Comparison of the Mechanical Properties of Hardfacings Made by Standard Coated Stick Electrodes and a Newly Developed Rectangular Stick Electrode
<p>The cross-section of a coated tubular electrode with a seam: 1—coating, 2—metal tube, and 3—powder core [<a href="#B39-materials-17-02051" class="html-bibr">39</a>].</p> "> Figure 2
<p>Method of laboratory production for rectangular coated stick electrode.</p> "> Figure 3
<p>A rectangular coated electrode for SMAW welding.</p> "> Figure 4
<p>Cross-sections of stick coated electrodes: (<b>a</b>) rectangular electrode (PL); (<b>b</b>) round standard electrode with reduced outer diameter (OE); and (<b>c</b>) round standard electrode.</p> "> Figure 5
<p>Geometry of hardfacings: (<b>a</b>) one-layer and (<b>b</b>) two-layer welds, one pass wide; (<b>c</b>) multi-layer welds, two passes wide; (<b>d</b>) multi-layer welds, several passes wide; (<b>e</b>) one-layer weld, several passes wide; and (<b>f</b>) two-layer welds, several passes wide.</p> "> Figure 6
<p>Principle of dilution of the base and filler metals in hardfacing alloys.</p> "> Figure 7
<p>Plan for hardness measurements.</p> "> Figure 8
<p>Geometry of samples for different tests: (<b>a</b>) Charpy specimen; (<b>b</b>) SENB specimen; and (<b>c</b>) sample for residual stress measurements with a stain gauge rosette.</p> "> Figure 9
<p>Residual stress in construction steels: (<b>a</b>) change in <span class="html-italic">R<sub>p</sub></span><sub>02</sub> with temperature <span class="html-italic">T</span>; (<b>b</b>) weld deformation cycle.</p> "> Figure 10
<p>SMAW arc taken by high-speed camera: (<b>a</b>) rectangular stick electrode (∅1 × 12.56 mm); the arc was traveling from one side to the other and back (yellow arrows); (<b>b</b>) thinned round electrode (∅4/∅6.90 mm); and (<b>c</b>) conventional round-shaped electrode (∅4/∅7.85 mm); the arc stays at the same position (yellow points).</p> "> Figure 11
<p>(<b>a</b>) The arc burns where the distance to weld pool is the shortest; (<b>b</b>–<b>d</b>) as the electrode melts, in the search for the shortest distance to the weld pool, the arc traveles from one edge of the electrode to the other; (<b>e</b>) then the journey back starts; the frequency of the journeys, approx. 3.5–4.5-times per second, was determined from the high-speed-camera videos.</p> "> Figure 12
<p>Welding speed and arc-travel speed: (<b>a</b>) in the case of the round electrode; (<b>b</b>) in the case of the rectangular electrode.</p> "> Figure 13
<p>Macro-sections of hardfacing welds: (<b>a</b>,<b>b</b>) represent the rectangular coated stick electrode; (<b>c</b>,<b>d</b>) represent the round thin-coated electrode (∅4/∅6.90 mm); and (<b>e</b>,<b>f</b>) represent the conventional round coated electrode (∅4/∅7.85 mm).</p> "> Figure 14
<p>Microstructure of hardfacing welds: (<b>a</b>,<b>b</b>) HAZ and WM welded by the rectangular coated stick electrode; (<b>c</b>,<b>d</b>) HAZ and WM welded by the round thin-coated electrode (∅4/∅6.90 mm); (<b>e</b>,<b>f</b>) HAZ and WM welded by the standard round coated electrode (∅4/∅7.85 mm); and (<b>g</b>) base material.</p> "> Figure 15
<p>Results of the hardness measurements on welds made with the rectangular stick electrode (∅1 × 12.56 mm): (<b>a</b>) in the vertical direction; (<b>b</b>) in the horizontal direction.</p> "> Figure 16
