Phytochemicals from Bark Extracts and Their Applicability in the Synthesis of Thermosetting Polymers: An Overview
<p>Simplified sourcing process of transforming bark into thermosetting resin.</p> "> Figure 2
<p>Two representatives of trees with exfoliating bark. The plane tree (<b>left</b>) has irregularly shaped flakes of bark (marked with green circles), which can be easily removed. Birch (<b>right</b>) has a thin paper-like bark with horizontal lenticels (marked with red circles), which are more fibrous.</p> "> Figure 3
<p>The locations of the tree species used to obtain all reported bark extracts. The sketch of the world map (author: OpenClipart-Vectors) was obtained as a free graphic from Pixabay GmbH (<a href="https://pixabay.com/vectors/map-world-geography-continents-117174/" target="_blank">https://pixabay.com/vectors/map-world-geography-continents-117174/</a> (accessed on 15 January 2024)).</p> "> Figure 4
<p>Functional groups of bark phytochemicals and their applicability in the synthesis of thermosetting polymers.</p> "> Scheme 1
<p>Structures of identified abundant compounds in bark of Norway spruce (<span class="html-italic">Picea abies</span>): (<b>1</b>) stilbenoids and stilbene glycosides (astringin: R<sub>1</sub>—beta-D-glucosyl, R<sub>2</sub>—OH; <span class="html-italic">trans</span>-resveratrol: R<sub>1</sub>—OH, R<sub>2</sub>—H; trans-isorhapontin: R<sub>1</sub>—β-D-glucosyl, R<sub>2</sub>—OCH<sub>3</sub>); (<b>2</b>) D-glucopyranose (glucose); (<b>3</b>) gluconic acid; (<b>4</b>) dehydroabietic acid.</p> "> Scheme 2
<p>Structures of identified abundant compounds in bark of different pine species (<span class="html-italic">Pinus</span> sp.): (<b>1</b>) flavan-3-ols (catechin: R<sub>1</sub>—H, a, b—S, R (−)/R, S (+); epicatechin: R<sub>1</sub>—H, a, b—S, S (+)/R, R (−); gallocatechin: R<sub>1</sub>—OH, a, b—S, R (−)/R, S (+)); (<b>2</b>) other flavonoids (taxifolin: R<sub>3</sub>—OH, R<sub>4</sub>—H, R<sub>5</sub>—OH, c—single bond; myricetin: R<sub>3</sub>—OH, R<sub>4</sub>—OH, c—double bond, R<sub>5</sub>—OH; naringenin: R<sub>3</sub>—H, R<sub>4</sub>—H, R<sub>5</sub>—H, c—single bond; (<b>3</b>) ellagic acid; (<b>4</b>) caffeic acid: R<sub>6</sub>—OH; ferulic acid: R<sub>6</sub>—OCH<sub>3</sub>; (<b>5</b>) guaiacol: R<sub>7</sub>—H; 4-methylguaiacol: R<sub>7</sub>—CH<sub>3</sub>; 4-vinylguaiacol: R<sub>7</sub>—CH=CH<sub>2</sub>; (<b>6</b>) protocatechuic acid.</p> "> Scheme 3
<p>Structures of identified abundant compounds in bark of other conifers: (<b>1</b>) guaiacol: R<sub>1</sub>—H; 4-methylguaiacol: R<sub>1</sub>—CH<sub>3</sub>; 4-vinylguaiacol: R<sub>1</sub>—CH=CH<sub>2</sub>; (<b>2</b>) astringin; (<b>3</b>) (+)-catechin; (<b>4</b>) flavones (myricetin: R<sub>2</sub>—OH, R<sub>3</sub>—OH, R<sub>4</sub>—OH; isorhamnetin: R<sub>2</sub>—OH, R<sub>3</sub>—H, R<sub>4</sub>—OCH<sub>3</sub>; isorhamnetin glucoside: R<sub>2</sub>—β-D-glucosyl, R<sub>3</sub>—OH, R<sub>4</sub>—OCH<sub>3</sub>; quercetin glycoside: R<sub>2</sub>—β-D-glucosyl acetate, R<sub>3</sub>—H, R<sub>4</sub>—OH).</p> "> Scheme 4
<p>Structures of identified abundant compounds in bark of different oak species: (<b>1</b>) flavan-3-ols (catechin: R<sub>1</sub>—H, a, b—S, R (−)/R, S (+); gallocatechin: R<sub>1</sub>—OH, a, b—S, R (−)/R, S (+)); (<b>2</b>) 4-vinylguaiacol; (<b>3</b>) myricetin; (<b>4</b>) caffeic acid; (<b>5</b>) p-hydroxybenzoic acid: R<sub>2</sub>—H, R<sub>3</sub> —H; vanillic acid: R<sub>2</sub>—OCH<sub>3</sub>, R<sub>3</sub>—H; gallic acid: R<sub>2</sub>—OH, R<sub>3</sub>—OH.</p> "> Scheme 5
<p>Structures of identified abundant compounds in bark of other deciduous trees of north temperate zone: (<b>1</b>) phenolic acids (benzoic acid: R<sub>1</sub>—H, R<sub>2</sub>—H, R<sub>3</sub>—H, R<sub>4</sub>—H; gallic acid: R<sub>1</sub>—OH, R<sub>2</sub>—OH, R<sub>3</sub>—OH, R<sub>4</sub>—H; vanillic acid: R<sub>1</sub>—OCH<sub>3</sub>, R<sub>2</sub>—OH, R<sub>3</sub>—H, R<sub>4</sub>—H; <span class="html-italic">p</span>-hydroxybenzoic acid: R<sub>1</sub>—H, R<sub>2</sub>—OH, R<sub>3</sub>—H, R<sub>4</sub>—H; phthalic acid: R<sub>1</sub>—H, R<sub>2</sub>—H, R<sub>3</sub>—H, R<sub>4</sub>—COOH); (<b>2</b>) guaiacol: R<sub>5</sub>—H; 4-methylguaiacol: R<sub>5</sub>—CH<sub>3</sub>; 4-vinylguaiacol: R<sub>5</sub>—CH=CH<sub>2</sub>; (<b>3</b>) quinic acid; (<b>4</b>) caffeine; (<b>5</b>) trigalloyl-HHDP-glucose; (<b>6</b>) vescalagin; (<b>7</b>) palmitic acid; (<b>8</b>) flavan-3-ols (catechin: a, b—S, R (−)/R, S (+); (-)-epicatechin: R<sub>1</sub>—H, a, b—R, R); (<b>9</b>) other flavonoids (myricetin: R<sub>6</sub>—OH, R<sub>7</sub>—OH, R<sub>8</sub>—OH, R<sub>9</sub>—OH, R<sub>10</sub>—OH, c—double bond; quercetin: R<sub>6</sub>—OH, R<sub>7</sub>—H, R<sub>8</sub>—OH, R<sub>9</sub>—OH, R<sub>10</sub>—OH, c—double bond; luteolin-O-hexoside: R<sub>6</sub>—H, R<sub>7</sub>–OH, R<sub>8</sub>—β-D-glucosyl, R<sub>9</sub>—H, R<sub>10</sub>—OH, c—double bond; apigenin-O-hexoside: R<sub>6</sub>—H, R<sub>7</sub>—H, R<sub>8</sub>—OH, R<sub>9</sub>—H, R<sub>10</sub>—β-D-glucosyl, c—double bond; taxifolin: R<sub>6</sub>—OH, R<sub>7</sub>—H, R<sub>8</sub>—OH, R<sub>9</sub>—OH, R<sub>10</sub>—OH, c—single bond; taxifolin-3-glucoside: R<sub>6</sub>–β-D-glucosyl (S), R<sub>7</sub>—H, R<sub>8</sub>—OH, R<sub>9</sub>—OH, R<sub>10</sub>—OH, c—single bond; taxifolin-7-glucoside: R<sub>6</sub>—OH (S), R<sub>7</sub>—H, R<sub>8</sub>—OH, R<sub>9</sub>—OH, R<sub>10</sub>—β-D-glucosyl (R), c—single bond; kaempferol-O-hexoside: R<sub>6</sub>—β-D-glucosyl, R<sub>7</sub>—H, R<sub>8</sub>—OH, R<sub>9</sub>—H, R<sub>10</sub>—OH, c—double bond; (<b>10</b>) scopolin; (<b>11</b>) syringin; (<b>12</b>) daidzein-O-hexoside; (<b>13</b>) caffeoyl hexose: R<sub>11</sub>—OH; caffeoyl hexose deoxyhexoside: R<sub>11</sub>—deoxyhexosyl; (<b>14</b>) procyanidin dimer type A (A1: e—S; A2: d—S, e—R).</p> ">
Abstract
:1. Introduction
2. Bark Harvesting
2.1. Types of Bark
2.2. Debarking Methods
2.3. Seasonal Variations in Phytochemicals
2.4. Storage of Bark
2.5. Pest Infestations and Fungal Infections
3. Extract Preparation and Analysis
3.1. Pre-treatment
3.2. Solvent Selection
3.3. Extraction Method
3.4. Quantitative and Qualitative Analysis of Extracts
Chromatographic Identification of Phytochemicals: Conditions
4. A Survey of Selected Recent Studies
