Dual Light Emission of CsSnI3-Based Powders Synthesized via a Mechanochemical Process
<p>Optical images of the prepared powders under white light and UV light of 365 nm in wavelength: (<b>a</b>) CsSnI<sub>3</sub>-dominated powders, and (<b>b</b>) CsSnI<sub>3</sub>-contained powders.</p> "> Figure 2
<p>SEM images of green-emitting powders: (<b>a</b>,<b>b</b>) plate-like structure, (<b>c</b>) Cs<sub>2</sub>SnI<sub>6</sub> octahedral microcrystals, and (<b>d</b>) spherical nanocrystals; SEM images of orange-emitting powders: (<b>e</b>,<b>f</b>) spherical nanocrystals, (<b>g</b>) octahedral microcrystals, and (<b>h</b>) rod-like microcrystal.</p> "> Figure 3
<p>XRD patterns of (<b>a</b>) freshly prepared CsSnI<sub>3</sub>-dominated powders and the one stored in a vacuum chamber for one week, and (<b>b</b>) freshly prepared CsSnI<sub>3</sub>-contained powders and the one stored under ambient conditions for one week.</p> "> Figure 4
<p>PL spectra of (<b>a</b>) freshly prepared CsSnI<sub>3</sub>-dominated and CsSnI<sub>3</sub>-contained powders under UV light of 365 nm in wavelength, and (<b>b</b>) freshly prepared CsSnI<sub>3</sub>-dominated and CsSnI<sub>3</sub>-contained powders under a laser of 785 nm in wavelength.</p> "> Figure 5
<p>Absorbance spectra and Tauc plots (insets) of freshly prepared (<b>a</b>) CsSnI<sub>3</sub>-dominated powders and (<b>b</b>) CsSnI<sub>3</sub>-contained powders.</p> "> Figure 6
<p>Long-term stability of the CsSnI<sub>3</sub>-based powders over a period of 7 days: (<b>a</b>) CsSnI<sub>3</sub>-dominated powders in a vacuum chamber, and (<b>b</b>) CsSnI<sub>3</sub>-contained powder under ambient conditions.</p> "> Figure 7
<p>Temperature effects on the PL characteristics of the CsSnI<sub>3</sub>-contained powders: (<b>a</b>) PL spectra at different temperatures, (<b>b</b>) PL intensity vs. temperature, and (<b>c</b>) photon energy vs. temperature.</p> "> Figure 8
<p>Photo-response of the CsSnI<sub>3</sub>-dominated powders during a voltage sweeping from 0 V to 200 V (<b>a</b>) with and without the illumination of white light and (<b>b</b>) under a 20 s light on-and-off cycle for 385 s; photo-response of the CsSnI<sub>3</sub>-contained powders during a voltage sweeping from 0 V to 200 V, (<b>c</b>) with and without the illumination of white light and (<b>d</b>) under a 20 s light on-and-off cycle for 385 s.</p> ">
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ricciardulli, A.G.; Yang, S.; Smet, J.H.; Saliba, M. Emerging perovskite monolayers. Nat. Mater. 2021, 20, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Kapil, G.; Ohta, T.; Koyanagi, T.; Vigneshwaran, M.; Zhang, Y.; Ogomi, Y.; Pandey, S.S.; Yoshino, K.; Shen, Q.; Toyoda, T.; et al. Investigation of interfacial charge transfer in solution processed Cs2SnI6 thin films. J. Phys. Chem. C 2017, 121, 13092–13100. [Google Scholar] [CrossRef]
- Lee, B.; Shin, B.; Park, B. Uniform Cs2SnI6 thin films for lead-free and stable perovskite optoelectronics via hybrid deposition approaches. Electron. Mater. Lett. 2019, 15, 192–200. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Yang, P.; Liu, W.; Liao, Y. Enhanced stability of lead-free perovskite heterojunction for photovoltaic applications. J. Mater. Sci. 2018, 53, 4378–4386. [Google Scholar] [CrossRef]
- Dolzhnikov, D.S.; Wang, C.; Xu, Y.; Kanatzidis, M.G.; Weiss, E.A. Ligand-free, quantum-confined Cs2SnI6 perovskite nanocrystals. Chem. Mater. 2017, 29, 7901–7907. [Google Scholar] [CrossRef]
- Cho, H.; Yun, Y.; Choi, W.C.; Cho, I.S.; Lee, S. Structural, optical, and electrical properties of tin iodide-based vacancy-ordered-double perovskites synthesized via mechanochemical reaction. Ceram. Int. 2022, 48, 3368–3373. [Google Scholar] [CrossRef]
