Accelerated Design for Perovskite-Oxide-Based Photocatalysts Using Machine Learning Techniques
<p>A schematic illustration of the crystal cell of a typical ABO<sub>3</sub>-type perovskite.</p> "> Figure 2
<p>An illustration of the six steps involved in the construction of the model.</p> "> Figure 3
<p>Feature screening using (<b>a</b>) FSM-SVR, (<b>b</b>) BSM-SVR, and (<b>c</b>) GA-SVR. The blue and red circles represent RMSE and the minimum RMSE, respectively. In the illustration, the green and orange circles represent RMSE and Score, respectively.</p> "> Figure 4
<p>RMSE versus γ and ε obtained in the optimization process of the algorithm hyperparameters.</p> "> Figure 5
<p>The experimental versus predicted SSA of the samples in (<b>a</b>) the training set; (<b>b</b>) LOOCV; (<b>c</b>) the testing set.</p> "> Figure 6
<p>A screenshot of the web service for predicting SSA of ABO<sub>3</sub>-type perovskites.</p> "> Figure 7
<p>Virtual screening of ABO<sub>3</sub>-type perovskites.</p> "> Figure 8
<p>The relationships between SSA and the key features. (<b>a</b>) Calcination time and Drying temperature; (<b>b</b>) Melting point of B-site and Density of A-site; (<b>c</b>) <b><span class="html-italic">P<sub>CA</sub></span><sub>3</sub></b> and <b><span class="html-italic">P<sub>CA</sub></span><sub>6</sub></b>; (<b>d</b>) Electron affinity of A-site and Electron affinity of B-site.</p> "> Figure 9
<p>The projection of pattern recognition.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Perovskite Model Framework
2.1.1. Data Collection
2.1.2. Feature Engineering
2.1.3. Model Construction
2.1.4. Webserver Development
2.1.5. Virtual Screening
2.1.6. Mechanism Mining
2.2. Computational Details
3. Results and Discussion
3.1. Feature Selection and Analysis
3.2. Model Construction
3.2.1. Optimizing Hyperparameters
3.2.2. Establishing Model
3.2.3. Model Evaluation
3.3. Model Application
3.3.1. Online Web Service
3.3.2. Virtual Screening
3.4. Mechanism Mining
3.4.1. Relationships between Key Features and SSA
3.4.2. Pattern Recognition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
SSA | Specific Surface Area |
ML | Machine Learning |
SVR | Support Vector Regression |
LOOCV | Leave-one-out Cross-validation |
RBF | Radial Basis Function |
PM | Synthetic Mode |
CT | Calcination Temperature |
AH | Calcination Time |
DT | Drying Temperature |
OCPMDM | Online Computational Platform of Material Data Mining |
mRMR | Max Relevance Min Redundancy |
RA/RB | Ratio of ionic radius |
α | Unit cell lattice edge |
tf | Tolerance factor |
RA | Ionic Radius of A-site |
RB | Ionic Radius of B-site |
RO | Ionic Radius of O |
DTR | Decision Tree Regression |
GBR | Gradient Boosting Regression |
PLS | Partial Least Squares |
RVM | Relevance Vector Machine |
LKF | Linear Kernel Function |
PKF | Polynomial Kernel Function |
RFR | Random Forest Regression |
BPNN | Back Propagation Neural Network |
RMSE | Root Mean Square Error |
R | Pearson correlation coefficient |
FSM | Forward Selection Method |
BSM | Backward Selection Method |
GA | Genetic Algorithm |
ZIA | Ionization Energy of A-site |
ΔfusA | Enthalpy of fusion at the melting point of A-site |
TmA | Melting Point of A-site |
TmB | Melting Point of B-site |
TbA | Boiling Point of A-site |
ρA | Density of A-site |
EAa | Electron Affinity of A-site |
EAb | Electron Affinity of B-site |
PCA3 | Third principal component |
PCA6 | Sixth principal component |
R2 | The coefficient of determination |
References
- Ji, Q.Q.; Bi, L.; Zhang, J.T.; Cao, H.J.; Zhao, X.S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 2020, 13, 1408–1428. [Google Scholar] [CrossRef]
- Zhao, J.F.; Gao, J.C.; Li, W.M.; Qian, Y.T.; Shen, X.D.; Wang, X.; Shen, X.; Hu, Z.W.; Dong, C.; Huang, Q.Z.; et al. A combinatory ferroelectric compound bridging simple ABO3 and A-site-ordered quadruple perovskite. Nat. Commun. 2021, 12, 747. [Google Scholar] [CrossRef]