<p>Results of hardness measurements on welds made with the thin-coated electrode (∅4/∅6.90 mm): (<b>a</b>) in the vertical direction; (<b>b</b>) in the horizontal direction.</p> "> Figure 17
<p>Results of the hardness measurements on welds made with the conventional coated electrode (∅4/∅7.85 mm): (<b>a</b>) in the vertical direction; (<b>b</b>) in the horizontal direction.</p> "> Figure 18
<p>Results of instrumented Charpy tests: (<b>a</b>) rectangular stick electrode (∅1 × 12.56 mm); (<b>b</b>) thinned round electrode (∅4/∅6.90 mm); (<b>c</b>) conventional round electrode (∅4/∅7.85 mm); and (<b>d</b>) base material.</p> "> Figure 19
<p>Results of fracture mechanics tests: (<b>a</b>) force-<span class="html-italic">CMOD</span> diagram; (<b>b</b>) resistance curves <span class="html-italic">J</span>-Δ<span class="html-italic">a</span>.</p> "> Figure 20
<p>Results of fracture mechanics tests: critical <span class="html-italic">J<sub>IC</sub></span> an <span class="html-italic">K<sub>JIC</sub></span>.</p> "> Figure 21
<p>Fractured surfaces of weld metal welded by: (<b>a</b>) a rectangular stick electrode (∅1 × 12.56 mm); (<b>b</b>) a thinned round electrode (∅4/∅6.90 mm); (<b>c</b>) a conventional round electrode (∅4/∅7.85 mm).</p> "> Figure 22
<p>Fracture surfaces of weld metal from SEM in the area of crack incitation and stable crack growth: (<b>a</b>,<b>b</b>) rectangular stick electrode (∅1 × 12.56 mm); (<b>c</b>,<b>d</b>) thinned round electrode (∅4/∅6.90 mm); and (<b>e</b>,<b>f</b>) conventional round electrode (∅4/∅7.85 mm).</p> "> Figure 23
<p>Results of the residual stress measurements. Strains measured with a three-elemental strain-gauge rosette on hardfacings welded by: (<b>a</b>) a rectangular stick electrode (∅1 × 12.56 mm); (<b>b</b>) a conventional round electrode (∅4/∅7.85 mm).</p> "> Figure 24
<p>Residual stresses in hardfacings welded by: (<b>a</b>) a rectangular stick electrode (∅1 × 12.56 mm); (<b>b</b>) a conventional round electrode (∅4/∅7.85 mm).</p> ">
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Production of Rectangular Stick Electrodes
2.2. Welding of Hardfacing Welds
2.3. Microstructural Examinations and Fractography
2.4. Analyses of Welds and Their Dilution Rates
2.5. Hardness Measurements
2.6. Instrumented Charpy Impact Tests
2.7. Fracture Mechanics Tests
2.8. Residual Stress Measurements
3. Results and Discussion
3.1. Analysis of Arc Burning by High-Speed Camera
3.2. Dilution Rate
3.3. Microstructural Analysis
3.4. Hardness Measurements
3.5. Instrumented Charpy Tests
3.6. Fracture Mechanics Tests
3.7. Residual Stress
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gwidon, W.W.S. Wear—Materials, Mechanisms and Practice; John Wiley & Sons, Ltd.: West Sussex, UK, 2005. [Google Scholar]
- Resendiz-Calderon, C.D.; Cazares-Ramirez, I.; Samperio-Galicia, D.L.; Farfan-Cabrera, L.I. Method for conducting micro-abrasion wear testing of materials in oscillating sliding. MethodsX 2022, 9, 101703. [Google Scholar] [CrossRef] [PubMed]
- Białobrzeska, B. The influence of boron on the resistance to abrasion of quenched low-alloy steels. Wear 2022, 500–501, 204345. [Google Scholar] [CrossRef]
- Machado, P.C.; Pereira, J.I.; Sinatora, A. Abrasion wear of austenitic manganese steels via jaw crusher test. Wear 2021, 476, 203726. [Google Scholar] [CrossRef]
- Pereira, P.; Vilhena, L.M.; Sacramento, J.; Senos, A.M.R.; Malheiros, L.F.; Ramalho, A. Abrasive wear resistance of WC-based composites, produced with Co or Ni-rich binders. Wear 2021, 482–483, 203924. [Google Scholar] [CrossRef]
