Crashworthiness of Foam-Filled Cylindrical Sandwich Shells with Corrugated Cores
<p>The FFCSCS is under crushing process.</p> "> Figure 2
<p>Geometric schematic of foam-filled corrugated sandwich cylindrical shells.</p> "> Figure 3
<p>The finite element model of the FFCSCS under axial compression condition.</p> "> Figure 4
<p>Material properties and corresponding power-hardening model of parent materials for corrugated cores and face sheets: (<b>a</b>) 6063 Al [<a href="#B54-materials-16-06605" class="html-bibr">54</a>]; (<b>b</b>) 6061Al [<a href="#B54-materials-16-06605" class="html-bibr">54</a>]; (<b>c</b>) 304L stainless steel [<a href="#B67-materials-16-06605" class="html-bibr">67</a>].</p> "> Figure 5
<p>Material properties of the filled foams with different relative densities (<math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>¯</mo> </mover> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math>).</p> "> Figure 6
<p>Comparison between experiments [<a href="#B53-materials-16-06605" class="html-bibr">53</a>] and FE results of PMI foam-filled 1060 Al sandwich cylindrical shell: (<b>a</b>) force–displacement curves; (<b>b</b>) final collapse mode.</p> "> Figure 7
<p>Crushing process and energy absorption of FFCSCS 6063-08-01: (<b>a</b>) force–displacement curves; (<b>b</b>) energy absorption–displacement curves; (<b>c</b>) collapse configurations with labels corresponding to those marked in the force–displacement curves.</p> "> Figure 8
<p>Coupling enhancement effect in FFCSCS 6063-08-01: (<b>a</b>) force–displacement; (<b>b</b>) mean crushing force–displacement curves.</p> "> Figure 9
<p>Collapse configuration of the FFCSCS 6063-08-01.</p> "> Figure 10
<p>The formation process of folds (enclosed by the red dash circle) in FFCSCS (6063-08-01): (<b>a</b>) initial stage; (<b>b</b>) beginning of formation; (<b>c</b>) bending upwards; (<b>d</b>) compressing each other; (<b>e</b>) partially enlarged view of (<b>c</b>); (<b>f</b>) partially enlarged view of (<b>d</b>).</p> "> Figure 11
<p>Crushing response of FFSCSCs with different relative foam density <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>¯</mo> </mover> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math>: (<b>a</b>) force–displacement curves for <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>¯</mo> </mover> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math> = 0.06~0.14; (<b>b</b>) force–displacement curves for <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>¯</mo> </mover> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math> = 0.16~0.19; (<b>c</b>) mean crushing force–displacement curves for <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>¯</mo> </mover> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math> = 0.06~0.14; (<b>d</b>) mean crushing force–displacement curves for <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>¯</mo> </mover> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math> = 0.16~0.19.</p> "> Figure 12
<p>Collapse configuration of FFSCSCs with <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>¯</mo> </mover> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math> values ranging from 0.08 to 0.19: (<b>a</b>) 0.08; (<b>b</b>) 0.10; (<b>c</b>) 0.12; (<b>d</b>) 0.14; (<b>e</b>) 0.16; (<b>f</b>) 0.19.</p> "> Figure 13
<p>Composition of the mean crushing force (<math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> </semantics></math>) for FFCSCSs with <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>¯</mo> </mover> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math> = 0.06~0.19: (<b>a</b>) absolute value; (<b>b</b>) proportion in <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> </semantics></math>.</p> "> Figure 14
<p>Influence of wall thickness and relative density of foam on the crushing properties of FFCSCSs: (<b>a</b>) mean crushing force, <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> </semantics></math> (<b>b</b>) coupling mean crushing force, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">c</mi> </mrow> </msub> </mrow> </semantics></math>; (<b>c</b>) crushing force efficiency, <span class="html-italic">A</span><sub>E</sub>; (<b>d</b>) specific energy absorption, SEA.</p> "> Figure 15