- Zhu, J.J.; Li, H.L.; Zhong, L.Y.; Xiao, P.; Xu, X.L.; Yang, X.G.; Zhao, Z.; Li, J.L. Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal. 2014, 4, 2917–2940. [Google Scholar] [CrossRef]
- Shang, C.Y.; Xiao, X.; Xu, Q. Coordination chemistry in modulating electronic structures of perovskite-type oxide nanocrystals for oxygen evolution catalysis. Coord. Chem. Rev. 2023, 485, 215109. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Z.Y.; Zhou, L.; Chen, X.L.; Chen, J.R.; Zhou, Y.; Roy, V.A.L.; Han, S.T. Emerging perovskite materials for high density data storage and artificial synapses. J. Mater. Chem. C 2018, 6, 1600–1617. [Google Scholar] [CrossRef]
- Wang, Y.N.; Wang, L.A.; Zhang, K.X.; Xu, J.Y.; Wu, Q.N.; Xie, Z.B.; An, W.; Liang, X.; Zou, X.X. Electrocatalytic water splitting over perovskite oxide catalysts. Chin. J. Catal. 2023, 50, 109–125. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Krishnan, V. Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal. 2020, 10, 10253–10315. [Google Scholar] [CrossRef]
- Bhattar, S.; Abedin, M.A.; Kanitkar, S.; Spivey, J.J. A review on dry reforming of methane over perovskite derived catalysts. Catal. Today 2021, 365, 2–23. [Google Scholar] [CrossRef]
- Sun, C.W.; Alonso, J.A.; Bian, J.J. Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv. Energy Mater. 2021, 11, 2000459. [Google Scholar] [CrossRef]
- Deeksha; Kour, P.; Ahmed, I.; Sunny; Sharma, S.K.; Yadav, K.; Mishra, Y.K. Transition metal-based perovskite oxides: Emerging electrocatalysts for oxygen evolution reaction. ChemCatChem 2023, 15, e202300040. [Google Scholar]
- Zhang, S.J.; Jia, Z.R.; Cheng, B.; Zhao, Z.W.; Lu, F.; Wu, G.L. Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-review. Adv. Compos. Hybrid Mater. 2022, 5, 2440–2460. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, K. Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 2020, 10, 1902579. [Google Scholar] [CrossRef]
- Zuo, C.T.; Bolink, H.J.; Han, H.W.; Huang, J.S.; Cahen, D.; Ding, L.M. Advances in perovskite solar cells. Adv. Sci. 2016, 3, 1500324. [Google Scholar] [CrossRef] [PubMed]
- Gharibzadeh, S.; Nejand, B.A.; Jakoby, M.; Abzieher, T.; Hauschild, D.; Moghadamzadeh, S.; Schwenzer, J.A.; Brenner, P.; Schmager, R.; Haghighirad, A.A.; et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 2019, 9, 1803699. [Google Scholar] [CrossRef]
- Chen, W.J.; Huang, Z.M.; Yao, H.T.; Liu, Y.; Zhang, Y.H.; Li, Z.J.; Zhou, H.M.; Xiao, P.; Chen, T.; Sun, H.D.; et al. Highly bright and stable single-crystal perovskite light-emitting diodes. Nat. Photon. 2023, 17, 401–407. [Google Scholar] [CrossRef]
- Bai, S.; Wu, Z.W.; Wu, X.J.; Jin, Y.Z.; Zhao, N.; Chen, Z.H.; Mei, Q.Q.; Wang, X.Z.; Ye, Z.; Song, T.Y.; et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014, 7, 1749–1758. [Google Scholar] [CrossRef]
- Zhumekenov, A.A.; Saidaminov, M.I.; Haque, M.A.; Alarousu, E.; Sarmah, S.P.; Murali, B.; Dursun, I.; Miao, X.H.; Abdelhady, A.L.; Wu, T.; et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett. 2016, 1, 32–37. [Google Scholar] [CrossRef]
- Yettapu, G.R.; Talukdar, D.; Sarkar, S.; Swarnkar, A.; Nag, A.; Ghosh, P.; Mandal, P. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 2016, 16, 4838–4848. [Google Scholar] [CrossRef] [PubMed]
- Oga, H.; Saeki, A.; Ogomi, Y.; Hayase, S.; Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: High local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 2014, 136, 13818–13825. [Google Scholar] [CrossRef]
- Jana, A.; Cho, S.; Patil, S.A.; Meena, A.; Jo, Y.; Sree, V.G.; Park, Y.; Kim, H.; Im, H.; Taylor, R.A. Perovskite: Scintillators, direct detectors, and X-ray imagers. Mater. Today 2022, 55, 110–136. [Google Scholar] [CrossRef]
- Ma, F.; Zhao, Y.; Li, J.H.; Zhang, X.W.; Gu, H.S.; You, J.B. Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem. 2021, 52, 393–411. [Google Scholar] [CrossRef]