4.1. Evaluation of Norway Spruce Bark Extracts (Table 1)
Ref. | Solvent Type, Temperature of Extraction | Extraction Method a, Time | TPC (mg GAE /g DWB) b | Extraction Yield (% DW) | Identified Abundant Compounds |
---|---|---|---|---|---|
[35] | ethanol 96.6%, 100 °C | ASE, 1500 psi, 20 min (steam exposure) | 3.21 | 6.63 | n/a |
ethanol 96.6%, 160 °C | ASE, 1500 psi, 30 min (steam exposure) | 2.36 | 28.44 | n/a | |
ethanol 96.6% | MAE | 3.21 | n/a | n/a | |
DES c—choline chloride–malic acid 1:1 (m/m), 60 °C | CE (closed flask, continuous stirring), 1 h | 9.00 | 14.68 | n/a | |
DES c—choline chloride–maleic acid 1:1 (m/m), 60 °C | 20.00 | 11.87 | |||
DES c—choline chloride–glycerol 1:2 (m/m), 60 °C | 17.00 | 11.40 | |||
[46] | ethanol–water 10:90 (v/v), 40 °C | SFE, 100 bar, 105 min (dynamic time), 150 min (static time) | 0.77 ± 0.02 | 2.86 ± 0.04 | trans-resveratrol d |
ethanol–water 20:80 (v/v), 40 °C | 1.24 ± 0.07 | 3.07 ± 0.10 | |||
ethanol–water 40:60 (v/v), 40 °C | 2.50 ± 0.03 | 3.12 ± 0.02 | |||
water, 160 °C | PLE, 50 bar, 5 min | 33.45 ± 1.44 | 13.07 ± 0.86 | ||
ethanol, 180 °C | 46.32 ± 2.17 | 12.79 ± 0.25 | |||
ethanol–water 70:30 (v/v), 54 °C | UAE (39 kHz, bath, 200 W), 60 min | 54.97 ± 2.00 | 12.33 ± 0.58 | ||
[17] | acetone, ~56 °C | SoxE, 15 min | n/a | 11.83 ± 0.13 e | n/a |
[40] | DES13 c, 60 °C | CE (closed flask, cont. stirring), 2 h | 5.31 ± 0.04 | n/a | n/a |
DES14 c, 60 °C | 5.96 ± 0.07 | n/a | |||
[30] | ultra-high-quality water, 120 °C | ASE, 1500 psi, 10 min (static time) | 111.0 (winter) e 89.4 (summer) e | 34.7 (winter) e 35.7 (summer) e | dehydroabietic acid, glucose, gluconic acid, trans-isorhapontin, astringin |
4.2. Evaluation of Pine Species Bark Extracts (Table 2)
Ref. | Solvent Type, Temperature of Extraction | Extraction Method a, Time | TPC (mg GAE /g DWB) b | Extraction Yield (% DW) | Identified Abundant Compounds |
---|---|---|---|---|---|
[11] mp | ethanol–water 50:50 (v/v), ~82 °C | SoxE, 4 h | 73.48 ± 1.83 | 17.55 ± 0.16 | n/a |
ethanol 96%, 78 °C | 63.38 ± 1.26 | 17.08 ± 0.23 | |||
water, 100 °C | 50.09 ± 4.70 | ca. 8 c | |||
[70] mp | water, 95 °C | CE (with ice on lid), 2 h | 101.1 ± 4.0 | 7.5 | n/a |
[36] mp | water, 82 °C | CE, 115 min | 48.1 | n/a | gallocatechin, taxifolin, ellagic acid |
ethanol–water 30:70 (v/v), 82 °C | 120.1 | n/a | taxifolin, gallocatechin, naringenin, catechin, elagic acid | ||
ethanol–water 50:50 (v/v), 82 °C | 163.6 | n/a | taxifolin, naringenin, catechin, ellagic acid | ||
ethanol–water 70:30 (v/v), 82 °C | 136.5 | n/a | |||
ethanol–water 90:10 (v/v), 82 °C | 123.8 | n/a | |||
[61] mp | water, ~100 °C | CE, 15 min | 12.25 ± 0.03 | n/a | catechin, taxifolin, protocatechuic acid |
[61] sp | water, ~100 °C | CE, 15 min | 14.77 ± 0.06 | n/a | catechin, taxifolin, caffeic acid |
[61] Sc | water, ~100 °C | CE, 15 min | 5.42 ± 0.05 | n/a | catechin, taxifolin, protocatechuic acid |
[42] Sc | methanol–water 65:35 (v/v) | n/a (CE/ME) | 88 | 18.33 | myricetin, eleutheroside |
[49] Sc | distilled water, 60 °C | CE (cont. stirring), 1 h | 12.33 ± 1.48 7.25 ± 1.37 5.80 ± 1.24 4.38 ± 0.94 d | n/a | n/a |
[50] Sc | ethanol–water 60:40 (v/v), 50 °C | CE (cont. stirring), 20 min | ca 67 c | – | catechin, epicatechin |
[37] Jp | water, 60 °C | CE (extraction in heating mantle), 9 h | 9.04 | 6.18 | n/a |
ethanol–water 20:80 (v/v), 60 °C | 22.19 | 8.34 | |||
ethanol–water 40:60 (v/v), 60 °C | 24.33 | 9.52 | |||
ethanol–water 60:40 (v/v), 60 °C | 20.15 | 11.76 | |||
ethanol–water 80:20 (v/v), 60 °C | 14.76 | 10.21 | |||
ethanol, 60 °C | 7.56 | 8.15 | |||
methanol–water 20:80 (v/v), 60 °C | 16.76 | 8.36 | |||
methanol–water 40:60 (v/v), 60 °C | 16.37 | 9.09 | |||
acetone–water 20:80 (v/v), 60 °C | 20.26 | 8.41 | |||
acetone–water 40:60 (v/v), 60 °C | 17.16 | 9.58 | |||
isopropanol–water 20:80 (v/v), 60 °C | 24.51 | 10.11 | |||
isopropanol–water 40:60 (v/v), 60 °C | 29,46 | 12.05 | |||
acetonitrile–water 20:80 (v/v), 60 °C | 23.81 | 9.24 | |||
acetonitrile–water 40:60 (v/v), 60 °C | 27.68 | 11.37 | |||
[66] Ap | ethanol–water 70:30 (v/v), room temperature | ME, 72 h | 560.65 ± 44.00 e | n/a | catechin, ferulic acid, taxifolin, caffeic acid f |
[71] Cp | ethanol–water 50:50 (v/v), 50 °C | UAE, 1 h | 27.9 ± 0.3 | 11.1 | 4-vinyl guaiacol, 4-methylguaiacol, guaiacol |
4.3. Evaluation of Other Conifers’ Bark Extracts (Table 3)
Ref. | Solvent Type, Temperature of Extraction | Extraction Method a, Time | TPC (mg GAE /g DWB) b | Extraction Yield (% DW) | Identified Abundant Compounds |
---|---|---|---|---|---|
[58] El | ethanol–water 80:20 (v/v) | UAE (horn), 15 min | 145.22 ± 6.11 | n/a | astringin |
[71] El | ethanol–water 50:50 (v/v), 50 °C | UAE, 1 h | 143.7 ± 4 | 26.1 | 4-vinyl guaiacol, 4-methylguaiacol, guaiacol |
[43] El | ethanol–water 50:50 (v/v) | MAE-UAE (simultaneous, power: 100–300 W), 30–120 s | 90 ± 3 | 15.1 ± 0.1 | n/a |
[48] El | ethanol–water 50:50 (v/v), 58.26 °C | CE (with orbital shaker, speed 120 rpm), 94.27 min | 0.83 | 7.73 | n/a |
ethanol–water 50:50 (v/v), 65 °C | UAE (bath) 94.76 min | 0.37 | 5.87 | ||
ethanol–water 50:50 (v/v) | MAE (power: 100 W), 62.66 min | 0,88 | 8.21 | ||
[6] sf | ethanol–water 50:50 (v/v) | ASE | n/a | 21.63 c | isorhamnetin glucoside, quercetin glycoside, isorhamnetin, (+)-catechin |
[42] Cf | methanol–water, 65:35 (v/v) | n/a (CE/ME) | 73 | 19.10 | myricetin |
[72] Ch | 1% NaOH (aq), 90 °C | CE, 2 h | 149.3 | 21.26 ± 0.81 | n/a |
ethanol 95% | SoxE, (4–5 cycles/h), 7 h | 285.6 | 5.04 ± 0.22 | ||
water, 90 °C | CE, 2 h | 162.7 | 2.46 ± 0.14 |
4.4. Evaluation of Oak Species Bark Extracts (Table 4)
Ref. | Solvent Type, Temperature of Extraction | Extraction Method a, Time | TPC (mg GAE /g DWB) b | Extraction Yield (% DW) | Identified Abundant Compounds |
---|---|---|---|---|---|
[50] co | ethanol–water 60:40 (v/v), 50 °C | CE (cont. stirring), 20 min | ca 77 c | n/a | catechin, epicatechin, p-hydroxybenzoic acid |
[49] co | distilled water, 60 °C | CE (cont. stirring), 1 h | 18.09 ± 3.50 10.28 ± 2.05 17.68 ± 3.14 8.25 ± 1.55 d | n/a | n/a |
[51] co | water, rt | CE (cont. stirring), 20 min | 60.4 ± 1.3 | n/a | n/a |
ethanol–water 60:40 (v/v), rt | 79.3 ± 0.8 | n/a | |||
[42] co | methanol–water 65:35 (v/v) | n/a (CE/ME) | 48 | 18.75 | myricetin |
[47] co | ethanol–water 50:50 (v/v), 50 °C | UAE, 1 h | 61.25 ± 1.50 | 10.03 ± 0.31 | n/a |