- Brink, T.; Frérot, L.; Molinari, J.-F. A parameter-free mechanistic model of the adhesive wear process of rough surfaces in sliding contact. J. Mech. Phys. Solids 2021, 147, 104238. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Cao, X.; Yu, X.; Wang, Y. Analysis on the tool wear behavior of 7050-T7451 aluminum alloy under ultrasonic elliptical vibration cutting. Wear 2021, 466–467, 203538. [Google Scholar] [CrossRef]
- Ye, F.; Yang, Y.; Lou, Z.; Feng, L.; Guo, L.; Yu, J. Microstructure and wear resistance of TiC reinforced AlCoCrFeNi2.1 eutectic high entropy alloy layer fabricated by micro-plasma cladding. Mater. Lett. 2021, 284, 128859. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, B.; Hu, Q.; Zeng, X.; Wang, D. Laser-induction hybrid cladding of different coatings on rail surface: Microstructure, wear properties and contact fatigue behaviors. Appl. Surf. Sci. 2021, 566, 150678. [Google Scholar] [CrossRef]
- Liu, C.-P.; Liu, P.-T.; Pan, J.-Z.; Chen, C.-H.; Ren, R.-M. Effect of pre-wear on the rolling contact fatigue property of D2 wheel steel. Wear 2020, 442–443, 203154. [Google Scholar] [CrossRef]
- Arnaud, P.; Baydoun, S.; Fouvry, S. Modeling adhesive and abrasive wear phenomena in fretting interfaces: A multiphysics approach coupling friction energy, third body and contact oxygenation concepts. Tribol. Int. 2021, 161, 107077. [Google Scholar] [CrossRef]
- Duan, Y.; Qu, S.; Jia, S.; Li, X. Fretting wear behavior of the high-carbon high-chromium X210CrW12 steel: Influence of counterbody material. Wear 2021, 486–487, 204080. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Y.; Su, M.; Yin, X.; Li, H.; Zhang, J. Corrosion and Erosion Wear Behaviors of HVOF-Sprayed Fe-Based Amorphous Coatings on Dissolvable Mg-RE Alloy Substrates. Materials 2023, 16, 5170. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Lin, T.-J.; Sheu, H.-H.; Lee, H.-B. A study on corrosion and corrosion-wear behavior of Fe-based amorphous alloy coating prepared by high velocity oxygen fuel method. J. Mater. Res. Technol. 2021, 15, 4880–4895. [Google Scholar] [CrossRef]
- D’Acunto, M. Wear and diffusive processes. Tribol. Int. 2003, 36, 553–558. [Google Scholar] [CrossRef]
- Chen, X.-D.; Wang, L.-W.; Yang, L.-Y.; Tang, R.; Yu, Y.-Q.; Cai, Z.-B. Investigation on the impact wear behavior of 2.25Cr–1Mo steel at elevated temperature. Wear 2021, 476, 203740. [Google Scholar] [CrossRef]
- Steller, J. Erosive wear modelling by means of the fractional approach. Wear 2021, 484–485, 204015. [Google Scholar] [CrossRef]
- Garbade, R.R.; Dhokey, N.B. Overview on Hardfacing Processes, Materials and Applications. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1017, 012033. [Google Scholar] [CrossRef]
- Kirchgaßner, M.; Badisch, E.; Franek, F. Behaviour of iron-based hardfacing alloys under abrasion and impact. Wear 2008, 265, 772–779. [Google Scholar] [CrossRef]
- Buchely, M.F.; Gutierrez, J.C.; León, L.M.; Toro, A. The effect of microstructure on abrasive wear of hardfacing alloys. Wear 2005, 259, 52–61. [Google Scholar] [CrossRef]
- Pawlik, J.; Bembenek, M.; Goral, T.; Cieslik, J.; Krawczyk, J.; Lukaszek-Solek, A.; Sleboda, T.; Frocisz, L. On the Influence of Heat Input on Ni-WC GMAW Hardfaced Coating Properties. Materials 2023, 16, 3960. [Google Scholar] [CrossRef]