- Hossain, M.I.; Alharbi, F.H.; Tabet, N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol. Energy 2015, 120, 370–380. [Google Scholar] [CrossRef]
- Huang, L.; Huang, X.J.; Yan, J.; Liu, Y.H.; Jiang, H.; Zhang, H.G.; Tang, J.F.; Liu, Q. Research progresses on the application of perovskite in adsorption and photocatalytic removal of water pollutants. J. Hazard. Mater. 2023, 442, 130024. [Google Scholar] [CrossRef]
- Li, C.L.; Han, C.; Zhang, Y.B.; Zang, Z.G.; Wang, M.; Tang, X.S.; Du, J.H. Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Sol. Energy Mater. Sol. Cells 2017, 172, 341–346. [Google Scholar] [CrossRef]
- Zhao, K.; He, F.; Huang, Z.; Wei, G.Q.; Zheng, A.Q.; Li, H.B.; Zhao, Z.L. Perovskite-type oxides LaFe1-xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production. Appl. Energy 2016, 168, 193–203. [Google Scholar] [CrossRef]
- Qin, F.; Chen, J.; Liu, J.W.; Liu, L.; Tang, C.J.; Tang, B.; Li, G.F.; Zeng, L.C.; Li, H.L.; Yi, Z. Design of high efficiency perovskite solar cells based on inorganic and organic undoped double hole layer. Sol. Energy 2023, 262, 111796. [Google Scholar] [CrossRef]
- Qin, W.B.; Yuan, Z.Y.; Gao, H.L.; Zhang, R.Z.; Meng, F.L. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sens. Actuators B Chem. 2021, 341, 130015. [Google Scholar] [CrossRef]
- Hossain, M.K.; Toki, G.F.I.; Kuddus, A.; Rubel, M.H.K.; Hossain, M.M.; Bencherif, H.; Rahman, M.F.; Islam, M.R.; Mushtaq, M. An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells. Sci. Rep. 2023, 13, 2521. [Google Scholar] [CrossRef]
- Luo, W.; Phung, D.; Tran, T.; Gupta, S.; Rana, S.; Karmakar, C.; Shilton, A.; Yearwood, J.; Dimitrova, N.; Ho, T.B.; et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: A multidisciplinary view. J. Med. Internet Res. 2016, 18, e323. [Google Scholar] [CrossRef] [PubMed]
- Cuoco, E.; Powell, J.; Cavaglià, M.; Ackley, K.; Bejger, M.; Chatterjee, C.; Coughlin, M.; Coughlin, S.; Easter, P.; Essick, R.; et al. Enhancing gravitational-wave science with machine learning. Mach. Learn. Sci. Technol. 2021, 2, 011002. [Google Scholar] [CrossRef]
- Hamdia, K.M.; Ghasemi, H.; Bazi, Y.; AlHichri, H.; Alajlan, N.; Rabczuk, T. A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization. Finite Elem. Anal. Des. 2019, 165, 21–30. [Google Scholar] [CrossRef]
- Fu, Y.Z.; Downey, A.R.J.; Yuan, L.; Zhang, T.Y.; Pratt, A.; Balogun, Y. Machine learning algorithms for defect detection in metal laser-based additive manufacturing: A review. J. Manuf. Process. 2022, 75, 693–710. [Google Scholar] [CrossRef]
- Zhang, L.; He, M.; Shao, S.F. Machine learning for halide perovskite materials. Nano Energy 2020, 78, 105380. [Google Scholar] [CrossRef]
- Wang, Z.M.; Yang, M.; Xie, X.X.; Yu, C.Y.; Jiang, Q.L.; Huang, M.N.; Algadi, H.; Guo, Z.H.; Zhang, H. Applications of machine learning in perovskite materials. Adv. Compos. Hybrid Mater. 2022, 5, 2700–2720. [Google Scholar] [CrossRef]
- Ali, A.; Park, H.; Mall, R.; Aissa, B.; Sanvito, S.; Bensmail, H.; Belaidi, A.; El-Mellouhi, F. Machine learning accelerated recovery of the cubic structure in mixed-cation perovskite thin films. Chem. Mater. 2020, 32, 2998–3006. [Google Scholar] [CrossRef]
- Weng, B.C.; Song, Z.L.; Zhu, R.L.; Yan, Q.Y.; Sun, Q.D.; Grice, C.G.; Yan, Y.F.; Yin, W.J. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts. Nat. Commun. 2020, 11, 3513. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.L.; Chang, D.P.; Lu, T.; Li, L.; Chen, H.M.; Yang, X.; Liu, X.J.; Li, M.J.; Lu, W.C. Multiobjective stepwise design strategy-assisted design of high-performance perovskite oxide photocatalysts. J. Phys. Chem. C 2021, 125, 21141–21150. [Google Scholar] [CrossRef]
- Shi, L.; Chang, D.P.; Ji, X.B.; Lu, W.C. Using data mining to search for perovskite materials with higher specific surface area. J. Chem. Inf. Model. 2018, 58, 2420–2427. [Google Scholar] [CrossRef]
- Yang, J.Q.; Mannodi-Kanakkithodi, A. High-throughput computations and machine learning for halide perovskite discovery. MRS Bull. 2022, 47, 940–948. [Google Scholar] [CrossRef]