[47] no | ethanol–water 50:50 (v/v), 50 °C | UAE, 1 h | 8.84 ± 0.10 | 3.20 ± 0.07 | n/a |
[71] no | ethanol–water 50:50 (v/v), 50 °C | UAE, 1 h | 91.9 ± 3.2 | 17.3 | 4-vinyl guaiacol |
[55] no | water, 70 °C | UAE (40 kHz), 15 min | 203.58 ± 3.25 | n/a | n/a |
ethanol–water 50:50 (v/v), 70 °C | UAE (40 kHz), 15 min | 226.79 ± 1.54 | n/a | ||
water | MAE (850 W), 30 min | 216.47 ± 1.19 | n/a | ||
ethanol–water 70:30 (v/v) | MAE (650 W), 18 min | 321.08 ± 3.23 | n/a | ||
[56] To | water | MAE (850 W), 30 min | 382.26 ± 0.97 | n/a | n/a |
ethanol–water 70:30 (v/v) | MAE (650 W), 18 min | 403.73 ± 7.35 | n/a | ||
[57] oD | water | UAE (40 kHz), 15 min | ca 290 c | n/a | gallic acid, catechin, vanillic acid |
ethanol–water 70:30 (v/v) | UAE (40 kHz), 15 min | ca 285 c | n/a | ||
water | MAE (850 W), 30 min | ca 315 c | n/a | ||
ethanol–water 70:30 (v/v) | MAE (650 W), 18 min | ca 370 c | n/a | ||
[57] Ho | water | UAE (40 kHz), 15 min | ca 310 c | n/a | caffeic acid, catechin, gallic acid |
ethanol–water 70:30 (v/v) | UAE (40 kHz), 15 min | ca 330 c | n/a | ||
water | MAE (850 W), 30 min | ca 350 c | n/a | ||
ethanol–water 70:30 (v/v) | MAE (650 W), 18 min | ca 355 c | n/a |
4.5. Evaluation of Bark Extracts from Other Deciduous Trees of North Temperate Zone (Table 5)
Ref. | Solvent Type, Temperature of Extraction | Extraction Method a, Time | TPC (mg GAE /g DWB) b | Extraction Yield (% DW) | Identified Abundant Compounds |
---|---|---|---|---|---|
[44] at | subcritical water, 150 °C | SFE-UAE c (40 bar, 3 Hz), 40 min | 31.47 ± 1.86 | n/a | gallic acid, catechin, benzoic acid, guaiacol |
[58] wc | ethanol–water 80:20 (v/v) | UAE (horn), 15 min | 112.88 ± 17.27 | n/a | -O-hexosides of: (luteolin, apigenin, daidzein, taxifolin, kaempferol), scopolin |
[58] sc | ethanol–water 80:20 (v/v) | UAE (horn), 15 min | 174.25 ± 16.95 | n/a | trigalloyl-HHDP-glucose, quinic acid, vescalagin |
[47] sc | ethanol–water 50:50 (v/v), 50 °C | UAE, 1 h | 58.87 ± 2.24 | 9.27 ± 0.18 | n/a |
[42] Ob | methanol–water 65:35 (v/v) | – (CE/ME) | 42.04 | 15.50 | n/a |
[67] Eb | distilled water, 85–90 °C | CE (water bath with shaking), 45 min | 22.95 ± 0.07 | n/a | catechin, vanillic acid, taxifolin, syringin |
[38] Eb | water | MAE (300 c, 450 d, 600 e, 800 f W), 2, 3, 4 min | 47.44–51.53 c 48.19–56.79 d 52.79–59.10 e 55.68–72.31 f | n/a | catechin, vanillic acid, (-)-epicatechin |
ethanol–water 50:50 (v/v) | 67.27–76.46 c 66.43–77.53 d 71.91–72.43 e 72.46–73.32 f | n/a | catechin, (-)-epicatechin, vanillic acid | ||
ethanol–water 80:20 (v/v) | 61.87–64.77 c 66.00–67.86 d 69.81–70.95 e 64.12–66.07 f | n/a | catechin, (-)-epicatechin, vanillic acid | ||
[42] sp | methanol–water 65:35 (v/v) | –(CE/ME) | 100 | 19.43 | myricetin, eleutheroside, quercetin |
[71] Cp | ethanol–water 50:50 (v/v), 50 °C | UAE, 1 h | 56 ± 0.4 | 16.8 | 4-vinyl guaiacol, 4-methylguaiacol |
[49] al | distilled water, 60 °C | CE (continuous stirring), 1 h | 29.00 ± 5.33 13.42 ± 1.41 12.18 ± 1.53 4.92 ± 0.51 g | n/a | n/a |
[70] we | water, 95 °C | CE (with ice on lid), 2 h | 407.05 h | 5.18 | n/a |
[47] ca | ethanol–water 50:50 (v/v), 50 °C | UAE, 1 h | 49.91 ± 1.63 | 15.77 ± 0.14 | n/a |
[47] Ib | ethanol–water 50:50 (v/v), 50 °C | UAE, 1 h | 21.99 ± 0.15 | 5.09 ± 0.06 | n/a |
[73] sb | methanol, 50 °C | UAE (bath, 35 kHz), 3 h | 79.43 | 17.74 ± 1.64 | n/a |
[47] bl | ethanol–water 50:50 (v/v), 50 °C | UAE, 1 h | 5.49 ± 0.18 | 3.08 ± 0.18 | n/a |
[71] bl | ethanol–water 50:50 (v/v), 50 °C | UAE, 1 h | 25.3 ± 0.3 | 9.5 | 4-vinyl guaiacol |
[71] ww | ethanol–water 50:50 (v/v), 50 °C | UAE, 1 h | 102.6 ± 4.2 | 23.8 | 4-vinyl guaiacol, phenol |
[62] ww | methanol–water 70:30 (v/v), 40 °C | UAE (with chloroformpre-extraction), 30 min | 23.30 ± 0.17 k | 34.6 | caffeoyl hexose, A-type procyanidin dimers, caffeoyl hexose-deoxyhexoside, (−)-epicatechin, |
[63] sm | acetone, rt | CE (stirring), 6 h | 190 ± 10 inner bark (IB) 292.67 ± 11.02 outer bark (OB) h | 6.06 ± 0.89 (IB) 7.82 ± 0.33 (OB) | IB: caffeine, p-hydroxybenzoic acid, palmitic acid OB: gallic acid, p-hydroxybenzoic acid, phthalic acid |
4.6. Evaluation of Tropical and Subtropical Tree Bark Extracts (Table 6)
Ref. | Solvent Type, Temperature of Extraction | Extraction Method a, Time | TPC (mg GAE /g DWB) b | Extraction Yield (% DW) | Identified Abundant Compounds c |
---|---|---|---|---|---|
[59] ma | ethanol, ~78 °C | SoxE (3 times refluxed) | 60.25 | n/a | tannins, flavonoids, carbohydrates, steroids |
ethyl acetate, ~77 °C | 63.00 | n/a | tannins, flavonoids | ||
chloroform, ~61 °C | 36.25 | n/a | tannins, flavonoids, steroids | ||
petroleum ether, 42–62 °C | 29.75 | n/a | tannins, flavonoids | ||
[60] wa | methanol | ME | 0.34 (pink) 0.34 (red) d | 7.58 (pink) 6.48 (red) d | phenols, flavonoids, saponins, triterpenoids, alkaloids |
ethyl acetate | 0.26 (pink) 0.30 (red) d | 2.90 (pink) 2.44 (red) d | |||
n-hexane | 0.17 (pink) 0.21 (red) d | 0.52 (pink) 0.54 (red) d | |||
[52] em | methanol, rt | ME | 287.16 ± 2.14 f | n/a | phenols, steroids, alkaloids |
methanol– ethyl acetate e | 362.88 ± 1.89 f | ||||
methanol– n-hexane e | 15.47 ± 0.38 f | ||||
[64] re | methanol | ME | 366.43 ± 11.52 f | 4.24 | alkaloids, steroids, tannins, xanthones, reducing sugars |
[53] ka | n-hexane | ME | 187.37 ± 0.06 g | n/a | xanthones |
dichloromethane | 127.84 ± 0.05 g | ||||
ethyl acetate | 116.65 ± 0.06 g | ||||
methanol | 73.40 ± 0.11 g | ||||
[65] kt | ethanol | UAE | 451.07 ± 3.35 g | n/a | n/a |
[65] ct | ethanol | UAE | 327.60 ± 2.79 g | n/a | n/a |
[65] jf | ethanol | UAE | 90.33 ± 0.23 g | n/a | n/a |
[74] go | water, 80 °C | CE, 3 h | 373 ± 4.2 | n/a | n/a |
[54] za | methanol | SoxE, 3 days | 185.15 ± 1.22 g (wild) 171.13 ± 6.73 g (cultivated) | n/a | n/a |
4.7. Summary of Survey
5. Application of Bark Extracts in Thermosetting Polymers
5.1. Types of Thermosetting Polymers
5.2. Formaldehyde-Based Resins and Alternative Adhesives
Polymer Matrix | Extract Source | Extract Content | Properties | Ref. | Comments |
---|---|---|---|---|---|
PF | merkus pine bark | over 50% (not specified) | liquid adhesive (solid content from 14% to 17%) with Stiasny number from 50% to 83% and low formaldehyde demand (5%) | [69] | only formulations of tannins with resorcinol and formaldehyde were tested, no mechanical tests of adhesive |