<p>Composition of the mean crushing force for FFSCSCs with different wall thicknesses and relative densities of foam: (<b>a</b>) absolute value; (<b>b</b>) proportion in <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> </semantics></math>.</p> "> Figure 16
<p>Influence of wall material and relative density of foam on the crushing properties of FFCSCs: (<b>a</b>) mean crushing force, <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> </semantics></math>; (<b>b</b>) coupling mean crushing force, <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> </semantics></math>; (<b>c</b>) crushing force efficiency, <span class="html-italic">A</span><sub>E</sub>; (<b>d</b>) specific energy absorption, SEA.</p> "> Figure 17
<p>Composition of the mean crushing force for FFSCSCs with different wall materials and relative densities of foam: (<b>a</b>) absolute value; (<b>b</b>) proportion in <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> </semantics></math>.</p> "> Figure 18
<p>Comparison of theoretical predicated and finite element results: (<b>a</b>) coupling mean crushing force, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">c</mi> </mrow> </msub> </mrow> </semantics></math>; (<b>b</b>) mean crushing force, <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> </semantics></math>.</p> "> Figure 19
<p>Theoretical predictions of mean crushing force of FFCSCSs with equal mass: (<b>a</b>) 1060 Al face sheets with different <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>¯</mo> </mover> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) 6063 Al face sheets with different <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>¯</mo> </mover> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) 6061 Al face sheets with different <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>¯</mo> </mover> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math>; (<b>d</b>) 304L stainless steel face sheets with different <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo>¯</mo> </mover> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 20
<p>Proportion of mean crushing force of FFSCSCs: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">s</mi> </mrow> </msub> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">f</mi> </mrow> </msub> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>F</mi> </mrow> <mo>¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">c</mi> </mrow> </msub> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Terminology Definition in the Crushing Process
3. Finite Element Modeling
3.1. Descriptions of the Geometric Model
3.2. FE Model
3.3. Material Properties
3.4. Validation against Experiments
4. Numerical Results
4.1. Crushing Process
4.2. Coupling Enhancement Effect
4.3. Mechanism of Coupling Enhancement
5. Discussion
5.1. Influence of Foam Density on the Coupling Effect
5.2. Influence of Shell-Wall Thickness on the Coupling Effect
5.3. Influence of Shell Material on the Coupling Effect
6. Theoretical Analysis
6.1. Theoretical Model
6.2. Comparison with Simulated Results
6.3. Parametric Studies
7. Conclusions
- The FFCSCS demonstrates significantly enhanced energy absorption performance under axial compression, primarily due to the foam filling, resulting in maximum specific energy absorption of 60 kJ/kg. Furthermore, the coupling strengthening effect is notably pronounced, as evidenced by the maximum value of , which reaches up to 40%.
- The coupling strengthening effect is primarily observed in two aspects. Firstly, the intrusion of folds into the foam leads to a more comprehensive compression of the foam insertions. Secondly, influenced by foam insertions, the folds bend along the compression direction and compress against each other, thereby expanding the plastic deformation zone.
- In FFCSCSs, as the foam relative density, shell-wall thickness, and material flow stress increase, the coupling strengthening effect among the components strengthens, resulting in improved energy absorption performance, enhanced crushing efficiency, and increased mean crushing force.