- Wei, K.X.; Faraj, Y.; Yao, G.; Xie, R.Z.; Lai, B. Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress. Chem. Eng. J. 2021, 414, 128783. [Google Scholar] [CrossRef]
- Bajorowicz, B.; Nadolna, J.; Lisowski, W.; Klimczuk, T.; Zaleska-Medynska, A. The effects of bifunctional linker and reflux time on the surface properties and photocatalytic activity of CdTe quantum dots decorated KTaO3 composite photocatalysts. Appl. Catal. B Environ. 2017, 203, 452–464. [Google Scholar] [CrossRef]
- Ma, Y.J.; Su, P.; Ge, Y.Z.; Wang, F.W.; Xue, R.X.; Wang, Z.J.; Li, Y.S. A novel LaAlO3 perovskite with large surface area supported Ni-based catalyst for methane dry reforming. Catal. Lett. 2022, 152, 2993–3003. [Google Scholar] [CrossRef]
- Sohrabian, M.; Mahdikhah, V.; Alimohammadi, E.; Sheibani, S. Improved photocatalytic performance of SrTiO3 through a Z-scheme polymeric-perovskite heterojunction with g-C3N4 and plasmonic resonance of Ag mediator. Appl. Surf. Sci. 2023, 618, 156682. [Google Scholar] [CrossRef]
- Zulfiqar, W.; Javed, F.; Abbas, G.; Larsson, J.A.; Alay-e-Abbas, S.M. Stabilizing the dopability of chalcogens in BaZrO3 through TiZr co-doping and its impact on the opto-electronic and photocatalytic properties: A meta-GGA level DFT study. Int. J. Hydrogen Energy 2024, 58, 409–415. [Google Scholar] [CrossRef]
- Hagendorff, T. Linking human and machine behavior: A new approach to evaluate training data quality for beneficial machine learning. Minds Mach. 2021, 31, 563–593. [Google Scholar] [CrossRef] [PubMed]
- Akhter, R.; Sofi, S.A. Precision agriculture using IoT data analytics and machine learning. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 5602–5618. [Google Scholar] [CrossRef]
- Qin, W.B.; Yuan, Z.Y.; Shen, Y.B.; Zhang, R.Z.; Meng, F.L. Phosphorus-doped porous perovskite LaFe1-xPxO3-δ nanosheets with rich surface oxygen vacancies for ppb level acetone sensing at low temperature. Chem. Eng. J. 2022, 431, 134280. [Google Scholar] [CrossRef]
- Chang, D.P.; Lu, W.C.; Wang, G. Designing bulk metallic glasses materials with higher reduced glass transition temperature via machine learning. Chemom. Intell. Lab. Syst. 2022, 228, 104621. [Google Scholar] [CrossRef]
- Chang, D.P.; Xu, P.C.; Ji, X.B.; Li, M.J.; Lu, W.C. Application of Online Computational Platform of Materials Data Mining (OCPMDM) in Search for ABO3 Perovskites with Multi-Properties. Sci. Adv. Mater. 2023, 15, 1014–1025. [Google Scholar] [CrossRef]
- Xu, P.C.; Ji, X.B.; Li, M.J.; Lu, W.C. Small data machine learning in materials science. NPJ Comput. Mater. 2023, 9, 42. [Google Scholar] [CrossRef]
- Chang, D.P.; Xu, P.C.; Li, M.J.; Lu, W.C. OCPMDM 2.0: An intelligent solution for materials data mining. Chemom. Intell. Lab. Syst. 2023, 243, 105022. [Google Scholar]
- Shen, Y.S.; Wang, J.Y.; Ji, X.B.; Lu, W.C. Machine Learning-Assisted Discovery of 2D Perovskites with Tailored Bandgap for Solar Cells. Adv. Theory Simul. 2023, 6, 2200922. [Google Scholar] [CrossRef]
- Liu, X.J.; Xu, P.C.; Zhao, J.J.; Lu, W.C.; Li, M.J.; Wang, G. Material machine learning for alloys: Applications, challenges and perspectives. J. Alloys Compd. 2022, 921, 165984. [Google Scholar] [CrossRef]
- Roy, A.; Chakraborty, S. Support vector machine in structural reliability analysis: A review. Reliab. Eng. Syst. Saf. 2023, 233, 109126. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Huang, S.W.; Brooks, M.; Lee, M.J.; Asadi, H. Peering into the black box of artificial intelligence: Evaluation metrics of machine learning methods. Am. J. Roentgenol. 2019, 212, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Gui, G.; Liu, F.; Sun, J.L.; Yang, J.; Zhou, Z.Q.; Zhao, D.X. Flight delay prediction based on aviation big data and machine learning. IEEE Trans. Veh. Technol. 2020, 69, 140–150. [Google Scholar] [CrossRef]