PF | mangium bark | ca. 80% | laminate with mangium wood partially meets the JAS 234 standard—slightly lower moduli of elasticity and rupture and good level of formaldehyde emission (very low) | [68] | - |
PF | black wattle bark | 20%, 30% and 40% | copolymers with better thermal stability, faster curing and lower shear strength than commercial PF | [75] | - |
PF | maritime pine bark | 40%, 50%, 67% | Tg and bulk density correlation with aldehyde chain length and functionality and unsaturation | [78] | PF |
PUF | maritime pine bark | 2.5% and 5% | improved bonding shear strength (more than 20% higher), reduced formaldehyde emission | [70] | tested as adhesive for pine plywood |
PUF | wych elm bark | 2.5% and 5% | reduced formaldehyde emission | [70] | tested as adhesive for pine plywood |
PUF | goran bark | 25% | reduced moisture content, comparable water absorption and better mechanical properties than commercial UF | [74] | all properties for particleboards; mechanical tests: tensile strength, moduli of elasticity and rupture |
UF | beech bark (passive extraction) | 10% | reduced formaldehyde emission, equal or higher mechanical properties (modulus of rupture, thickness swelling, bonding quality) compared to plywood with commercial UF | [76] | tested as adhesive for beech plywood |
ULEFR | grey alder and black alder bark | 40–60% | comparable mechanical properties (modulus of elasticity, shear strength) to clear ULEFR, reduced formaldehyde emission | [77] | tested as adhesive for birch plywood and pine wood particleboards |
amine-based PF alternative | Monterey pine bark | 90–95% | liquid adhesive (solid content—30%) with properties similar to those of commercial PF resins, reduced formaldehyde emission) | [78] | - |
5.3. Polyurethanes
Polymer Matrix | Extract Source | Extract Content | Properties | Ref. | Comments |
---|---|---|---|---|---|
PUA | Chinese fir bark | 2% | coating: increased photostability | [72] | better for higher TPC |
PUR | mimosa bark | 10% | coating: better impregnation and glossiness | [86] | other extract contents were suboptimal |
PUR | Monterey pine bark | 25%, 50%, 75%, 100% | foam: improved thermal stability, increased strength and brittleness, deformed cellular structure * | [84] | * only for higher loadings |
PUR | lodgepole pine bark | ca 13% | foam: higher degradation temperature and density, increased brittleness | [85] | - |
PUR | mangium bark | non-specified | improved thermal stability and crystallinity | [81] | used for impregnation of ramie fibres, different times of impregnation |
PUR | mangium bark | non-specified | improved thermal stability, tensile strength and elastic modulus | [82] | used for impregnation of ramie fibres |
NIPU | mangium bark | 30.7% and 44.4% | [82] | ||
NIPU | mangium bark | 30.7% | as above, optimisation | [83] | used for impregnation of ramie fibres |
5.4. Polyester Resins
Polymer Matrix | Extract Source | Extract Content | Properties | Ref. | Comments |
---|---|---|---|---|---|
polyester | willow bark | almost 100% | high Tg, rapid polymerisation with a narrow distribution of molecular weights | [88] | - |
polyester | torrefied bark of silver birch | 100% | high adhesion—alternative to hot-melt glue or tackifying agent | [89] | - |
polyester | silver birch bark | 52% | Tg at 150–165 °C, good chemical resistance | [90] | made from unsaturated betulin with sebacoyl chloride and pyridine |
polyester | silver birch bark | 70% | improved hydrophobicity and stable anti-ageing properties | [91] | made from suberin fatty acids with maleic anhydride |
polyester | silver birch bark | non-specified | good hydrolytic stability and creep resistance | [92] | made from suberin with polyol and tin catalyst |
polyester | cork oak bark | non-specified | foams similar to cork | [93] | made from depolymerised suberin with glycerol and bismuth catalyst |
poly(lactic acid) blend | Monterey pine bark | 10%, 20%, 30%, 40% | improved processability of PLA, more crystalline character | [96] | also hydroxypropylated extract was tested |
poly(lactic acid) blend | Monterey pine bark | 25% | amorphous character | [97] | hydroxypropylated extract, obtained by melt-spinning |
5.5. Epoxy Resins
Polymer Matrix | Extract Source | Extract Content | Properties | Ref. | Comments |
---|---|---|---|---|---|
epoxy | Monterey pine bark | 22%, 28%, 33%, 50% | oligomers with various viscosities and Tg, affected by chain length | [99] | reactivity tests |
epoxy | Monterey pine bark | non-specified | competitive as corrosion inhibitor | [100] | - |
epoxy | eucalyptus bark | 20%, 40%, 60% | slightly faster curing for 20% content | [101] | bark extract was epoxidised |
epoxy | bog-myrtle bark | non-specified | oil and water resistance | [102] | as paper coating |
epoxy | bog-myrtle bark | 5% | significant improvement in flexural, tensile and impact strengths | [103] | as strengthening agent |
epoxy | eucommia ulmoides bark | 1% | improved tensile strength and enhanced corrosion performance | [104] | as nanofiller |
epoxy | houpu magnolia bark | over 90% | lower flammability and antibacterial properties | [105] | self-curing ability |
epoxy | houpu magnolia bark | over 90% | higher stiffness and toughness compared to DGEBA | [106] | added an amine catalyst for self-curing |
epoxy-chitosan copolymer | houpu magnolia bark | 9%, 16.6%, 23.1%, 28.6%, 33.3% | improved flame retardancy | [107] | as hard segments for chitosan-based aerogel |
epoxy | houpu magnolia bark | 10%, 15% | significantly lower heat production and slightly increased smoke production, V-0 rating for UL-94 test | [108] | as a reactive flame-retardant |
5.6. Other Thermosets
Polymer Matrix | Extract Source | Extract Content | Properties | Ref. |
---|---|---|---|---|
phthalonitrile resin | houpu magnolia bark | 42.80% | high thermal stability (Tg > 500 °C) | [109] |
thiol-ene resin | houpu magnolia bark | 35.3%, 45.0%, 52.2%, 59.2%, 68.6% | good adhesive in a wet environment, antibacterial properties | [110] |
thiol-ene resin | limonene | 36.2% | 3D printing material with mechanical properties similar to those of elastomers and thermoplastics | [111] |
6. Discussion and Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forest Products 2020; FAO: Rome, Italy, 2022; ISBN 978-92-5-137395-8.
