Xu, M.; Luo, Y.; Lei, Y.; Liu, X. Phthalonitrile-based resin for advanced composite materials: Curing behavior studies. Polym. Test. 2016, 55, 38–43. [Google Scholar] [CrossRef]
- Chong, A.M.; Salazar, S.A.; Stanzione, J.F. Multifunctional Biobased Benzoxazines Blended with an Epoxy Resin for Tunable High-Performance Properties. ACS Sustain. Chem. Eng. 2021, 9, 5768–5775. [Google Scholar] [CrossRef]
- Sha, X.L.; Fei, P.; Shen, B.; Chen, J.; Liu, Z.; Sun, Y.; Miao, J.T. Solvent-free Synthesis of Alkynyl-Based Biobased Benzoxazine Resins with Excellent Heat Resistance. ACS Appl. Polym. Mater. 2023, 5, 3015–3022. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, Y.; Liao, W.; Liu, J.; Wu, N.; Xing, S.; Tang, J. Improving mechanical properties of high-temperature resistant carbon fiber/phthalonitrile composites via surface modification: A comparative study on modification methods. Compos. Interfaces 2024, 31, 385–400. [Google Scholar] [CrossRef]
- Froimowicz, P.; Zhang, K.; Ishida, H. Intramolecular hydrogen bonding in benzoxazines: When structural design becomes functional. Chemistry 2016, 22, 2691–2707. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Yu, T.Y.; Wu, J.H. Synthesis and properties of quinoxaline-containing benzoxazines and polybenzoxazines. ACS Omega 2019, 4, 9092–9101. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Su, J.; Lin, R. Improving the thermal stability of polybenzoxazines through incorporation of eugenol-based benzoxazine. Macromol. Res. 2019, 28, 472–479. [Google Scholar] [CrossRef]
- Tan, J.; Wang, Q.; Liu, Y. Synthesis, gas barrier and thermal properties of polyimide containing rigid planar fluorene moieties. J. Macromol. Sci. Part A 2017, 55, 75–84. [Google Scholar] [CrossRef]
- Chen, S.; Ren, D.; Li, B.; Li, K.; Chen, L.; Xu, M.; Liu, X. Benzoxazine Containing Fluorinated Aromatic Ether Nitrile Linkage: Preparation, Curing Kinetics and Dielectric properties. Polymers 2019, 11, 1036. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Qiu, Q.; Wang, J.; Huo, Z.; Sun, H. Curing kinetics and properties of epoxy resin–fluorenyl diamine systems. Polymer 2008, 49, 4399–4405. [Google Scholar] [CrossRef]
- Kirmani, M.H.; Ramachandran, J.; Arias-Monje, P.J.; Gulgunje, P.; Kumar, S. The effects of processing and carbon nanotube type on the impact strength of aerospace-grade bismaleimide based nanocomposites. Polym. Eng. Sci. 2022, 62, 1187–1196. [Google Scholar] [CrossRef]
- Xu, J.; Chen, P.; Ma, S.; Zhu, G. Synthesis and properties of novel bismaleimide containing allyl group and twisted structure. Thermochim. Acta 2024, 732, 179661. [Google Scholar] [CrossRef]
- Ma, P.; Dai, C.; Jiang, S. Thioetherimide-Modified Cyanate Ester Resin with Better Molding Performance for Glass Fiber Reinforced Composites. Polymers 2019, 11, 1458. [Google Scholar] [CrossRef]
- Xu, M.; Lei, Y.; Ren, D. Thermal stability of allyl-functional phthalonitriles-containing benzoxazine/bismaleimide copolymers and their improved mechanical properties. Polymers 2018, 10, 596. [Google Scholar] [CrossRef] [PubMed]
- Ratna, D.; Chongdar, T.K.; Chakraborty, B.C. Mechanical characterization of new glass fiber reinforced epoxy composites. Polym. Comp. 2004, 25, 165–171. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, J.; Li, B.; Fan, Z.; He, L. Effects of the Backbone’s Structures on the Curing Behaviors and Properties of Phthalonitrile Containing Benzoxazine Rings. Molecules 2024, 29, 5637. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Z.; Zhang, J.; Yang, X.; Zhao, R.; Liu, X. Self-promoted curing phthalonitrile with high glass transition temperature for advanced composites. J. Polym. Res. 2012, 19, 9918. [Google Scholar] [CrossRef]
- Chinese Standard GB/T 2567-2008; Test Methods for Properties of Resin Casting Body. General Administration of Quality Supervision, Inspection and Quarantine: Beijing, China, 2008.