- The theoretical predictions strongly agree with the results of the finite element simulations. A parametric analysis based on the theoretical model shows that an increase in foam density leads to an increase in . Simultaneously, the proportion of decreases, while the proportions of and increase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Hs | initial height of cylindrical shell |
Ro | outer radius of the sandwich cylindrical shell |
Ri | inter radius of the sandwich cylindrical shell |
t | thickness of the face sheets and corrugated core |
w | width of the corrugated cell |
N | number of the corrugated core |
density of the filling foam | |
relative density of the filling foam | |
flow stress of the metal material | |
e | engineering strain of the foam |
eD | engineering compaction strain of the foam |
yield strength of the foam | |
Ep | modulus of elasticity of the foam |
d | compressing displacement |
F | crushing force |
Fmax | maximal value of F during compression |
mean crushing force of the entire structure | |
mean crushing force of the corrugated sandwich cylindrical shell | |
mean crushing force of the filling foam | |
mean crushing force sourced from the coupling effect | |
E | energy absorption by the structure |
AE | crushing force efficiency |
TE | energy absorption efficiency |
SEA | specific energy absorption |
H | half-length of the fold |
b | radius of toroidal surface in the super folding elements |
effective crush distance coefficient | |
Cavg, α and β | dimensionless parameters which described the coupling enhancement effect |
References
- Lu, G.; Yu, T. Energy Absorption of Structures and Materials; Woodhead Publishing Ltd.: Cambridge, UK, 2003. [Google Scholar]
- Jensen, Ø. Behaviour of Aluminium Extrusions Subjected to Axial Loading. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2005. [Google Scholar]
- Abramowicz, W.; Jones, N. Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically. Int. J. Impact Eng. 1997, 19, 415–437. [Google Scholar] [CrossRef]
- Guillow, S.R.; Lu, G.; Grzebieta, R.H. Quasi-static axial compression of thin-walled circular aluminium tubes. Int. J. Mech. Sci. 2001, 43, 2103–2123. [Google Scholar] [CrossRef]
- Alexander, J.M. An approximate analysis of the collapse of thin cylindrical shells under axial loading. Q. J. Mech. Appl. Math. 1960, 13, 10–15. [Google Scholar] [CrossRef]
- Abramowicz, W.; Jones, N. Dynamic progressive buckling of circular and square tubes. Int. J. Impact Eng. 1986, 4, 243–270. [Google Scholar] [CrossRef]
- Abramowicz, W.; Jones, N. Dynamic axial crushing of square tubes. Int. J. Impact Eng. 1984, 2, 179–208. [Google Scholar] [CrossRef]
- Abramowicz, W.; Wierzbicki, T. Axial Crushing of Multicorner Sheet Metal Columns. J. Appl. Mech. 1989, 56, 113–120. [Google Scholar] [CrossRef]
- Hong, W.; Jin, F.; Zhou, J.; Xia, Z.; Xu, Y.; Yang, L.; Zheng, Q.; Fan, H. Quasi-static axial compression of triangular steel tubes. Thin-Walled Struct. 2013, 62, 10–17. [Google Scholar] [CrossRef]
- Fan, Z.; Lu, G.; Yu, T.; Liu, K. Axial crushing of triangular tubes. Int. J. Appl. Mech. 2013, 5, 1350008. [Google Scholar] [CrossRef]