- Lu, W.; Sibley, J.L.; Gilliam, C.H.; Bannon, J.S.; Zhang, Y. Estimation of U.S. Bark Generation and Implications for Horticultural Industries 1. J. Environ. Hort. 2006, 24, 29–34. [Google Scholar] [CrossRef]
- Corral-Rivas, J.; Vega-Nieva, D.; Rodríguez-Soalleiro, R.; López-Sánchez, C.; Wehenkel, C.; Vargas-Larreta, B.; Álvarez-González, J.; Ruiz-González, A. Compatible System for Predicting Total and Merchantable Stem Volume over and under Bark, Branch Volume and Whole-Tree Volume of Pine Species. Forests 2017, 8, 417. [Google Scholar] [CrossRef]
- Neumann, M.; Lawes, M.J. Quantifying Carbon in Tree Bark: The Importance of Bark Morphology and Tree Size. Methods Ecol. Evol. 2021, 12, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Kain, G.; Morandini, M.; Barbu, M.-C.; Petutschnigg, A.; Tippner, J. Specific Gravity of Inner and Outer Larch Bark. Forests 2020, 11, 1132. [Google Scholar] [CrossRef]
- Brennan, M.; Fritsch, C.; Cosgun, S.; Dumarcay, S.; Colin, F.; Gérardin, P. Yield and Compositions of Bark Phenolic Extractives from Three Commercially Significant Softwoods Show Intra- and Inter-Specific Variation. Plant Physiol. Biochem. 2020, 155, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Truong, D.-H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and In Vitro Anti-Inflammatory Activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 8178294. [Google Scholar] [CrossRef]
- Haminiuk, C.W.I.; Plata-Oviedo, M.S.V.; de Mattos, G.; Carpes, S.T.; Branco, I.G. Extraction and Quantification of Phenolic Acids and Flavonols from Eugenia Pyriformis Using Different Solvents. J. Food Sci. Technol. 2014, 51, 2862–2866. [Google Scholar] [CrossRef] [PubMed]
- Ilek, A.; Kucza, J.; Morkisz, K. Hygroscopicity of the Bark of Selected Forest Tree Species. iForest-Biogeosci. For. 2017, 10, 220–226. [Google Scholar] [CrossRef]
- Feng, S.; Cheng, S.; Yuan, Z.; Leitch, M.; Xu, C. (Charles) Valorization of Bark for Chemicals and Materials: A Review. Renew. Sustain. Energy Rev. 2013, 26, 560–578. [Google Scholar] [CrossRef]
- Vieito, C.; Fernandes, É.; Vaz Velho, M.; Pires, P. The Effect of Different Solvents on Extraction Yield, Total Phenolic Content and Antioxidant Activity of Extracts from Pine Bark (Pinus pinaster Subsp. Atlantica). Chem. Eng. Trans. 2018, 64, 127–132. [Google Scholar]
- Petráš, R.; Mecko, J.; Krupová, D.; Pažitný, A. Aboveground Biomass Basic Density of Hardwoods Tree Species. Wood Res. 2020, 65, 1001–1012. [Google Scholar] [CrossRef]
- Plastics Europe Plastics—The Facts 2022; Plastics Europe: Brussels, Belgium, 2022.
- Costa, A.; Oliveira, G. Cork Oak (Quercus suber L.): A Case of Sustainable Bark Harvesting in Southern Europe. In Ecological Sustainability for Non-Timber Forest Products; Routledge: London, UK, 2015; pp. 193–212. ISBN 9781315851587. [Google Scholar]
- Christenhusz, M.J.M.; Byng, J.W. The Number of Known Plants Species in the World and Its Annual Increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- Bajpai, P. Green Chemistry and Sustainability in Pulp and Paper Industry; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Routa, J.; Brännström, H.; Laitila, J. Effects of Storage on Dry Matter, Energy Content and Amount of Extractives in Norway Spruce Bark. Biomass Bioenergy 2020, 143, 105821. [Google Scholar] [CrossRef]
- Kemppainen, K.; Siika-aho, M.; Pattathil, S.; Giovando, S.; Kruus, K. Spruce Bark as an Industrial Source of Condensed Tannins and Non-Cellulosic Sugars. Ind. Crops Prod. 2014, 52, 158–168. [Google Scholar] [CrossRef]
- Peeters, K.; Esakkimuthu, E.S.; Tavzes, Č.; Kramberger, K.; Miklavčič Višnjevec, A. The Potential Value of Debarking Water as a Source of Polyphenolic Compounds for the Specialty Chemicals Sector. Molecules 2023, 28, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Multia, E. Evgen Multia Potential and Utilization of Water Extracts from Spruce Bark. Master’s Thesis, Aalto University, Espoo, Finland, 2018. [Google Scholar]
- Kloch, M.; Toczyłowska-Mamińska, R. Toward Optimization of Wood Industry Wastewater Treatment in Microbial Fuel Cells—Mixed Wastewaters Approach. Energies 2020, 13, 263–273. [Google Scholar] [CrossRef]
- Beszterda, M.; Frański, R. Seasonal Qualitative Variations of Phenolic Content in the Stem Bark of Prunus Persica Var. Nucipersica—Implication for the Use of the Bark as a Source of Bioactive Compounds. ChemistrySelect 2022, 7, e202200418. [Google Scholar] [CrossRef]
- Medic, A.; Zamljen, T.; Hudina, M.; Solar, A.; Veberic, R. Seasonal Variations of Naphthoquinone Contents (Juglone and Hydrojuglone Glycosides) in Juglans regia L. Sci. Hortic. 2022, 300, 111065. [Google Scholar] [CrossRef]
- Dou, J.; Kögler, M.; Kesari, K.K.; Pitkänen, L.; Vuorinen, T. Seasonal Dynamics in Structural Characteristics within Bark Stems of Cultivated Willow (Salix sp.) by NMR and Time-Gated Raman Spectroscopy. Green. Chem. 2023, 25, 1908–1919. [Google Scholar] [CrossRef]
- Gabr, S.; Nikles, S.; Pferschy Wenzig, E.M.; Ardjomand-Woelkart, K.; Hathout, R.M.; El-Ahmady, S.; Motaal, A.A.; Singab, A.; Bauer, R. Characterization and Optimization of Phenolics Extracts from Acacia Species in Relevance to Their Anti-Inflammatory Activity. Biochem. Syst. Ecol. 2018, 78, 21–30. [Google Scholar] [CrossRef]
- Ketkar, P.; Nayak, S.; Pai, S.; Joshi, R. Monitoring Seasonal Variation of Epicatechin and Gallic Acid in the Bark of Saraca asoca Using Reverse Phase High Performance Liquid Chromatography (RP-HPLC) Method. J. Ayurveda Integr. Med. 2015, 6, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Jyske, T.; Brännström, H.; Halmemies, E.; Laakso, T.; Kilpeläinen, P.; Hyvönen, J.; Kärkkäinen, K.; Saranpää, P. Stilbenoids of Norway Spruce Bark: Does the Variability Caused by Raw-Material Processing Offset the Biological Variability? Biomass Convers. Biorefin. 2024, 14, 5085–5099. [Google Scholar] [CrossRef]
- Jyske, T.M.; Suuronen, J.P.; Pranovich, A.V.; Laakso, T.; Watanabe, U.; Kuroda, K.; Abe, H. Seasonal Variation in Formation, Structure, and Chemical Properties of Phloem in Picea Abies as Studied by Novel Microtechniques. Planta 2015, 242, 613–629. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.; Bergmann, U.; Vepsäläinen, J.; Leiviskä, T. Effects of Tree Harvesting Time and Tannin Cold/Hot-Water Extraction Procedures on the Performance of Spruce Tannin Biocoagulant for Water Treatment. Chem. Eng. J. 2022, 449, 137809. [Google Scholar] [CrossRef]
- Halmemies, E.S.; Brännström, H.E.; Nurmi, J.; Läspä, O.; Alén, R. Effect of Seasonal Storage on Single-Stem Bark Extractives of Norway Spruce (Picea abies). Forests 2021, 12, 736. [Google Scholar] [CrossRef]
- Routa, J.; Brännström, H.; Hellström, J.; Laitila, J. Influence of Storage on the Physical and Chemical Properties of Scots Pine Bark. Bioenergy Res. 2021, 14, 575–587. [Google Scholar] [CrossRef]
- Zhao, T.; Kandasamy, D.; Krokene, P.; Chen, J.; Gershenzon, J.; Hammerbacher, A. Fungal Associates of the Tree-Killing Bark Beetle, Ips Typographus, Vary in Virulence, Ability to Degrade Conifer Phenolics and Influence Bark Beetle Tunneling Behavior. Fungal Ecol. 2019, 38, 71–79. [Google Scholar] [CrossRef]