- Yıldızlı, K.; Eroglu, M.; Karamış, M.B. Microstructure and erosive wear behavior of weld deposits of high manganese electrode. Surf. Coat. Technol. 2007, 201, 7166–7173. [Google Scholar] [CrossRef]
- Singh, P.; Singh Chatha, S. Reduction of abrasive wear via hardfacing of mouldboard ploughshare. Mater. Today Proc. 2020, 33, 1505–1512. [Google Scholar] [CrossRef]
- Kimapong, K.; Poonayom, P.; Wattanajitsiri, V. Microstructure and Wear Resistance of Hard-Facing Weld Metal on JIS-S50C Carbon Steel in Agricultural Machine Parts. Mater. Sci. Forum 2016, 872, 55–61. [Google Scholar] [CrossRef]
- Kenchi Reddy, K.M.; Jayadeva, C.T. Microstructure and Abrasive Wear Behaviour of Shielded Metal Arc Welding Hardfacing Used in Agricultural Implements. Int. J. Recent Innov. Trends Comput. Commun. 2015, 3, 193–202. [Google Scholar]
- Bayhan, Y. Reduction of wear via hardfacing of chisel ploughshare. Tribol. Int. 2006, 39, 570–574. [Google Scholar] [CrossRef]
- Prysyazhnyuk, P.; Krauze, K.; Romanyshyn, L.; Mosora, Y. Increasing the wear resistance of mining machines equipment tools by FCAW with Fe-Mo-Mn-B-C hardfacing alloys. Min. Mach. 2022, 40, 64–70. [Google Scholar] [CrossRef]
- Okechukwu, C.; Olurotimi, A.; Dahunsi, O.; Oke, P.; Oladele, I.; Dauda, M. Development of hardfaced crusher jaws using ferro-alloy hardfacing inserts and low carbon steel substrate. J. Tribol. 2018, 18, 20–39. [Google Scholar]
- Dasgupta, R.; Prasad, B.K.; Modi, O.P.; Das, S.; Jha, A.K.; Yegneswaran, A.H. Surface Engineering for Improving Performance of Mining and Agricultural Implements. Surf. Eng. 1997, 13, 123–127. [Google Scholar] [CrossRef]
- Que, Z.; Ahonen, M.; Virkkunen, I.; Nevasmaa, P.; Rautala, P.; Reinvall, H. Study of cracking and microstructure in Co-free valve seat hardfacing. Nucl. Mater. Energy 2022, 31, 101202. [Google Scholar] [CrossRef]
- Abed, H.; Malek Ghaini, F.; Shahverdi, H.R. Characterization of Fe49Cr18Mo7B16C4Nb6 high-entropy hardfacing layers produced by gas tungsten arc welding (GTAW) process. Surf. Coat. Technol. 2018, 352, 360–369. [Google Scholar] [CrossRef]
- Torres, B.; Campo, M.; Lieblich, M.; Rams, J. Oxy-acetylene flame thermal sprayed coatings of aluminium matrix composites reinforced with MoSi2 intermetallic particles. Surf. Coat. Technol. 2013, 236, 274–283. [Google Scholar] [CrossRef]
- Thamilarasan, J.; Karunagaran, N.; Nanthakumar, P. Optimization of oxy-acetylene flame hardening parameters to analysis the surface structure of low carbon steel. Mater. Today Proc. 2021, 46, 4169–4173. [Google Scholar] [CrossRef]
- Guo, L.J.; Wang, X.B.; Wang, F.H.; Wang, H.B. Modification of TiB2/Fe coating by SMAW with high carbon ferrochrome. Surf. Eng. 2013, 29, 642–646. [Google Scholar] [CrossRef]
- Jafarikhorami, H. Effect of austenitic stainless steel cladding on the high-temperature oxidation resistance of Ferritic 2.25Cr-1Mo (Grade 22) steel using SMAW process. J. Compos. Compd. 2021, 3, 99–105. [Google Scholar] [CrossRef]
- Jilleh, A.; Kishore Babu, N.; Thota, V.; Anis, A.L.; Harun, M.K.; Talari, M.K. Microstructural and wear investigation of high chromium white cast iron hardfacing alloys deposited on carbon steel. J. Alloys Compd. 2021, 857, 157472. [Google Scholar] [CrossRef]
- Amushahi, M.H.; Ashrafizadeh, F.; Shamanian, M. Characterization of boride-rich hardfacing on carbon steel by arc spray and GMAW processes. Surf. Coat. Technol. 2010, 204, 2723–2728. [Google Scholar] [CrossRef]