- Alavi Nia, A.; Hamedani Haddad, J. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries. Thin-Walled Struct. 2010, 48, 946–954. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H. Experimental and numerical investigation on crush resistance of polygonal columns and angle elements. Thin-Walled Struct. 2012, 57, 25–36. [Google Scholar] [CrossRef]
- Umeda, T.; Mimura, K.; Morisaka, T. Study of energy absorption efficiency for a few thin-walled tubes in axial crushing. J. Solid Mech. Mater. Eng. 2010, 4, 875–890. [Google Scholar] [CrossRef]
- Alavi Nia, A.; Parsapour, M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections. Thin-Walled Struct. 2014, 74, 155–165. [Google Scholar] [CrossRef]
- Fan, Z.; Lu, G.; Liu, K. Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Eng. Struct. 2013, 55, 80–89. [Google Scholar] [CrossRef]
- Mamalis, A.G.; Manolakos, D.E.; Ioannidis, M.B.; Kostazos, P.K.; Dimitriou, C. Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section. Thin-Walled Struct. 2003, 41, 891–900. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, S.; Zhang, Z. Energy absorption properties of non-convex multi-corner thin-walled columns. Thin-Walled Struct. 2012, 51, 112–120. [Google Scholar] [CrossRef]
- Reddy, S.; Abbasi, M.; Fard, M. Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection. Thin-Walled Struct. 2015, 94, 56–66. [Google Scholar] [CrossRef]
- Deng, X.; Liu, W.; Lin, Z. Experimental and theoretical study on crashworthiness of star-shaped tubes under axial compression. Thin-Walled Struct. 2018, 130, 321–331. [Google Scholar] [CrossRef]
- Hanssen, A.G.; Langseth, M.; Hopperstad, O.S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. Int. J. Impact Eng. 2000, 24, 475–507. [Google Scholar] [CrossRef]
- Reid, S.R.; Reddy, T.Y. Axial crushing of foam-filled tapered sheet metal tubes. Int. J. Mech. Sci. 1986, 28, 643–656. [Google Scholar] [CrossRef]
- Reid, S.R.; Reddy, T.Y.; Gray, M.D. Static and dynamic axial crushing of foam-filled sheet metal tubes. Int. J. Mech. Sci. 1986, 28, 295–322. [Google Scholar] [CrossRef]
- Seitzberger, M.; Rammerstorfer, F.G.; Gradinger, R.; Degischer, H.P.; Blaimschein, M.; Walch, C. Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. Int. J. Solids Struct. 2000, 37, 4125–4147. [Google Scholar] [CrossRef]
- Santosa, S.P.; Wierzbicki, T.; Hanssen, A.G.; Langseth, M. Experimental and numerical studies of foam-filled sections. Int. J. Impact Eng. 2000, 24, 509–534. [Google Scholar] [CrossRef]
- Zarei, H.R.; Kröger, M. Optimization of the foam-filled aluminum tubes for crush box application. Thin-Walled Struct. 2008, 46, 214–221. [Google Scholar] [CrossRef]
- Børvik, T.; Hopperstad, O.S.; Reyes, A.; Langseth, M.; Solomos, G.; Dyngeland, T. Empty and foam-filled circular aluminium tubes subjected to axial and oblique quasistatic loading. Int. J. Crashworthiness 2003, 8, 481–494. [Google Scholar] [CrossRef]
- Kavi, H.; Toksoy, A.K.; Guden, M. Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient. Mater. Des. 2006, 27, 263–269. [Google Scholar] [CrossRef]
- Yan, W.; Durif, E.; Yamada, Y.; Wen, C. Crushing simulation of foam-filled aluminium tubes. Mater. Trans. 2007, 48, 1901–1906. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Zhao, Z.; Tong, Z.; Xu, X.; Lim, C.W. Numerical Simulation and Experimental Study on Energy Absorption of Foam-Filled Local Nanocrystallized Thin-Walled Tubes under Axial Crushing. Materials 2022, 15, 5556. [Google Scholar] [CrossRef]