- Li, J.D.; Cheng, K.W.; Wang, S.H.; Morstatter, F.; Trevino, R.P.; Tang, J.L.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. 2018, 50, 1–45. [Google Scholar] [CrossRef]
- He, Z.M.; Li, L.Z.; Huang, Z.M.; Situ, H.Z. Quantum-enhanced feature selection with forward selection and backward elimination. Quantum Inf. Process. 2018, 17, 154. [Google Scholar] [CrossRef]
- Aregbesola, S.O.; Won, J.; Kim, S.; Byun, Y.H. Sequential backward feature selection for optimizing permanent strain model of unbound aggregates. Case Stud. Constr. Mater. 2023, 19, e02554. [Google Scholar] [CrossRef]
- Oreski, S.; Oreski, G. Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst. Appl. 2014, 41, 2052–2064. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, D.W.; Gao, X.Z.; Tian, T.; Sun, X.Y. Binary differential evolution with self-learning for multi-objective feature selection. Inf. Sci. 2020, 507, 67–85. [Google Scholar] [CrossRef]
- Aït-Sahalia, Y.; Xiu, D.C. Principal Component Analysis of High-Frequency Data. J. Am. Stat. Assoc. 2019, 114, 287–303. [Google Scholar] [CrossRef]
- Navarro, C.L.A.; Damen, J.A.A.; Takada, T.; Nijman, S.W.J.; Dhiman, P.; Ma, J.; Collins, G.S.; Bajpai, R.; Riley, R.D.; Moons, K.G.M.; et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: Systematic review. BMJ Br. Med. J. 2021, 375, n2281. [Google Scholar] [CrossRef]
- Lindauer, M.; Eggensperger, K.; Feurer, M.; Biedenkapp, A.; Deng, D.; Benjamins, C.; Ruhkopf, T.; Sass, R.; Hutter, F. SMAC3: A versatile bayesian optimization package for hyperparameter optimization. J. Mach. Learn. Res. 2022, 23, 1–9. [Google Scholar]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Duman, E. Detecting credit card fraud by Modified Fisher Discriminant Analysis. Expert Syst. Appl. 2015, 42, 2510–2516. [Google Scholar] [CrossRef]
- Zheng, Z.; Petrone, R.; Péra, M.C.; Hissel, D.; Becherif, M.; Pianese, C.; Steiner, N.Y.; Sorrentino, M. A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems. Int. J. Hydrogen Energy 2013, 38, 8914–8926. [Google Scholar] [CrossRef]
- Li, W.; Jacobs, R.; Morgan, D. Predicting the thermodynamic stability of perovskite oxides using machine learning models. Comp. Mater. Sci. 2018, 150, 454–463. [Google Scholar] [CrossRef]
- Liu, H.Y.; Cheng, J.C.; Dong, H.Z.; Feng, J.G.; Pang, B.L.; Tian, Z.Y.; Ma, S.; Xia, F.J.; Zhang, C.K.; Dong, L.F. Screening stable and metastable ABO3 perovskites using machine learning and the materials project. Comp. Mater. Sci. 2020, 177, 109614. [Google Scholar] [CrossRef]
- Balachandran, P.V.; Emery, A.A.; Gubernatis, J.E.; Lookman, T.; Wolverton, C.; Zunger, A. Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory. Phys. Rev. Mater. 2018, 2, 043802. [Google Scholar] [CrossRef]
- Li, C.J.; Hao, H.; Xu, B.; Zhao, G.H.; Chen, L.H.; Zhang, S.J.; Liu, H.X. A progressive learning method for predicting the band gap of ABO3 perovskites using an instrumental variable. J. Mater. Chem. C 2020, 8, 3127–3136. [Google Scholar] [CrossRef]
- Zhai, X.Y.; Chen, M.T.; Lu, W.C. Accelerated search for perovskite materials with higher Curie temperature based on the machine learning methods. Comp. Mater. Sci. 2018, 151, 41–48. [Google Scholar] [CrossRef]
- Yang, Z.X.; Gao, Z.R.; Sun, X.F.; Cai, H.L.; Zhang, F.M.; Wu, X.S. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. ACTA Phys. Sin-Ch Ed. 2019, 68, 210502. [Google Scholar] [CrossRef]
- Xiao, L.H.; Zhang, Q.; Xu, X.; Ji, X.B.; Lu, W.C. Support vector regression assisted predictions the néel temperature of perovskites manganites. Comput. Appl. Chem. 2018, 35, 349–357. [Google Scholar]
- Zhang, Y.; Xu, X.J. Machine learning the magnetocaloric effect in manganites from lattice parameters. Appl. Phys. A Mater. 2020, 126, 341. [Google Scholar] [CrossRef]
- Xu, L.; Wencong, L.; Chunrong, P.; Qiang, S.; Jin, G. Two semi-empirical approaches for the prediction of oxide ionic conductivities in ABO3 perovskites. Comp. Mater. Sci. 2009, 46, 860–868. [Google Scholar] [CrossRef]