- El Ajjouri, Y.; Locardi, F.; Gélvez-Rueda, M.C.; Prato, M.; Sessolo, M.; Ferretti, M.; Grozema, F.C.; Palazon, F.; Bolink, H.J. Mechanochemical synthesis of Sn (II) and Sn (IV) iodide perovskites and study of their structural, chemical, thermal, optical, and electrical properties. Energy Technol. 2020, 8, 1900788. [Google Scholar] [CrossRef]
- Weiss, A.; Terletskaia, M.; Popov, G.; Mizohata, K.; Leskelä, M.; Ritala, M.; Kemell, M. Atomic layer deposition and pulsed chemical vapor deposition of SnI2 and CsSnI3. Chem. Mater. 2023, 35, 8722–8732. [Google Scholar] [CrossRef]
- Shum, K.; Chen, Z.; Qureshi, J.; Yu, C.L.; Wang, J.J.; Pfenninger, W.; Vockic, N.; Midgley, J.; Kenney, J.T. Synthesis and characterization of CsSnI3 thin films. Appl. Phys. Lett. 2010, 96, 221903. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kang, D.W. The tin(ii) precursor is an active site to determine the crystal framework in CsSnI3 perovskite. J. Mater. Chem. A 2022, 10, 4782–4790. [Google Scholar] [CrossRef]
- Wang, Y.; Tu, J.; Li, T.; Tao, C.; Deng, X.; Li, Z. Convenient preparation of CsSnI3 quantum dots, excellent stability, and the highest performance of lead-free inorganic perovskite solar cells so far. J. Mater. Chem. A 2019, 7, 7683–7690. [Google Scholar] [CrossRef]
- Murshed, R.; Bansal, S. Additive-assisted optimization in morphology and optoelectronic properties of inorganic mixed Sn-Pb halide perovskites. Materials 2022, 15, 899. [Google Scholar] [CrossRef]
- Nairui, X.; Yehua, T.; Yali, Q.; Duoduo, L.; Ke-Fan, W. One-step solution synthesis and stability study of inorganic perovskite semiconductor Cs2SnI6. Sol. Energy 2020, 204, 429–439. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, H.L.; Qiu, X.F.; Cao, B.Q. The air and thermal stabilities of lead-free perovskite variant Cs2SnI6 powder. Mater. Lett. 2017, 199, 50–52. [Google Scholar] [CrossRef]
- Lee, B.; Krenselewski, A.; Baik, S.I.; Seidman, D.N.; Chang, R.P.H. Solution processing of air-stable molecular semiconducting iodosalts, Cs2SnI6−xBrx, for potential solar cell applications. Sustain. Energ. Fuels 2017, 1, 710–724. [Google Scholar] [CrossRef]
- Saparov, B.; Sun, J.P.; Meng, W.W.; Xiao, Z.W.; Duan, H.S.; Gunawan, O.; Shin, D.; Hill, I.G.; Yan, Y.F.; Mitzi, D.B. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chem. Mater. 2016, 28, 2315–2322. [Google Scholar] [CrossRef]
- Tang, X.; Weng, S.; Hao, W.; Yang, F. Aqueous synthesis of ultrastable dual-color-emitting lead-free double-perovskite Cs2SnI6 with a wide emission span enabled by the size effect. ACS Sustain. Chem. Eng. 2023, 11, 9121–9131. [Google Scholar] [CrossRef]
- Saski, M.; Prochowicz, D.; Marynowski, W.; Lewiński, J. Mechanosynthesis, optical, and morphological properties of MA, FA, Cs-SnX3 (X = I, Br) and phase-pure mixed-halide MASnIxBr3–x perovskites. Eur. J. Inorg. Chem. 2019, 2019, 2680–2684. [Google Scholar] [CrossRef]
- Bharti, P.C.; Jha, P.K.; Jha, P.A.; Singh, P. Observation of isomorphic phase transition in non-perovskite Green CsSnI3. Materialia 2023, 27, 101646. [Google Scholar] [CrossRef]
- Wang, A.; Yan, X.; Zhang, M.; Sun, S.; Yang, M.; Shen, W.; Pan, X.; Wang, P.; Deng, Z. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chem. Mater. 2016, 28, 8132–8140. [Google Scholar] [CrossRef]
- Zhou, P.; Chen, H.; Chao, Y.; Zhang, Q.; Zhang, W.; Lv, F.; Gu, L.; Zhao, Q.; Wang, N.; Wang, J.; et al. Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nat. Commun. 2021, 12, 4412. [Google Scholar] [CrossRef]