- Branagan, D.J.; Marshall, M.C.; Meacham, B.E. High toughness high hardness iron based PTAW weld materials. Mater. Sci. Eng. A 2006, 428, 116–123. [Google Scholar] [CrossRef]
- Szymura, M.; Czupryński, A.; Różański, M. Research on the properties of high chromium cast iron overlay welds deposited by tubular electrodes. Weld. Technol. Rev. 2018, 90, 26–30. [Google Scholar] [CrossRef]
- Crespo, A.C.; Scotti, A.; Pérez, M.R. Operational behavior assesment of coated tubular electrodes for SMAW hardfacing. J. Mater. Process. Technol. 2008, 199, 265–273. [Google Scholar] [CrossRef]
- Pessoa, E.C.P.; Bracarense, A.Q.B.; Liu, S. Development of Tubular Covered Electrode for Underwater Wet Welding. Trends Weld. Res. 2009, 676–683. [Google Scholar] [CrossRef]
- Bjelajac, E.; Vuherer, T.; Andrej, S.; Lojen, G. Weld cladding with coated electrode of rectangular cross-section. In Proceedings of the 9 International Scientific-Professional Conference SBW 2017 Engineering Technologies in Manufacturing of Welded Constructions and Products, Slavonski Brod, Croatia, 25–27 October 2017; Samardžić, I.B.D., Ed.; Mechanical Engineering Faculty in Slavonski Brod: Slavonski Brod, Croatia, 2017; pp. 32–41. [Google Scholar]
- Bjelajac, E.; Vuherer, T.; Lojen, G. Weld Cladding of s355 Steel with Rectangular Electrode Covered Rutile 2000 s Coating. Adv. Technol. Mater. 2018, 43, 28–33. [Google Scholar] [CrossRef]
- Elektrode Jesenice, d.o.o. (Ed.) Welding Consumable; Elektrode Jesenice d.o.o.: Jesenice, Slovenia, 2009; p. K7. [Google Scholar]
- BS EN 10130:2006; Cold Rolled Low Carbon Steel Flat Products for Cold Forming—Technical Delivery Conditions. European Committee for Standardization: Brussels, Belgium, 2006.
- EN 14700:2022; Welding Consumables for Hard-Facing. European Committee for Standardization: Brussels, Belgium, 2022.
- EN 10025-2:2019; Hot Rolled Products of Structural Steels—Part 2: Technical Delivery Conditions for Non-Alloy Structural Steels. European Committee for Standardization: Brussels, Belgium, 2019.
- EN 1011-1; Welding—Recommendations for Welding of Metallic Materials—Part 1: General Guidance for Arc Welding. European Committee for standardization: Brussels, Belgium, 2009.
- ISO/TR 18491; Welding and Allied Processes—Guidelines for Measurement of Welding Energies. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO/TR 16060:2003; Destructive Tests on Welds in Metallic Materials—Etchants for Macroscopic and Microscopic Examination. International Organization for Standardization: Geneva, Switzerland, 2003.
- Sim, B.M.; Tang, S.H.; Alrifaey, M.; Tchan Jong, E.N. Analyzing the Effects of Heat Treatment on SMAW Duplex Stainless Steel Weld Overlays. Materials 2022, 15, 1833. [Google Scholar] [CrossRef] [PubMed]
- ASTM E837-20; Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method. ASTM International: West Conshohocken, PA, USA, 2020.
- ISO 9015-1:2001; Destructive Tests on Welds in Metallic Materials—Hardness Testing—Part 1: Hardness Test on Arc Welded Joints. International Organization for Standardization: Geneva, Switzerland, 2001.
- ISO 148-1:2016; Metallic Materials—Charpy Pendulum Impact Test—Part 1: Test Method. International Organization for Standardization: Geneva, Switzerland, 2016.
- ASTM E1820-20; Standard Test Method for Measurement of Fracture Toughness. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM E399-22; Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2022.