- Priyanga, G.S.; Mattur, M.N.; Nagappan, N.; Rath, S.; Thomas, T. Prediction of nature of band gap of perovskite oxides (ABO3) using a machine learning approach. J. Mater. 2022, 8, 937–948. [Google Scholar]
- Chen, L.P.; Wang, X.C.; Xia, W.J.; Liu, C.H. PSO-SVR predicting for the Ehull of ABO3-type compounds to screen the thermodynamic stable perovskite candidates based on multi-scale descriptors. Comp. Mater. Sci. 2022, 211, 111435. [Google Scholar] [CrossRef]
- Priyadarshini, R.; Joardar, H.; Bisoy, S.K.; Badapanda, T. Crystal structural prediction of perovskite materials using machine learning: A comparative study. Solid. State Commun. 2023, 361, 115062. [Google Scholar] [CrossRef]
- Naseri, M.; Gusarov, S.; Salahub, D.R. Quantum Machine Learning in Materials Prediction: A Case Study on ABO3 Perovskite Structures. J. Phys. Chem. Lett. 2023, 14, 6940–6947. [Google Scholar] [CrossRef]
- Chen, L.P.; Xia, W.J.; Yao, T.Z. Identifying descriptors for perovskite structure of composite oxides and inferring formability via low-dimensional described features. Comp. Mater. Sci. 2023, 226, 112216. [Google Scholar] [CrossRef]
- Fan, X.Y. Prediction of formation energy using two-stage machine learning based on clustering. Mater. Tehnol. 2021, 55, 263–268. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, P.; Dev, P.; Pilania, G. Machine learning substitutional defect formation energies in ABO3 perovskites. J. Appl. Phys. 2020, 128. [Google Scholar] [CrossRef]
- McGuinness, K.P.; Oliynyk, A.O.; Lee, S.; Molero-Sanchez, B.; Addo, P.K. Machine-learning prediction of thermal expansion coefficient for perovskite oxides with experimental validation. Phys. Chem. Chem. Phys. 2023, 25, 32123–32131. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.J. Modeling oxygen ionic conductivities of ABO3 Perovskites through machine learning. Chem. Phys. 2022, 558, 111511. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.Y. Screening perovskites from ABO3 combinations generated by constraint satisfaction techniques using machine learning. ACS Omega 2022, 7, 10483–10491. [Google Scholar] [CrossRef]
- Lourenço, M.P.; Tchagang, A.; Shankar, K.; Thangadurai, V.; Salahub, D.R. Active learning for optimum experimental design--insight into perovskite oxides. Can. J. Chem. 2023, 101, 734–744. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Roy, A. Linking stability with molecular geometries of perovskites and lanthanide richness using machine learning methods. Comp. Mater. Sci. 2024, 231, 112581. [Google Scholar] [CrossRef]
- Li, W.; Wang, Z.G.; Xiao, X.; Zhang, Z.Q.; Janotti, A.; Rajasekaran, S.; Medasani, B. Predicting band gaps and band-edge positions of oxide perovskites using density functional theory and machine learning. Phys. Rev. B 2022, 106, 155156. [Google Scholar] [CrossRef]
- Perween, S.; Ranjan, A. Improved visible-light photocatalytic activity in ZnTiO3 nanopowder prepared by sol-electrospinning. Sol. Energ. Mat. Sol. C 2017, 163, 148–156. [Google Scholar] [CrossRef]
- Orak, C.; Atalay, S.; Ersöz, G. Photocatalytic and photo-Fenton-like degradation of methylparaben on monolith-supported perovskite-type catalysts. Sep. Sci. Technol. 2017, 52, 1310–1320. [Google Scholar] [CrossRef]
- Sun, H.; Yang, H.; Cui, S.; Nie, K.; Wu, J. Simultaneous Mg-modification inside and outside of LaCoO3 lattice and their photocatalytic properties. Chin. J. Inorg. Chem. 2016, 32, 1704–1712. [Google Scholar]
- Abdulkadir, I.; Jonnalagadda, S.B.; Martincigh, B.S. Synthesis and effect of annealing temperature on the structural, magnetic and photocatalytic properties of (La0.5Bi0.2Ba0.2Mn0.1)FeO(3−δ). Mater. Chem. Phys. 2016, 178, 196–203. [Google Scholar] [CrossRef]
- Josephine, B.A.; Manikandan, A.; Teresita, V.M.; Antony, S.A. Fundamental study of LaMgxCr1−xO3−δ perovskites nano-photocatalysts: Sol-gel synthesis, characterization and humidity sensing. Korean, J. Chem. Eng. 2016, 33, 1590–1598. [Google Scholar] [CrossRef]