- Hammerbacher, A.; Kandasamy, D.; Ullah, C.; Schmidt, A.; Wright, L.P.; Gershenzon, J. Flavanone-3-Hydroxylase Plays an Important Role in the Biosynthesis of Spruce Phenolic Defenses against Bark Beetles and Their Fungal Associates. Front. Plant Sci. 2019, 10, 208. [Google Scholar] [CrossRef]
- Preminger, M. Changes in Bark Chemistry Across Beech Bark Disease Development. Ph.D. Thesis, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA, 2019. [Google Scholar]
- Haz, A.; Jablonsky, M.; Majova, V.; Skulcova, A.; Strizincova, P. Comparison of Different Extraction Methods for the Extraction of Total Phenolic Compounds from Spruce Bark. J. Hyg. Eng. Des. 2018, 22, 72–75. [Google Scholar]
- Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Santos, J.; Ramos, C.; Teixeira, J.A.; Rocha, C.M.R. Unravelling the Biological Potential of Pinus Pinaster Bark Extracts. Antioxidants 2020, 9, 334. [Google Scholar] [CrossRef]
- Venkatesan, T.; Choi, Y.-W.; Kim, Y.-K. Impact of Different Extraction Solvents on Phenolic Content and Antioxidant Potential of Pinus densiflora Bark Extract. Biomed. Res. Int. 2019, 2019, 3520675. [Google Scholar] [CrossRef] [PubMed]
- Tanase, C.; Mocan, A.; Coșarcă, S.; Gavan, A.; Nicolescu, A.; Gheldiu, A.-M.; Vodnar, D.C.; Muntean, D.-L.; Crișan, O. Biological and Chemical Insights of Beech (Fagus sylvatica L.) Bark: A Source of Bioactive Compounds with Functional Properties. Antioxidants 2019, 8, 417. [Google Scholar] [CrossRef] [PubMed]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Jablonsky, M.; Majova, V.; Strizincova, P.; Sima, J.; Jablonsky, J. Investigation of Total Phenolic Content and Antioxidant Activities of Spruce Bark Extracts Isolated by Deep Eutectic Solvents. Crystals 2020, 10, 402. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Bian, J.; Li, M.-F.; Ren, J.-L.; Hao, X.; Peng, F. Sustainable Polar Aprotic/Poly-Deep Eutectic Solvent Systems for Highly Efficient Dissolution of Lignin. Green. Chem. 2023, 25, 4808–4817. [Google Scholar] [CrossRef]
- Hamad, A.M.A.; Ates, S.; Olgun, Ç.; Gür, M. Chemical Composition and Antioxidant Properties of Some Industrial Tree Bark Extracts. Bioresources 2019, 14, 5657–5671. [Google Scholar] [CrossRef]
- Sillero, L.; Prado, R.; Labidi, J. Simultaneous Microwave-Ultrasound Assisted Extraction of Bioactive Compounds from Bark. Chem. Eng. Process.-Process Intensif. 2020, 156, 108100. [Google Scholar] [CrossRef]
- Švarc-Gajić, J.; Cerdà, V.; Delerue-Matos, C.; Mašković, P.; Clavijo, S.; Suarez, R.; Cvetanović, A.; Ramalhosa, M.J.; Barroso, M.F.; Moreira, M.; et al. Chemical Characterization and In Vitro Bioactivity of Apple Bark Extracts Obtained by Subcritical Water. Waste Biomass Valorization 2021, 12, 6781–6794. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Spinelli, S.; Costa, C.; Conte, A.; La Porta, N.; Padalino, L.; Del Nobile, M.A. Bioactive Compounds from Norway Spruce Bark: Comparison among Sustainable Extraction Techniques for Potential Food Applications. Foods 2019, 8, 524–532. [Google Scholar] [CrossRef]
- Sillero, L.; Prado, R.; Andrés, M.A.; Labidi, J. Characterisation of Bark of Six Species from Mixed Atlantic Forest. Ind. Crops Prod. 2019, 137, 276–284. [Google Scholar] [CrossRef]
- Sillero, L.; Prado, R.; Labidi, J. Optimization of Different Extraction Methods to Obtaining Bioactive Compounds from Larix Decidua Bark. Chem. Eng. Trans. 2018, 70, 1369–1374. [Google Scholar]
- Skrypnik, L.; Grigorev, N.; Michailov, D.; Antipina, M.; Danilova, M.; Pungin, A. Comparative Study on Radical Scavenging Activity and Phenolic Compounds Content in Water Bark Extracts of Alder (Alnus glutinosa (L.) Gaertn.), Oak (Quercus robur L.) and Pine (Pinus sylvestris L.). Eur. J. Wood Wood Prod. 2019, 77, 879–890. [Google Scholar] [CrossRef]
- Dróżdż, P.; Pyrzynska, K. Extracts from Pine and Oak Barks: Phenolics, Minerals and Antioxidant Potential. Int. J. Environ. Anal. Chem. 2021, 101, 464–472. [Google Scholar] [CrossRef]
- Dróżdż, P.; Pyrzynska, K. Assessment of Polyphenol Content and Antioxidant Activity of Oak Bark Extracts. Eur. J. Wood Wood Prod. 2018, 76, 793–795. [Google Scholar] [CrossRef]
- Okselni, T.; Santoni, A.; Dharma, A.; Efdi, M. Determination of antioxidant activity, total phenolic content, and total flavonoid content of roots, stem bark, and leaves of elaeocarpus mastersii king. Rasayan J. Chem. 2018, 11, 1211–1216. [Google Scholar] [CrossRef]
- Wairata, J.; Fadlan, A.; Setyo Purnomo, A.; Taher, M.; Ersam, T. Total Phenolic and Flavonoid Contents, Antioxidant, Antidiabetic and Antiplasmodial Activities of Garcinia Forbesii King: A Correlation Study. Arab. J. Chem. 2022, 15, 103541. [Google Scholar] [CrossRef]
- Phuyal, N.; Jha, P.K.; Raturi, P.P.; Rajbhandary, S. Total Phenolic, Flavonoid Contents, and Antioxidant Activities of Fruit, Seed, and Bark Extracts of Zanthoxylum Armatum DC. Sci. World J. 2020, 2020, 8780704. [Google Scholar] [CrossRef] [PubMed]
- Tanase, C.; Nicolescu, A.; Nisca, A.; Ștefănescu, R.; Babotă, M.; Mare, A.D.; Ciurea, C.N.; Man, A. Biological Activity of Bark Extracts from Northern Red Oak (Quercus rubra L.): An Antioxidant, Antimicrobial and Enzymatic Inhibitory Evaluation. Plants 2022, 11, 2357. [Google Scholar] [CrossRef]
- Nisca, A.; Ștefănescu, R.; Moldovan, C.; Mocan, A.; Mare, A.D.; Ciurea, C.N.; Man, A.; Muntean, D.-L.; Tanase, C. Optimization of Microwave Assisted Extraction Conditions to Improve Phenolic Content and In Vitro Antioxidant and Anti-Microbial Activity in Quercus Cerris Bark Extracts. Plants 2022, 11, 240. [Google Scholar] [CrossRef]
- Tanase, C.; Babotă, M.; Nișca, A.; Nicolescu, A.; Ștefănescu, R.; Mocan, A.; Farczadi, L.; Mare, A.D.; Ciurea, C.N.; Man, A. Potential Use of Quercus Dalechampii Ten. and Q. Frainetto Ten. Barks Extracts as Antimicrobial, Enzyme Inhibitory, Antioxidant and Cytotoxic Agents. Pharmaceutics 2023, 15, 343. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, C.; Hofmann, T.; Vršanská, M.; Schlosserová, N.; Visi-Rajczi, E.; Voběrková, S.; Pásztory, Z. In Vitro Antioxidant and Antibacterial Activities with Polyphenolic Profiling of Wild Cherry, the European Larch and Sweet Chestnut Tree Bark. Eur. Food Res. Technol. 2021, 247, 2355–2370. [Google Scholar] [CrossRef]
- Munira, S.; Islam, A.; Islam, S.; Koly, S.F.; Nesa, L.; Muhit, A. Phytochemical Screening and Comparative Antioxidant Activities of Fractions Isolated from Sonneratia Caseolaris (Linn.) Bark Extracts. Eur. J. Med. Plants 2019, 28, 1–9. [Google Scholar] [CrossRef]
- Itam, A.; Wati, M.S.; Agustin, V.; Sabri, N.; Jumanah, R.A.; Efdi, M. Comparative Study of Phytochemical, Antioxidant, and Cytotoxic Activities and Phenolic Content of Syzygium Aqueum (Burm. f. Alston f.) Extracts Growing in West Sumatera Indonesia. Sci. World J. 2021, 2021, 5537597. [Google Scholar] [CrossRef] [PubMed]
- Aktaş Karaçelik, A.; Şeker, M.E.; Karakose, M. Determination of Antioxidant Activity of Different Extracts from Bark of Pinus Spp. Grown in Giresun (Turkey) Province—Phenolic Analysis by RP-HPLC-DAD. KSU J. Agric. Nat. 2022, 25, 10–18. [Google Scholar] [CrossRef]