- Hussein, R.D.; Ruan, D.; Lu, G.; Guillow, S.; Yoon, J.W. Crushing response of square aluminium tubes filled with polyurethane foam and aluminium honeycomb. Thin-Walled Struct. 2017, 110, 140–154. [Google Scholar] [CrossRef]
- Yin, H.; Wen, G.; Hou, S.; Chen, K. Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes. Mater. Des. 2011, 32, 4449–4460. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, M.; Sun, G.; Li, G.; Li, Q. On functionally graded composite structures for crashworthiness. Compos. Struct. 2015, 132, 393–405. [Google Scholar] [CrossRef]
- Fang, J.; Gao, Y.; An, X.; Sun, G.; Chen, J.; Li, Q. Design of transversely-graded foam and wall thickness structures for crashworthiness criteria. Compos. Part B Eng. 2016, 92, 338–349. [Google Scholar] [CrossRef]
- Suethao, S.; Shah, D.U.; Smitthipong, W. Recent Progress in Processing Functionally Graded Polymer Foams. Materials 2020, 13, 4060. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Yu, X.; Wang, H.; Li, Y.; Zhang, J.; Fan, X. Dynamic Response of Sandwich Tubes with Continuously Density-Graded Aluminum Foam Cores under Internal Explosion Load. Materials 2022, 15, 6966. [Google Scholar] [CrossRef]
- Mohsenizadeh, S.; Alipour, R.; Shokri Rad, M.; Farokhi Nejad, A.; Ahmad, Z. Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading. Mater. Des. 2015, 88, 258–268. [Google Scholar] [CrossRef]
- Duarte, I.; Krstulović-Opara, L.; Dias-de-Oliveira, J.; Vesenjak, M. Axial crush performance of polymer-aluminium alloy hybrid foam filled tubes. Thin-Walled Struct. 2019, 138, 124–136. [Google Scholar] [CrossRef]
- Linul, E.; Pietras, D.; Sadowski, T.; Marşavina, L.; Rajak, D.K.; Kovacik, J. Crashworthiness performance of lightweight Composite Metallic Foams at high temperatures. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106516. [Google Scholar] [CrossRef]
- Linul, E.; Movahedi, N.; Marsavina, L. On the Lateral Compressive Behavior of Empty and Ex-Situ Aluminum Foam-Filled Tubes at High Temperature. Materials 2018, 11, 554. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Barbat, S.; Baccouche, R.; Lu, W. Enhanced filler-tube wall interaction in liquid nanofoam-filled thin-walled tubes. Compos. Struct. 2018, 200, 120–126. [Google Scholar] [CrossRef]
- Li, Z.; Chen, R.; Lu, F. Comparative analysis of crashworthiness of empty and foam-filled thin-walled tubes. Thin-Walled Struct. 2018, 124, 343–349. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, G.; Li, G.; Luo, Z.; Li, Q. Optimization of foam-filled bitubal structures for crashworthiness criteria. Mater. Des. 2012, 38, 99–109. [Google Scholar] [CrossRef]
- Zheng, G.; Wu, S.; Sun, G.; Li, G.; Li, Q. Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes. Int. J. Mech. Sci. 2014, 87, 226–240. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, L.; Wang, Y.; Guo, F.; Zhang, Z. Optimization of foam-filled double ellipse tubes under multiple loading cases. Adv. Eng. Softw. 2016, 99, 27–35. [Google Scholar] [CrossRef]
- Djamaluddin, F.; Abdullah, S.; Ariffin, A.K.; Nopiah, Z.M. Optimization of foam-filled double circular tubes under axial and oblique impact loading conditions. Thin-Walled Struct. 2015, 87, 1–11. [Google Scholar] [CrossRef]