- Zhang, S.; Yang, A.; He, P. How does prepolymerization affect the curing and properties of the thermosetting resins–benzoxazine resin as an exampl. Progress Org. Coat. 2024, 189, 108291–108300. [Google Scholar] [CrossRef]
- Chen, L.; Ren, D.X.; Chen, S.J.; Li, K.; Xu, M.Z.; Liu, X.B. Improved thermal stability and mechanical properties of benzoxazine-based composites with the enchantment of nitrile. Polym. Test. 2019, 74, 127–137. [Google Scholar] [CrossRef]
- Yang, R.; Xie, L.; Li, N.; Froimowicz, P.; Zhang, K. Synthesis of a triptycene-containing dioxazine benzoxazine monomer and a main-chain triptycene-polydimethysiloxane-benzoxazine copolymer with excellent comprehensive properties. Polym. Chem. 2022, 13, 3639–3649. [Google Scholar] [CrossRef]
- Machado, I.; Shaer, C.; Hurdle, K.; Calado, V.; Ishida, H. Towards the Development of Green Flame Retardancy by Polybenzoxazines. Prog. Polym. Sci. 2021, 121, 101435. [Google Scholar] [CrossRef]
- Ma, J.Z.; Cheng, K.; Lv, J.B. Phthalonitrile-PPO blends: Cure behavior and properties. Chin. J. Polym. Sci. 2018, 36, 497–504. [Google Scholar] [CrossRef]
- Sheng, W.; Yin, R.; Chen, J.; Zhang, K. High-performance highly cross-linked networks based on ortho-imide functional mono-benzoxazines containing benzocyclobutene group. React. Funct. Polym. 2022, 171, 105154. [Google Scholar] [CrossRef]
- Wang, Y.; You, S.; Hu, J.; Zhang, K. Synthesis and Properties of Benzoxazine Monomers Bearing Both 3-Methyltetrahydrophtalimide and Nitrile Groups: Para-Para vs. Ortho-Ortho. Macromol. Res. 2020, 28, 74–81. [Google Scholar] [CrossRef]
- Lobanova, M.; Aleshkevich, V.; Babkin, A. Effect of post-curing temperature on the retention of mechanical strength of phthalonitrile thermosets and composites after a long-term thermal oxidative aging. Polymer 2023, 44, 8330–8343. [Google Scholar] [CrossRef]
- Xiong, X.H.; Zhou, L.; Ren, R.; Liu, S.Y.; Chen, P. The thermal decomposition behavior and kinetics of epoxy resins cured with a novel phthalide-containing aromatic diamine. Polym. Test. 2018, 68, 46–52. [Google Scholar] [CrossRef]
- Zabihi, O.; Khodabandeh, A.; Mostafavi, S.M. Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposite containing polythiophene nanoparticles using dynamic thermal analysis. Polym. Degrad. Stab. 2012, 97, 3–13. [Google Scholar] [CrossRef]
- Huang, W.; He, W.; Long, L.; Yan, W.; He, M.; Qin, S.; Yu, J. Highly efficient flame-retardant glass-fiber-reinforced polyamide 6T system based on a novel DOPO-based derivative: Flame retardancy, thermal decomposition, and pyrolysis behavior. Polym. Degrad. Stab. 2018, 148, 26–41. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.Q.; Ren, D.X.; Fan, Z.X.; Xu, M.Z. Modification on phthalonitrile containing benzoxazine with hydroxy-terminated polyarylene ether nitrile: Curing reaction and thermomechanical properties. Compos. Commun. 2023, 43, 101734. [Google Scholar] [CrossRef]
- Bosze, E.J.; Alawar, A.; Bertschger, O. High-temperature strength and storage modulus in unidirectional hybrid composites. Comps. Sci. Tech. 2006, 66, 1963–1969. [Google Scholar] [CrossRef]
- Xu, M.; Jia, K.; Liu, X. Self-cured phthalonitrile resin via multistage polymerization mediated by allyl and benzoxazine functional groups. High Perform. Polym. 2016, 28, 1161–1171. [Google Scholar] [CrossRef]
- Katashima, T. Rheological studies on polymer networks with static and dynamic crosslinks. Polym. J. 2021, 53, 1073–1082. [Google Scholar] [CrossRef]
- Meijer, H.E.H.; Govaert, L.E. Mechanical performance of polymer systems: The relation between structure and properties. Prog. Polym. Sci. 2005, 30, 915–938. [Google Scholar] [CrossRef]