Type of Electrode | Dimension/mm | Cross-Section/mm2 | Ratio | ||
---|---|---|---|---|---|
Metal Core | Coating | Metal Core | Coating | Coating/Metal Core | |
PL-series | ∅1 × 12.56 | ∅2.80 × 13.35 | 12.56 | 24.82 | 1.98 |
OE-series | ∅4.00 | ∅4/∅6.90 | 12.56 | 24.81 | 1.98 |
OS-series | ∅4.00 | ∅4/∅7.85 | 12.56 | 35.81 | 2.85 |
Weld | I/A | U/V | T/s | Tstart/°C | Q/kJ mm−1 | Weld Type 1 | Purpose |
---|---|---|---|---|---|---|---|
PL1 | 120 | 23.5 | 33.8 | 20 | 0.89 | 1/1 | Microstructural analysis + Dilution rates |
PL2 | 120 | 21.6 | 38.1 | 20 | 1.05 | 1/2 | |
OE1 | 160 | 20.3 | 16.5 | 20 | 0.61 | 1/1 | |
OE2 | 160 | 20.2 | 19.6 | 20 | 0.72 | 1/2 | |
OS1 | 160 | 19.4 | 17.1 | 20 | 0.57 | 1/1 | |
OS2 | 160 | 20.3 | 18.6 | 20 | 0.64 | 1/2 | |
PL-CH | 120 | 29.0 | 47.0 | 20 | 1.01 | 2/n | Charpy impact tests |
OE-CH | 160 | 29.0 | 21.4 | 20 | 0.62 | 2/n | |
OS-CH | 160 | 32.0 | 21.1 | 20 | 0.80 | 2/n | |
PL-FM | 120 | 29.0 | 48.0 | 20 | 1.04 | n/n | Fracture mechanics tests |
OE-FM | 160 | 29.0 | 21.2 | 20 | 0.66 | n/n | |
OS-FM | 160 | 32.0 | 19.4 | 20 | 0.71 | n/n | |
PL-RS | 120 | 21.6 | 38.1 | 20 | 1.05 | n/2 | Residual stress measurement |
OS-RS | 160 | 20.3 | 18.6 | 20 | 0.64 | n/2 |
Specimens | |||||||
---|---|---|---|---|---|---|---|
PL1 | PL2 | OE1 | OE2 | OS1 | OS2 | ||
b | mm | 15.0 | 14.7 | 14.3 | 15.0 | 14.6 | 14.3 |
h | mm | 2.3 | 4.5 | 1.9 | 3.1 | 1.7 | 3.4 |
u | mm | 0.6 | 0.4 | 1.5 | 1.7 | 1.7 | 0.8 |
bHAZ | mm | 18.7 | 20.8 | 17.0 | 19.4 | 14.6 | 17.8 |
uHAZ | mm | 5.9 | 5.1 | 2.4 | 3.3 | 3.4 | 2.7 |
uHAZ-RL | mm | 6.5 | 5.5 | 3.9 | 5.0 | 5.1 | 3.2 |
AWeld | mm2 | 28.5 | 48.6 | 26.2 | 48.4 | 34.5 | 42.7 |
AWeld-FM | mm2 | 24.0 | 45.3 | 14.2 | 32.5 | 16.6 | 35.5 |
AWeld-BM | mm2 | 4.5 | 3.3 | 11.9 | 15.9 | 17.9 | 7.2 |
AHAZ | mm2 | 84.1 | 72.1 | 34.2 | 50.2 | 47.4 | 32.6 |
X | % | 15.9 | 6.8 | 45.6 | 32.9 | 51.8 | 16.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bjelajac, E.; Skumavc, A.; Lojen, G.; Manjgo, M.; Vuherer, T. Comparison of the Mechanical Properties of Hardfacings Made by Standard Coated Stick Electrodes and a Newly Developed Rectangular Stick Electrode. Materials 2024, 17, 2051. https://doi.org/10.3390/ma17092051
Bjelajac E, Skumavc A, Lojen G, Manjgo M, Vuherer T. Comparison of the Mechanical Properties of Hardfacings Made by Standard Coated Stick Electrodes and a Newly Developed Rectangular Stick Electrode. Materials. 2024; 17(9):2051. https://doi.org/10.3390/ma17092051
Chicago/Turabian StyleBjelajac, Edvard, Andrej Skumavc, Gorazd Lojen, Mirza Manjgo, and Tomaž Vuherer. 2024. "Comparison of the Mechanical Properties of Hardfacings Made by Standard Coated Stick Electrodes and a Newly Developed Rectangular Stick Electrode" Materials 17, no. 9: 2051. https://doi.org/10.3390/ma17092051
APA StyleBjelajac, E., Skumavc, A., Lojen, G., Manjgo, M., & Vuherer, T. (2024). Comparison of the Mechanical Properties of Hardfacings Made by Standard Coated Stick Electrodes and a Newly Developed Rectangular Stick Electrode. Materials, 17(9), 2051. https://doi.org/10.3390/ma17092051