- Tijare, S.N.; Bakardjieva, S.; Subrt, J.; Joshi, M.V.; Rayalu, S.S.; Hishita, S.; Labhsetwar, N. Synthesis and visible light photocatalytic activity of nanocrystalline PrFeO3 perovskite for hydrogen generation in ethanol-water system. J. Chem. Sci. 2014, 126, 517–525. [Google Scholar] [CrossRef]
- Tavakkoli, H.; Yazdanbakhsh, M. Fabrication of two perovskite-type oxide nanoparticles as the new adsorbents in efficient removal of a pesticide from aqueous solutions: Kinetic, thermodynamic, and adsorption studies. Micropor. Mesopor. Mater. 2013, 176, 86–94. [Google Scholar] [CrossRef]
- Li, H.; Cui, Y.; Wu, X.; Hong, W.; Hua, L. Effect of La contents on the structure and photocatalytic activity of La-SrTiO3 catalysts. Chin. J. Inorg. Chem. 2012, 28, 2597–2604. [Google Scholar]
- Li, Y.; Yao, S.; Wen, W.; Xue, L.; Yan, Y. Sol–gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3. J. Alloy Compd. 2010, 491, 560–564. [Google Scholar] [CrossRef]
- Li, S.; Jing, L.; Fu, W.; Yang, L.; Xin, B.; Fu, H. Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation. Mater. Res. Bull. 2007, 42, 203–212. [Google Scholar] [CrossRef]
- Puangpetch, T.; Sreethawong, T.; Chavadej, S. Hydrogen production over metal-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalysts: Effects of metal type and loading. Int. J. Hydrogen Energy 2010, 35, 6531–6540. [Google Scholar] [CrossRef]
- Puangpetch, T.; Sreethawong, T.; Yoshikawa, S.; Chavadej, S. Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts. J. Mol. Catal. A-Chem. 2009, 312, 97–106. [Google Scholar] [CrossRef]
- Touahra, F.; Rabahi, A.; Chebout, R.; Boudjemaa, A.; Lerari, D.; Sehailia, M.; Halliche, D.; Bachari, K. Enhanced catalytic behaviour of surface dispersed nickel on LaCuO3 perovskite in the production of syngas: An expedient approach to carbon resistance during CO2 reforming of methane. Int. J. Hydrogen Energy 2016, 41, 2477–2486. [Google Scholar] [CrossRef]
- Sutthiumporn, K.; Maneerung, T.; Kathiraser, Y.; Kawi, S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C–H activation and carbon suppression. Int. J. Hydrogen Energy 2012, 37, 11195–11207. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Qian, Q.; Chen, Q. Studies on B sites in Fe-doped LaNiO3 perovskite for SCR of NOx with H2. Int. J. Hydrogen Energy 2014, 39, 15836–15843. [Google Scholar] [CrossRef]
- Parida, K.M.; Reddy, K.H.; Martha, S.; Das, D.P.; Biswal, N. Fabrication of nanocrystalline LaFeO3: An efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int. J. Hydrogen Energy 2010, 35, 12161–12168. [Google Scholar] [CrossRef]
- Dhanasekaran, P.; Gupta, N.M. Factors affecting the production of H2 by water splitting over a novel visible-light-driven photocatalyst GaFeO3. Int. J. Hydrogen Energy 2012, 37, 4897–4907. [Google Scholar] [CrossRef]
- Husin, H.; Chen, H.M.; Su, W.N.; Pan, C.J.; Chuang, W.T.; Sheu, H.-S.; Hwang, B.-J. Green fabrication of La-doped NaTaO3 via H2O2 assisted sol–gel route for photocatalytic hydrogen production. Appl. Catal. B Environ. Energy 2011, 102, 343–351. [Google Scholar] [CrossRef]
- Bui, D.-N.; Mu, J.; Wang, L.; Kang, S.-Z.; Li, X. Preparation of Cu-loaded SrTiO3 nanoparticles and their photocatalytic activity for hydrogen evolution from methanol aqueous solution. Appl. Surf. Sci. 2013, 274, 328–333. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; He, X.; Xu, J. Electronic structure and photocatalytic properties of Ag–La codoped CaTiO3. J. Alloy Compd. 2012, 516, 91–95. [Google Scholar] [CrossRef]
- Tijare, S.N.; Joshi, M.V.; Padole, P.S.; Mangrulkar, P.A.; Rayalu, S.S.; Labhsetwar, N.K. Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int. J. Hydrogen Energy 2012, 37, 10451–10456. [Google Scholar] [CrossRef]