- Goel, M.D. Deformation, energy absorption and crushing behavior of single-, double-and multi-wall foam filled square and circular tubes. Thin-Walled Struct. 2015, 90, 1–11. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, C.; Yang, X.; Zhong, Y.; Liu, R. Dynamic Characteristics and Effective Stiffness Properties of Sandwich Panels with Hierarchical Hexagonal Honeycomb. Materials 2023, 16, 5741. [Google Scholar] [CrossRef]
- Valdevit, L.; Hutchinson, J.W.; Evans, A.G. Structurally optimized sandwich panels with prismatic cores. Int. J. Solids Struct. 2004, 41, 5105–5124. [Google Scholar] [CrossRef]
- Hung, V.T.; Dong, D.T.; Thi Phuong, N.; Ly, L.N.; Minh, T.Q.; Trung, N.-T.; Nam, V.H. Nonlinear Buckling Behavior of Spiral Corrugated Sandwich FGM Cylindrical Shells Surrounded by an Elastic Medium. Materials 2020, 13, 1984. [Google Scholar] [CrossRef]
- Ren, L.; Yang, H.; Liu, L.; Zhai, C.; Song, Y. Sound Insulation of Corrugated-Core Sandwich Panels: Modeling, Optimization and Experiment. Materials 2021, 14, 7785. [Google Scholar] [CrossRef]
- Yao, J.; Cui, W.; Man, X.; Du, S. New Satellite Structure Design Technology. Chin. Space Sci. Technol. 2010, 7, 70–75, 83. [Google Scholar]
- Song, S.; Xu, M.; Shao, S.; Jiang, W.; Liang, Y. Structural Design of Mechanically Reconfigurable Reflector Antennas. Space Electron. Technol. 2016, 6, 49–53. [Google Scholar]
- Su, P.; Han, B.; Yang, M.; Wei, Z.; Zhao, Z.; Zhang, Q.; Zhang, Q.; Qin, K.; Lu, T.J. Axial compressive collapse of ultralight corrugated sandwich cylindrical shells. Mater. Des. 2018, 160, 325–337. [Google Scholar] [CrossRef]
- Su, P.; Han, B.; Yang, M.; Zhao, Z.; Li, F.; Zhang, Q.; Zhang, Q.; Lu, T.J. Energy Absorption of All-Metallic Corrugated Sandwich Cylindrical Shells Subjected to Axial Compression. J. Appl. Mech. 2020, 87, 121008. [Google Scholar] [CrossRef]
- Yan, L.; Yu, B.; Han, B.; Chen, C.; Zhang, Q.; Lu, T.J. Compressive strength and energy absorption of sandwich panels with aluminum foam-filled corrugated cores. Compos. Sci. Technol. 2013, 86, 142–148. [Google Scholar] [CrossRef]
- Han, B.; Yan, L.; Yu, B.; Zhang, Q.; Chen, C.; Lu, T.J. Collapse mechanisms of metallic sandwich structures with aluminum foam-filled corrugated cores. J. Mech. Mater. Struct. 2014, 9, 397–425. [Google Scholar] [CrossRef]
- Han, B.; Qin, K.; Yu, B.; Wang, B.; Zhang, Q.; Lu, T.J. Honeycomb–corrugation hybrid as a novel sandwich core for significantly enhanced compressive performance. Mater. Des. 2016, 93, 271–282. [Google Scholar] [CrossRef]
- Wadley, H.N.G.; Dharmasena, K.P.; O’Masta, M.R.; Wetzel, J.J. Impact response of aluminum corrugated core sandwich panels. Int. J. Impact Eng. 2013, 62, 114–128. [Google Scholar] [CrossRef]
- O’masta, M.; Compton, B.; Gamble, E.; Zok, F.; Deshpande, V.; Wadley, H. Ballistic impact response of an UHMWPE fiber reinforced laminate encasing of an aluminum-alumina hybrid panel. Int. J. Impact Eng. 2015, 86, 131–144. [Google Scholar] [CrossRef]
- Han, B.; Zhang, Z.; Zhang, Q.; Zhang, Q.; Lu, T.J.; Lu, B.H. Recent advances in hybrid lattice-cored sandwiches for enhanced multifunctional performance. Extrem. Mech. Lett. 2017, 10, 58–69. [Google Scholar] [CrossRef]
- Han, B.; Qin, K.; Yu, B.; Zhang, Q.; Chen, C.; Lu, T.J. Design optimization of foam-reinforced corrugated sandwich beams. Compos. Struct. 2015, 130, 51–62. [Google Scholar] [CrossRef]