- Wang, X.; Song, X.; Tang, W.; Zhao, S.; Xu, X. Microstructure effects on mechanical properties of network-forming polymer systems: An atomistic simulation study. Chem. Eng. Sci. 2023, 280, 118986. [Google Scholar] [CrossRef]
- Ren, B.; Lan, X.; Tan, Y.; Xiong, G.; Sun, Y.; Guo, R.; Lv, M.; Xie, L. Finely tuning electronic and steric structures of spiro[fluorene-9,9′-xanthene] (SFX)-based emitters by isomerization strategy towards efficient electroluminescence. Dye. Pigment. 2022, 198, 110035. [Google Scholar] [CrossRef]
- De, L.A.; Sweat, R.D. Interfacial engineering of CFRP composites and temperature effects: A review. Mech. Compos. Mater. 2023, 59, 419–440. [Google Scholar]
- Xu, M.Z.; Jia, K.; Liu, X.B. Effect of bisphenol-A on the structures and properties of phthalonitrile-based resin containing benzoxazine. Express Polym. Lett. 2015, 9, 567–581. [Google Scholar] [CrossRef]
Samples | WZ-cn/GF-200 | WZ-cn/GF-240 | WZ-cn/GF-280 |
---|---|---|---|
The heat-press program | 200 °C-2 h | 200 °C-2 h–240 °C-2 h | 200 °C-2 h–240 °C-2 h–280 °C-2 h |
Samples | Ti (°C) | Tp1 (°C) | Tp2 (°C) | ΔH1 (J/g) | ΔH2 (J/g) |
---|---|---|---|---|---|
WZ-cn | 222.5 | 243.4 | 277.8 | 80.4 | 28.2 |
WZ-cn-30 | 237.6 | 261.3 | 297.6 | 72.9 | 21.3 |
WZ-cn-60 | 236.1 | 262.1 | 298.0 | 70.7 | 17.0 |
WZ-cn-90 | 235.8 | 262.6 | 299.9 | 62.4 | 13.4 |
Samples | Mz | Mn | Mw | Dispersity Đ | Degree of Polymerization |
---|---|---|---|---|---|
WZ-cn | 868 | 868 | - | - | - |
WZ-cn-30 | 3841 | 1715 | 2386 | 1.61 | 1.98 |
WZ-cn-60 | 5469 | 1879 | 3019 | 1.81 | 2.16 |
WZ-cn-90 | 7636 | 1953 | 3689 | 2.07 | 2.25 |
Samples | WZ-cn | WZ-cn-30 | WZ-cn-60 | WZ-cn-90 |
---|---|---|---|---|
Gelation time (s) | 988 | 754 | 703 | 600 |
Samples | T5% (°C) | T10% (°C) | YC (%, 600 °C) | IPDT | ||
---|---|---|---|---|---|---|
A* | K* | T (°C) | ||||
WZ-cn/GF-200 | 407.4 | 501.24 | 83.69 | 0.9554 | 8.0611 | 4286 |
WZ-cn/GF-240 | 411.21 | 500.57 | 84.71 | 0.9544 | 8.8923 | 4718 |
WZ-cn/GF-280 | 423.41 | 511.11 | 84.69 | 0.9547 | 8.8527 | 4698 |
Samples | WZ-cn/GF-200 | WZ-cn/GF-240 | WZ-cn/GF-280 |
---|---|---|---|
Tg (°C) | 262.5 | 275.36 | 294.55 |
Crosslinking degree (mol/m3) | 0.67 × 106 | 0.53 × 106 | 0.43 × 106 |
Samples | Flexural Strength (MPa) | Flexural Modulus (GPa) |
---|---|---|
WZ-cn/GF-200 | 522 | 28.9 |
WZ-cn/GF-240 | 568 | 37.5 |
WZ-cn/GF-280 | 653 | 33.8 |
BA-ph/GF-200 | 520 | 25.2 |
BA-ph/GF-240 | 557 | 29.1 |
BA-ph/GF-280 | 580 | 27.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; He, L.; Zhang, J.; Fan, Z.; Li, B. Study on the Curing Behaviors of Benzoxazine Nitrile-Based Resin Featuring Fluorene Structures and the Excellent Properties of Their Glass Fiber-Reinforced Laminates. Materials 2024, 17, 6167. https://doi.org/10.3390/ma17246167
Xu M, He L, Zhang J, Fan Z, Li B. Study on the Curing Behaviors of Benzoxazine Nitrile-Based Resin Featuring Fluorene Structures and the Excellent Properties of Their Glass Fiber-Reinforced Laminates. Materials. 2024; 17(24):6167. https://doi.org/10.3390/ma17246167
Chicago/Turabian StyleXu, Mingzhen, Lunshuai He, Jiaqu Zhang, Zexu Fan, and Bo Li. 2024. "Study on the Curing Behaviors of Benzoxazine Nitrile-Based Resin Featuring Fluorene Structures and the Excellent Properties of Their Glass Fiber-Reinforced Laminates" Materials 17, no. 24: 6167. https://doi.org/10.3390/ma17246167
APA StyleXu, M., He, L., Zhang, J., Fan, Z., & Li, B. (2024). Study on the Curing Behaviors of Benzoxazine Nitrile-Based Resin Featuring Fluorene Structures and the Excellent Properties of Their Glass Fiber-Reinforced Laminates. Materials, 17(24), 6167. https://doi.org/10.3390/ma17246167