- Teresita, V.M.; Manikandan, A.; Josephine, B.A.; Sujatha, S.; Antony, S.A. Electromagnetic properties and humidity-sensing studies of magnetically recoverable LaMgxFe1−xO3−δ perovskites nano-photocatalysts by Sol-Gel route. J. Supercond. Nov. Magn. 2016, 29, 1691–1701. [Google Scholar] [CrossRef]
- Sydorchuk, V.; Lutsyuk, I.; Shved, V.; Hreb, V.; Kondyr, A.; Zakutevskyy, O.; Vasylechko, L. PrCo1−xFexO3 perovskite powders for possible photocatalytic applications. Res. Chem. Intermediat 2020, 46, 1909–1930. [Google Scholar] [CrossRef]
- Ibarra-Rodriguez, L.I.; Huerta-Flores, A.M.; Mora-Hernandez, J.M.; Torres-Martínez, L.M. Photocatalytic evolution of H2 over visible-light active LaMO3(M: Co, Mn, Fe) perovskite materials: Roles of oxygenated species in catalytic performance. J. Phys. Chem. Solids 2020, 136, 109189. [Google Scholar] [CrossRef]
- Mota, N.; Álvarez-Galván, M.C.; Al-Zahrani, S.M.; Navarro, R.M.; Fierro, J.L.G. Diesel fuel reforming over catalysts derived from LaCo1−xRuxO3 perovskites with high Ru loading. Int. J. Hydrogen Energy 2012, 37, 7056–7066. [Google Scholar] [CrossRef]
- Agüero, F.N.; Morales, M.R.; Larrégola, S.; Izurieta, E.M.; Lopez, E.; Cadús, L.E. La1−xCaxAl1−yNiyO3 perovskites used as precursors of nickel based catalysts for ethanol steam reforming. Int. J. Hydrogen Energy 2015, 40, 15510–15520. [Google Scholar] [CrossRef]
- Hu, R.; Li, C.; Wang, X.; Sun, Y.; Jia, H.; Su, H.; Zhang, Y. Photocatalytic activities of LaFeO3 and La2FeTiO6 in p-chlorophenol degradation under visible light. Catal. Commun. 2012, 29, 35–39. [Google Scholar] [CrossRef]
- Boumaza, S.; Boudjellal, L.; Brahimi, R.; Belhadi, A.; Trari, M. Synthesis by citrates sol-gel method and characterization of the perovskite LaFeO3: Application to oxygen photo-production. J. Sol-Gel Sci. Technol. 2020, 94, 486–492. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.D.; Yu, Z.Q.; Zhang, S. Enhancing infrared emissivity of GdCoO3 with Ca doping: Potential for advanced thermal control materials. Ceram. Int. 2024, 50, 9630–9639. [Google Scholar] [CrossRef]
- Guo, J.X.; Jing, Y.; Shen, T.; Luo, H.D.; Liang, J.; Yuan, S.D. Effect of doped strontium on catalytic properties of La1−xSrxMnO3 for rhodamine B degradation. J. Rare Earth 2021, 39, 1362–1369. [Google Scholar] [CrossRef]
Index | DTR | GBR | PLS | RVM | SVR-RBF | SVR-LKF | SVR-PKF | RFR | BPNN |
---|---|---|---|---|---|---|---|---|---|
RMSE | 7.570 | 5.798 | 8.588 | 6.304 | 4.895 | 8.408 | 7.286 | 7.618 | 10.301 |
R | 0.688 | 0.817 | 0.504 | 0.791 | 0.870 | 0.540 | 0.679 | 0.640 | 0.443 |
No. | Molecular Formula | Experimental SSA (m2g−1) | Predictive SSA (m2g−1) | Relative Error |
---|---|---|---|---|
100# | LaFeO3 | 7 | 6.516 | −0.0691 |
101# | GdCoO3 | 8.69 | 10.558 | +0.215 |
102# | LaMnO3 | 25 | 23.830 | −0.047 |
No. | Molecular Formula | SSA (m2g−1) | DT (°C) | AH (h) | PM | Fisher (1) | Fisher (2) |
---|---|---|---|---|---|---|---|
1 | La0.61Ba0.39TiO3 | 67.884 | 280 | 9 | 1 | 0.953 | 1.511 |
2 | La0.51Ba0.49TiO3 | 66.158 | 280 | 9 | 1 | 0.813 | 1.471 |
Index | “Superior” | “Inferior” |
---|---|---|
True Positives | 37 | 32 |
False Positives | 4 | 12 |
False Negatives | 12 | 4 |
Precision | 0.902 | 0.727 |
Recall | 0.755 | 0.889 |
F1_score | 0.822 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, X.; Chen, M. Accelerated Design for Perovskite-Oxide-Based Photocatalysts Using Machine Learning Techniques. Materials 2024, 17, 3026. https://doi.org/10.3390/ma17123026
Zhai X, Chen M. Accelerated Design for Perovskite-Oxide-Based Photocatalysts Using Machine Learning Techniques. Materials. 2024; 17(12):3026. https://doi.org/10.3390/ma17123026
Chicago/Turabian StyleZhai, Xiuyun, and Mingtong Chen. 2024. "Accelerated Design for Perovskite-Oxide-Based Photocatalysts Using Machine Learning Techniques" Materials 17, no. 12: 3026. https://doi.org/10.3390/ma17123026
APA StyleZhai, X., & Chen, M. (2024). Accelerated Design for Perovskite-Oxide-Based Photocatalysts Using Machine Learning Techniques. Materials, 17(12), 3026. https://doi.org/10.3390/ma17123026