- Han, B.; Yu, B.; Xu, Y.; Chen, C.; Zhang, Q.; Lu, T.J. Foam filling radically enhances transverse shear response of corrugated sandwich plates. Mater. Des. 2015, 77, 132–141. [Google Scholar]
- Han, B.; Yue, Z.; Wu, H.; Zhang, Q.; Lu, T.J. Superior compressive performance of hierarchical origami-corrugation metallic sandwich structures based on selective laser melting. Compos. Struct. 2022, 300, 116181. [Google Scholar] [CrossRef]
- Yang, M.; Han, B.; Mao, Y.; Zhang, J.; Lu, T.J. Crashworthiness of foam filled truncated conical sandwich shells with corrugated cores. Thin-Walled Struct. 2022, 179, 109677. [Google Scholar] [CrossRef]
- Lst, C. LS-DYNA Keyword User’s Manual; Livermore Software Technology Corporation: Livermore, UK, 2007. [Google Scholar]
- Henkel, C. Technical Data Sheet of Loctite E-120HP Hysol Epoxy Adhesive; Henkel Corporation: Dusseldorf, Germany, 2008. [Google Scholar]
- Stout, M.G.; Follansbee, P.S. Strain rate sensitivity, strain hardening, and yield behavior of 304L stainless steel. J. Eng. Mater. Technol. 1986, 108, 344–353. [Google Scholar] [CrossRef]
- Hanssen, A.G.; Hopperstad, O.S.; Langseth, M.; Ilstad, H. Validation of constitutive models applicable to aluminium foams. Int. J. Mech. Sci. 2002, 44, 359–406. [Google Scholar] [CrossRef]
- Hanssen, A.G.; Langseth, M.; Hopperstad, O.S. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler. Int. J. Impact Eng. 2000, 24, 347–383. [Google Scholar] [CrossRef]
Structures | SEA (kJ/kg) | AE | ||||
---|---|---|---|---|---|---|
Value (kN) | Percentage | Value (kN) | Percentage | |||
CSCS | 65.7 | 65% | / | / | 33.38 | 0.64 |
Foam | 4.29 | 4% | / | / | 24.79 | / |
FFCSCS | 101.19 | / | 31.2 | 31% | 42.79 | 0.8 |
Component | FFCSCS | CSCS | Foam (kJ) | E Enhancement | ||
---|---|---|---|---|---|---|
Value (kJ) | Percentage | Value (kJ) | Percentage | |||
Outer face | 1.2 | 25% | 1.056 | 30% | / | 14% |
Inner face | 0.96 | 20% | 0.76 | 22% | / | 26% |
Corrugation | 1.76 | 36% | 1.68 | 48% | / | 5% |
Foam | 0.92 | 19% | / | / | 0.24 | 283% |
CSCS | FFCSCS | |
---|---|---|
IF | ||
OF | ||
Core |
(kN) | (kN) | SEA (kJ/kg) | AE | |
---|---|---|---|---|
0 | 65.70 | / | 33.30 | 0.64 |
0.06 | 80.11 | 13.03 | 36.85 | 0.72 |
0.08 | 90.59 | 22.28 | 39.34 | 0.81 |
0.10 | 101.19 | 31.20 | 42.79 | 0.80 |
0.12 | 114.14 | 41.97 | 45.32 | 0.86 |
0.14 | 127.25 | 52.34 | 48.80 | 0.99 |
0.16 | 135.91 | 57.62 | 49.00 | 0.94 |
0.19 | 132.99 | 48.15 | 45.26 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, P.; Han, B.; Wang, Y.; Wang, H.; Gao, B.; Lu, T.J. Crashworthiness of Foam-Filled Cylindrical Sandwich Shells with Corrugated Cores. Materials 2023, 16, 6605. https://doi.org/10.3390/ma16196605
Su P, Han B, Wang Y, Wang H, Gao B, Lu TJ. Crashworthiness of Foam-Filled Cylindrical Sandwich Shells with Corrugated Cores. Materials. 2023; 16(19):6605. https://doi.org/10.3390/ma16196605
Chicago/Turabian StyleSu, Pengbo, Bin Han, Yiming Wang, Hui Wang, Bo Gao, and Tian Jian Lu. 2023. "Crashworthiness of Foam-Filled Cylindrical Sandwich Shells with Corrugated Cores" Materials 16, no. 19: 6605. https://doi.org/10.3390/ma16196605
APA StyleSu, P., Han, B., Wang, Y., Wang, H., Gao, B., & Lu, T. J. (2023). Crashworthiness of Foam-Filled Cylindrical Sandwich Shells with Corrugated Cores. Materials, 16(19), 6605. https://doi.org/10.3390/ma16196605