- Piątczak, E.; Dybowska, M.; Płuciennik, E.; Kośla, K.; Kolniak-Ostek, J.; Kalinowska-Lis, U. Identification and Accumulation of Phenolic Compounds in the Leaves and Bark of Salix alba (L.) and Their Biological Potential. Biomolecules 2020, 10, 1391. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Mansour, M.M.A.; Elansary, H.O. Evaluation of the Effect of Inner and Outer Bark Extracts of Sugar Maple (Acer Saccharum Var. Saccharum) in Combination with Citric Acid against the Growth of Three Common Molds. J. Wood Chem. Technol. 2019, 39, 136–147. [Google Scholar] [CrossRef]
- Yongram, C.; Sungthong, B.; Puthongking, P.; Weerapreeyakul, N. Chemical Composition, Antioxidant and Cytotoxicity Activities of Leaves, Bark, Twigs and Oleo-Resin of Dipterocarpus Alatus. Molecules 2019, 24, 3083. [Google Scholar] [CrossRef]
- Indirayati, N.; Nisa, K.; Kurang, R.Y.; Tarmo, N.C.; Adang, K.T.P. Radical Scavenging Activity and Total Phenolic Content of Seven Tropical Plants. IOP Conf. Ser. Earth Environ. Sci. 2020, 462, 012043. [Google Scholar] [CrossRef]
- Safaeian, L.; Haghighatian, Z.; Zolfaghari, B.; Amindeldar, M. Cardioprotective Effects of Pinus Eldarica Bark Extract on Adrenaline-Induced Myocardial Infarction in Rats. Asian Pac. J. Trop. Biomed. 2023, 13, 148. [Google Scholar] [CrossRef]
- Tanase, C.; Cosarca, S.; Toma, F.; Mare, A.; Man, A.; Miklos, A.; Imre, S.; Boz, I. Antibacterial activities of beech bark (Fagus sylvatica L.) polyphenolic extract. Environ. Eng. Manag. J. 2018, 17, 877–884. [Google Scholar] [CrossRef]
- Hendrik, J.; Hadi, Y.S.; Massijaya, M.Y.; Santoso, A.; Pizzi, A. Properties of Glued Laminated Timber Made from Fast-Growing Species with Mangium Tannin and Phenol Resorcinol Formaldehyde Adhesives. J. Korean Wood Sci. Technol. 2019, 47, 253–264. [Google Scholar] [CrossRef]
- Hajriani, S.; Yunianti, A.D.; Suhasman, S. Determination of Optimum Formulation of Tusam (Pinus merkusii) Tannin Bark with Resorcinol and Formaldehyde. IOP Conf. Ser. Mater. Sci. Eng. 2020, 935, 012032. [Google Scholar] [CrossRef]
- Bilgin, U.; Colakoglu, G. Effect of Using Urea Formaldehyde Modified with Extracts in Plywood on Formaldehyde Emission. Drv. Ind. 2021, 72, 237–244. [Google Scholar] [CrossRef]
- Vangeel, T.; Neiva, D.M.; Quilhó, T.; Costa, R.A.; Sousa, V.; Sels, B.F.; Pereira, H. Tree Bark Characterization Envisioning an Integrated Use in a Biorefinery. Biomass Convers. Biorefinery 2023, 13, 2029–2043. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Chen, P.; Wang, W.; Cao, J. Enhancing Weathering Resistance of Wood by Using Bark Extractives as Natural Photostabilizers in Polyurethane-Acrylate Coating. Prog. Org. Coat. 2020, 145, 105665. [Google Scholar] [CrossRef]
- Gruber, L.; Seidl, L.; Zanetti, M.; Schnabel, T. Calorific Value and Ash Content of Extracted Birch Bark. Forests 2021, 12, 1480. [Google Scholar] [CrossRef]
- Nath, S.K.; Islam, M.N.; Rahman, K.-S.; Rana, M.N. Tannin-Based Adhesive from Ceriops decandra (Griff.) Bark for the Production of Particleboard. J. Indian Acad. Wood Sci. 2018, 15, 21–27. [Google Scholar] [CrossRef]
- Hafiz, N.L.M.; Tahir, P.M.; Hua, L.S.; Abidin, Z.Z.; Sabaruddin, F.A.; Yunus, N.M.; Abdullah, U.H.; Abdul Khalil, H.P.S. Curing and Thermal Properties of Co-Polymerized Tannin Phenol–Formaldehyde Resin for Bonding Wood Veneers. J. Mater. Res. Technol. 2020, 9, 6994–7001. [Google Scholar] [CrossRef]
- Reh, R.; Kristak, L.; Sedliacik, J.; Bekhta, P.; Wronka, A.; Kowaluk, G. Molded Plywood with Proportions of Beech Bark in Adhesive Mixtures: Production on an Industrial Scale. Polymers 2024, 16, 966. [Google Scholar] [CrossRef]
- Janceva, S.; Andersone, A.; Spulle, U.; Tupciauskas, R.; Papadopoulou, E.; Bikovens, O.; Andzs, M.; Zaharova, N.; Rieksts, G.; Telysheva, G. Eco-Friendly Adhesives Based on the Oligomeric Condensed Tannins-Rich Extract from Alder Bark for Particleboard and Plywood Production. Materials 2022, 15, 3894. [Google Scholar] [CrossRef]
- Santos, J.; Delgado, N.; Fuentes, J.; Fuentealba, C.; Vega-Lara, J.; García, D.E. Exterior Grade Plywood Adhesives Based on Pine Bark Polyphenols and Hexamine. Ind. Crops Prod. 2018, 122, 340–348. [Google Scholar] [CrossRef]
- García, D.E.; Glasser, W.G.; Pizzi, A.; Lacoste, C.; Laborie, M.-P. Polyphenolic Resins Prepared with Maritime Pine Bark Tannin and Bulky-Aldehydes. Ind. Crops Prod. 2014, 62, 84–93. [Google Scholar] [CrossRef]
- Wibowo, E.S.; Park, B.-D. Surface Adhesion of PMDI Resin on Wood Biopolymer Model Films. Eur. J. Wood Wood Prod. 2023, 81, 1305–1312. [Google Scholar] [CrossRef]
- Aristri, M.A.; Lubis, M.A.R.; Laksana, R.P.B.; Sari, R.K.; Iswanto, A.H.; Kristak, L.; Antov, P.; Pizzi, A. Thermal and Mechanical Performance of Ramie Fibers Modified with Polyurethane Resins Derived from Acacia Mangium Bark Tannin. J. Mater. Res. Technol. 2022, 18, 2413–2427. [Google Scholar] [CrossRef]
- Aristri, M.A.; Sari, R.K.; Lubis, M.A.R.; Laksana, R.P.B.; Antov, P.; Iswanto, A.H.; Mardawati, E.; Lee, S.H.; Savov, V.; Kristak, L.; et al. Eco-Friendly Tannin-Based Non-Isocyanate Polyurethane Resins for the Modification of Ramie (Boehmeria nivea L.) Fibers. Polymers 2023, 15, 1492. [Google Scholar] [CrossRef]
- Lubis, M.A.R.; Aristri, M.A.; Sari, R.K.; Iswanto, A.H.; Al-Edrus, S.S.O.; Sutiawan, J.; Lee, S.H.; Antov, P.; Kristak, L. Isocyanate–Free Tannin–Based Polyurethane Resins for Enhancing Thermo-Mechanical Properties of Ramie (Boehmeria nivea L.) Fibers. Alex. Eng. J. 2024, 90, 54–64. [Google Scholar] [CrossRef]
- Hussain, I.; Sanglard, M.; Bridson, J.H.; Parker, K. Preparation and Physicochemical Characterisation of Polyurethane Foams Prepared Using Hydroxybutylated Condensed Tannins as a Polyol Source. Ind. Crops Prod. 2020, 154, 112636. [Google Scholar] [CrossRef]
- D’Souza, J.; Camargo, R.; Yan, N. Polyurethane Foams Made from Liquefied Bark-based Polyols. J. Appl. Polym. Sci. 2014, 131, 40599. [Google Scholar] [CrossRef]
- Yalcin, M. Surface Glossiness Properties of Wood Impregnated with Some Plant Extracts. Forestist 2018, 68, 61–69. [Google Scholar] [CrossRef]
- Lemouzy, S.; Delavarde, A.; Lamaty, F.; Bantreil, X.; Pinaud, J.; Caillol, S. Lignin-Based Bisguaiacol Diisocyanate: A Green Route for the Synthesis of Biobased Polyurethanes. Green. Chem. 2023, 25, 4833–4839. [Google Scholar] [CrossRef]
- Han, S.; Yao, S.; Meng, W.; Yang, J. Rapid, Controlled Ring-Opening Polymerization of Salicylic Acid o-Carboxyanhydride for Poly(Salicylate) Synthesis. Polym. Chem. 2021, 12, 6465–6471. [Google Scholar] [CrossRef]
- Lang, J.; Dörrstein, J.; Zollfrank, C. Archaeo-Inspired Material Synthesis: Sustainable Tackifiers and Adhesives from Birch Bark. Green. Mater. 2018, 6, 157–164. [Google Scholar] [CrossRef]
- Okada, M.; Suzuki, K.; Mawatari, Y.; Tabata, M. Biopolyester Prepared Using Unsaturated Betulin (Betulinol) Extracted from Outer Birch Bark and Dicarboxylic Acid Dichlorides and Its Thermal-Induced Crosslinking. Eur. Polym. J. 2019, 113, 12–17. [Google Scholar] [CrossRef]
- Kumar, A.; Korpinen, R.; Möttönen, V.; Verkasalo, E. Suberin Fatty Acid Hydrolysates from Outer Birch Bark for Hydrophobic Coating on Aspen Wood Surface. Polymers 2022, 14, 832. [Google Scholar] [CrossRef] [PubMed]