- Zhu, W.; Xin, G.; Scott, S.M.; Xu, W.; Yao, T.; Gong, B.; Wang, Y.; Li, M.; Lian, J. Deciphering the degradation mechanism of the lead-free all inorganic perovskite Cs2SnI6. npj Mater. Degrad. 2019, 3, 7. [Google Scholar] [CrossRef]
- Misra, R.K.; Ciammaruchi, L.; Aharon, S.; Mogilyansky, D.; Etgar, L.; Visoly-Fisher, I.; Katz, E.A. Effect of halide composition on the photochemical stability of perovskite photovoltaic materials. ChemSusChem 2016, 9, 2572–2577. [Google Scholar] [CrossRef]
- Chung, I.; Song, J.-H.; Im, J.; Androulakis, J.; Malliakas, C.D.; Li, H.; Freeman, A.J.; Kenney, J.T.; Kanatzidis, M.G. CsSnI3: Semiconductor or metal? high electrical conductivity and strong near-infrared photoluminescence from a single material. high hole mobility and phase-transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587. [Google Scholar] [CrossRef]
- Wang, J.; Ullah, S.; Yang, P.; Liu, L.; Yang, S.; Xia, T.; Guo, H.; Chen, Y. A feasible process for lead-free Cs2SnI6 films using vapor-assisted deposition method with Sn and I2 powders as reactants. J. Phys. D Appl. Phys. 2021, 54, 145101. [Google Scholar] [CrossRef]
- Mahon, N.S.; Korolik, O.V.; Khenkin, M.V.; Arnaoutakis, G.E.; Galagan, Y.; Soriūtė, V.; Litvinas, D.; Ščajev, P.; Katz, E.A.; Mazanik, A.V. Photoluminescence kinetics for monitoring photoinduced processes in perovskite solar cells. Sol. Energy 2020, 195, 114–120. [Google Scholar] [CrossRef]
- Serpetzoglou, E.; Konidakis, I.; Maksudov, T.; Panagiotopoulos, A.; Kymakis, E.; Stratakis, E. In situ monitoring of the charge carrier dynamics of CH3NH3PbI3 perovskite crystallization process. J. Mater. Chem. C 2019, 7, 12170–12179. [Google Scholar] [CrossRef]
- Leroux, M.; Grandjean, N.; Beaumont, B.; Nataf, G.; Semond, F.; Massies, J.; Gibart, P. Temperature quenching of photoluminescence intensities in undoped and doped GaN. J. Appl. Phys. 1999, 86, 3721–3728. [Google Scholar] [CrossRef]
- Yang, F. Size effect on the bandgap change of quantum dots: Thermomechanical deformation. Phys. Lett. A 2021, 401, 127346. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Y.; Kothalawala, N.L.; Wen, X.; Kim, D.Y.; Yang, F. MAPbBr3 nanocrystals from aqueous solution for poly (methyl methacrylate)-MAPbBr3 nanocrystal films with compression-resistant photoluminescence. Nanotechnology 2022, 33, 235605. [Google Scholar] [CrossRef] [PubMed]
- Khenkin, M.V.; Amasev, D.V.; Kozyukhin, S.A.; Sadovnikov, A.V.; Katz, E.A.; Kazanskii, A.G. Temperature and spectral dependence of CH3NH3PbI3 films photoconductivity. Appl. Phys. Lett. 2017, 110, 222107. [Google Scholar] [CrossRef]
CsI | SnI2 | CsSnI3 | Cs2SnI6 | |
---|---|---|---|---|
Fresh | 20.93% | 27.86% | 32.80% | 18.41% |
Week 1 | 28.53% | 24.04% | 26.68% | 20.75% |
CsI | SnI2 | CsSnI3 | Cs2SnI6 | |
---|---|---|---|---|
Fresh | 74.11% | 10.59% | 7.68% | 7.62% |
Week 1 | 56.82% | 8.65% | 6.38% | 28.16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Tang, X.; Wen, X.; Lu, Y.C.; Yang, F. Dual Light Emission of CsSnI3-Based Powders Synthesized via a Mechanochemical Process. Materials 2024, 17, 3577. https://doi.org/10.3390/ma17143577
Huang X, Tang X, Wen X, Lu YC, Yang F. Dual Light Emission of CsSnI3-Based Powders Synthesized via a Mechanochemical Process. Materials. 2024; 17(14):3577. https://doi.org/10.3390/ma17143577
Chicago/Turabian StyleHuang, Xuan, Xiaobing Tang, Xiyu Wen, Yuebin Charles Lu, and Fuqian Yang. 2024. "Dual Light Emission of CsSnI3-Based Powders Synthesized via a Mechanochemical Process" Materials 17, no. 14: 3577. https://doi.org/10.3390/ma17143577
APA StyleHuang, X., Tang, X., Wen, X., Lu, Y. C., & Yang, F. (2024). Dual Light Emission of CsSnI3-Based Powders Synthesized via a Mechanochemical Process. Materials, 17(14), 3577. https://doi.org/10.3390/ma17143577