- Gosecki, M.; Urbaniak, M.; Makarewicz, C.; Gosecka, M. Converting Unrefined Birch Suberin Monomers into Vitrimer. ACS Sustain. Chem. Eng. 2024, 12, 3841–3850. [Google Scholar] [CrossRef]
- Cho, S.-H.; Yoon, B.; Lee, S.K.; Nam, J.-D.; Suhr, J. Natural Cork Suberin-Originated Ecofriendly Biopolyester Syntactic Foam. ACS Sustain. Chem. Eng. 2022, 10, 7508–7514. [Google Scholar] [CrossRef]
- McMichael, P.; Schultze, X.; Cramail, H.; Peruch, F. Sourcing, Thermodynamics, and Ring-Opening (Co)Polymerization of Substituted δ-Lactones: A Review. Polym. Chem. 2023, 14, 3783–3812. [Google Scholar] [CrossRef]
- Rali, T.; Wossa, S.; Leach, D. Comparative Chemical Analysis of the Essential Oil Constituents in the Bark, Heartwood and Fruits of Cryptocarya massoy (Oken) Kosterm. (Lauraceae) from Papua New Guinea. Molecules 2007, 12, 149–154. [Google Scholar] [CrossRef]
- Garcia, D.E.; Carrasco, J.C.; Salazar, J.P.; Perez, M.A.; Cancino, R.A.; Riquelme, S. Bark Polyflavonoids from Pinus Radiata as Functional Building-Blocks for Polylactic Acid (PLA)-Based Green Composites. Express Polym. Lett. 2016, 10, 835–848. [Google Scholar] [CrossRef]
- Bridson, J.H.; Grigsby, W.J.; Main, L. One-Pot Solvent-Free Synthesis and Characterisation of Hydroxypropylated Polyflavonoid Compounds. Ind. Crops Prod. 2018, 111, 529–535. [Google Scholar] [CrossRef]
- Cortés-Guzmán, K.P.; Parikh, A.R.; Sparacin, M.L.; Johnson, R.M.; Adegoke, L.; Ecker, M.; Voit, W.E.; Smaldone, R.A. Thermal Annealing Effects on the Mechanical Properties of Bio-Based 3D Printed Thermosets. Polym. Chem. 2023, 14, 2697–2707. [Google Scholar] [CrossRef]
- Bridson, J.H.; Sanglard, M.; Hussain, I.; Bouad, V.; Patel, M.; Parker, K. Hydroxyalkylation of Condensed Tannins: Comparison of Proanthocyanidin Extraction Process and Epoxide Chain Length on Physicochemical Properties. Ind. Crops Prod. 2019, 140, 111618. [Google Scholar] [CrossRef]
- Montoya, L.F.; Contreras, D.; Jaramillo, A.F.; Carrasco, C.; Fernández, K.; Schwederski, B.; Rojas, D.; Melendrez, M.F. Study of Anticorrosive Coatings Based on High and Low Molecular Weight Polyphenols Extracted from the Pine Radiata Bark. Prog. Org. Coat. 2019, 127, 100–109. [Google Scholar] [CrossRef]
- Shnawa, H.A. Curing and Thermal Properties of Tannin-Based Epoxy and Its Blends with Commercial Epoxy Resin. Polym. Bull. 2021, 78, 1925–1940. [Google Scholar] [CrossRef]
- Zhu, Q.; Tan, J.; Li, D.; Zhang, T.; Liu, Z.; Cao, Y. Cross-Linked Chitosan/Tannin Extract as a Biodegradable and Repulpable Coating for Paper with Excellent Oil-Resistance, Gas Barrier and UV-Shielding. Prog. Org. Coat. 2023, 176, 107399. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, C.; Yu, M.; Huang, Y.; Tan, J.; Zhang, M.; Zhu, X. Multifunctional Tannin Extract-Based Epoxy Derived from Waste Bark as a Highly Toughening and Strengthening Agent for Epoxy Resin. Ind. Crops Prod. 2022, 176, 114255. [Google Scholar] [CrossRef]
- Chen, B.; Wu, Q.; Li, J.; Lin, K.; Chen, D.; Zhou, C.; Wu, T.; Luo, X.; Liu, Y. A Novel and Green Method to Synthesize a Epoxidized Biomass Eucommia Gum as the Nanofiller in the Epoxy Composite Coating with Excellent Anticorrosive Performance. Chem. Eng. J. 2020, 379, 122323. [Google Scholar] [CrossRef]
- Cao, Q.; Weng, Z.; Qi, Y.; Li, J.; Liu, W.; Liu, C.; Zhang, S.; Wei, Z.; Chen, Y.; Jian, X. Achieving Higher Performances without an External Curing Agent in Natural Magnolol-Based Epoxy Resin. Chin. Chem. Lett. 2022, 33, 2195–2199. [Google Scholar] [CrossRef]
- Cao, Q.; Li, J.; Qi, Y.; Zhang, S.; Wang, J.; Wei, Z.; Pang, H.; Jian, X.; Weng, Z. Engineering Double Load-Sharing Network in Thermosetting: Much More than Just Toughening. Macromolecules 2022, 55, 9502–9512. [Google Scholar] [CrossRef]
- Zhang, C.; Song, S.; Cao, Q.; Li, J.; Liu, Q.; Zhang, S.; Jian, X.; Weng, Z. Improving the Comprehensive Properties of Chitosan-Based Thermal Insulation Aerogels by Introducing a Biobased Epoxy Thermoset to Form an Anisotropic Honeycomb-Layered Structure. Int. J. Biol. Macromol. 2023, 246, 125616. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Gao, T.; Xu, Y.; Yang, W.; Dai, G.; Li, R.; Zhu, S.E.; Yuen, R.K.K.; Yang, W.; Lu, H. Synthesis of Bio-Based Epoxy Containing Phosphine Oxide as a Reactive Additive toward Highly Toughened and Fire-Retarded Epoxy Resins. Chin. J. Polym. Sci. 2023, 41, 1733–1746. [Google Scholar] [CrossRef]
- Weng, Z.; Song, L.; Qi, Y.; Li, J.; Cao, Q.; Liu, C.; Zhang, S.; Wang, J.; Jian, X. Natural Magnolol Derivatives as Platform Chemicals for Bio-Based Phthalonitrile Thermoset: Achieving High Performances without an External Curing Agent. Polymer 2021, 226, 123814. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Wang, H.; Gang, H.; Zhang, N.; Zhou, Y.; Gu, S.; Zhuang, Y.; Xu, W.; Ke, G.; et al. Bioinspired Natural Magnolol-Based Adhesive with Strong Adhesion and Antibacterial Properties for Application in Wet and Dry Environments. ACS Appl. Mater. Interfaces 2023, 15, 24846–24857. [Google Scholar] [CrossRef] [PubMed]
- Weems, A.C.; Delle Chiaie, K.R.; Worch, J.C.; Stubbs, C.J.; Dove, A.P. Terpene- and Terpenoid-Based Polymeric Resins for Stereolithography 3D Printing. Polym. Chem. 2019, 10, 5959–5966. [Google Scholar] [CrossRef]
- Li, A.Y.; Melendez-Zamudio, M.; Yepremyan, A.; Brook, M.A. Learning from the Trees: Biomimetic Crosslinking of Silicones by Phenolic Coupling. Green. Chem. 2023, 25, 5267–5275. [Google Scholar] [CrossRef]
- Şen, A.U.; Esteves, B.; Lemos, F.; Pereira, H. Insights into the Combustion Behavior of Cork and Phloem: Effect of Chemical Components and Biomass Morphology. Eur. J. Wood Wood Prod. 2023, 81, 999–1010. [Google Scholar] [CrossRef]
- Warlo, H.; Windeisen-Holzhauser, E.; Brüchert, F.; Sauter, U.H.; Richter, K. Extractives in Douglas Firs (Pseudotsuga menziesii (Mirb.) Franco) from Three Sites in South-West Germany and Potential Opportunities for Valorization. Eur. J. Wood Wood Prod. 2023, 81, 1093–1108. [Google Scholar] [CrossRef]
- Pinnataip, R.; Lee, B.P. Oxidation Chemistry of Catechol Utilized in Designing Stimuli-Responsive Adhesives and Antipathogenic Biomaterials. ACS Omega 2021, 6, 5113–5118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szmechtyk, T.; Małecka, M. Phytochemicals from Bark Extracts and Their Applicability in the Synthesis of Thermosetting Polymers: An Overview. Materials 2024, 17, 2123. https://doi.org/10.3390/ma17092123
Szmechtyk T, Małecka M. Phytochemicals from Bark Extracts and Their Applicability in the Synthesis of Thermosetting Polymers: An Overview. Materials. 2024; 17(9):2123. https://doi.org/10.3390/ma17092123
Chicago/Turabian StyleSzmechtyk, Tomasz, and Magdalena Małecka. 2024. "Phytochemicals from Bark Extracts and Their Applicability in the Synthesis of Thermosetting Polymers: An Overview" Materials 17, no. 9: 2123. https://doi.org/10.3390/ma17092123
APA StyleSzmechtyk, T., & Małecka, M. (2024). Phytochemicals from Bark Extracts and Their Applicability in the Synthesis of Thermosetting Polymers: An Overview. Materials, 17(9), 2123. https://doi.org/10.3390/ma17092123