Comparison of Milled Full-Arch Implant-Supported Frameworks Realised with a Full Digital Workflow or from Conventional Impression: A Clinical Study
<p>Scan body for edentulous arches to be screwed directly on the implant head.</p> "> Figure 2
<p>(<b>Left</b>—intraoral scan; <b>Center</b>—superimposition of the intraoral scan with the scan of cast 1; <b>Right</b>—superimposition of the intraoral scan with the scan of cast 2.</p> "> Figure 3
<p>Points identified in the analysis.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- -
- -
- The second technician realised the framework on the base of the digital impression.
2.1. Clinical Evaluation
- -
- Sheffield Test: The framework was considered passive fitting when tightening one screw on the distal abutment (tightening torque: 10 Ncm with a dynamometric screwdriver) did not create a gap at the other framework-implant interfaces, as detected using magnification devices (Zeiss 4x). If the fit was not sufficient, the superstructure lifted when the contralateral screw was tightened, creating a gap at the level of one or more abutments. After this examination, all the prosthetic screws were tightened and the clinician recorded if he felt a possible feeling of strain while manually tightening. The fit of each single framework as evaluated through the Sheffield test was categorised according to the following classification arbitrarily defined by the authors:
- 3 or excellent: No strain is perceived while screwing the framework. At the visual examination, no detachment can be detected between the framework and the implant head/MUA while tightening the contralateral screw.
- 2 or good: A strain is perceived while screwing the framework, but the framework can be seated in place manually while tightening the screw and/or upon visual examination while tightening the contralateral screw; a slight detachment of less than 1 mm is detected between the framework and the MUA or the implant head; no detachment can be observed after screwing.
- 1 or very bad: The prosthesis strains and it is not possible to position it in its seat and/or upon visual inspection; before tightening, there is a gap between the framework and the MUA/implant ≥1 mm and/or a detachment is detected between the framework and the MUA or the implant head also after screwing.
- -
- Endo-oral radiographs: The evaluation of the precision of the metal framework was also evaluated with intraoral digital periapical radiographs taken with the parallel technique after tightening all the prosthetic screws. Intraoral radiographs were performed in each patient both with the framework obtained using the classical method and the framework obtained via IOS. A digital software (OrisWin DG, FONA- Dental, Assago, Italy) was used to perform measurements. The software was calibrated for every image using the implant diameter as reference. The passivity of the framework according to intraoral radiographs was defined on the basis of the following parameters:
- 1 or excellent: if the framework is found to be seated in place without any gap at the interface with the MUA/implant head,
- 2 or bad: if the framework is not seated in place and presents gaps at the interface with the MUA/implant head.
- Two of the authors (NP and FB) performed the radiographic evaluations on the mesial and distal surfaces of each implant.
2.2. Digital Laboratory Analysis
- -
- Cast 1: realised on the base of the plaster impression, the cast was made immediately after the plaster impression was taken.
- -
- Cast 2 (reverse cast): realised on the base of the digital impression, a prototype prosthesis containing the luting cylinders was produced and then, after coupling them onto analogic analogs, a plaster cast was manufactured.
- (a)
- with a digital method, comparing the intraoral scans with the scans of the two plaster models. The casts were scanned with a laboratory extraoral scanner, Shining 3d (Mech&Human), providing a standard resolution of 25 to 50 μm and an average error of 5 to 10 μm. The stl files of cast 1 and 2 were superimposed to the intraoral scan to measure discrepancies in implant position using reverse engineering software MeshLab (http://meshlab.source-forge.net). The superimposition of files according to the Hausdorff method was used to measure discrepancies. Mean distances between surfaces were obtained (Figure 2) [35].
- (b)
- with an industrial digital method of optical detection, as described below.
- -
- Scan points: 8 million,
- -
- Measured area: 100 × 70–500 × 370 mm²,
- -
- Distance of the points: 0.04–0.15 mm,
- -
- Working distance: 490 mm
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tinschert, J.; Natt, G.; Hassenpflug, S.; Spiekermann, H. Status of current CAD/CAM technology in dental medicine. Int. J. Comput. Dent. 2004, 7, 25–45. [Google Scholar] [PubMed]
- Duret, F.; Blouin, J.L.; Duret, B. CAD-CAM in dentistry. J. Am. Dent. Assoc. 1988, 117, 715–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mormann, W.H.; Bindl, A. The new creativity in ceramic restorations: Dental CAD-CIM. Quintessence Int. 1996, 27, 821–828. [Google Scholar] [PubMed]
- Mormann, W.H.; Brandestini, M.; Lutz, F.; Barbakow, F. Chairside computer-aided direct ceramic inlays. Quintessence Int. 1989, 20, 329–339. [Google Scholar] [PubMed]
- Ortorp, A.; Jemt, T. CNC-milled titanium frameworks supported by implants in the edentulous jaw: A 10-year comparative clinical study. Clin. Implant. Dent. Relat. Res. 2012, 14, 88–99. [Google Scholar] [CrossRef]
- Baig, M.R. Multi-unit implant impression accuracy: A review of the literature. Quintessence Int. 2014, 45, 39–51. [Google Scholar] [CrossRef]
- Lee, H.; So, J.S.; Hochstedler, J.L.; Ercoli, C. The accuracy of implant impressions: A systematic review. J. Prosthet. Dent. 2008, 100, 285–291. [Google Scholar] [CrossRef]
- Brandt, J.; Lauer, H.C.; Peter, T.; Brandt, S. Digital process for an implant-supported fixed dental prosthesis: A clinical report. J. Prosthet. Dent. 2015, 114, 469–473. [Google Scholar] [CrossRef]
- Guth, J.F.; Keul, C.; Stimmelmayr, M.; Beuer, F.; Edelhoff, D. Accuracy of digital models obtained by direct and indirect data capturing. Clin. Oral. Investig. 2013, 17, 1201–1208. [Google Scholar] [CrossRef]
- Medina-Sotomayor, P.; Pascual-Moscardo, A.; Camps, I. Relationship between resolution and accuracy of four intraoral scanners in complete-arch impressions. J. Clin. Exp. Dent. 2018, 10, e361. [Google Scholar] [CrossRef]
- Schmidt, A.; Billig, J.W.; Schlenz, M.A.; Rehmann, P.; Wostmann, B. Influence of the Accuracy of Intraoral Scanbodies on Implant Position: Differences in Manufacturing Tolerances. Int. J. Prosthodont. 2019, 32, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Papaspyridakos, P.; Gallucci, G.O.; Chen, C.J.; Hanssen, S.; Naert, I.; Vandenberghe, B. Digital versus conventional implant impressions for edentulous patients: Accuracy outcomes. Clin. Oral. Implant. Res. 2016, 27, 465–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patzelt, S.B.; Vonau, S.; Stampf, S.; Att, W. Assessing the feasibility and accuracy of digitizing edentulous jaws. J. Am. Dent. Assoc. 2013, 144, 914–920. [Google Scholar] [CrossRef]
- Canullo, L.; Colombo, M.; Menini, M.; Sorge, P.; Pesce, P. Trueness of Intraoral Scanners Considering Operator Experience and Three Different Implant Scenarios: A Preliminary Report. Int. J. Prosthodont. 2021, 34, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Setti, P.; Pera, F.; Pera, P.; Pesce, P. Accuracy of multi-unit implant impression: Traditional techniques versus a digital procedure. Clin. Oral. Investig. 2018, 22, 1253–1262. [Google Scholar] [CrossRef]
- Pera, F.; Pesce, P.; Bevilacqua, M.; Setti, P.; Menini, M. Analysis of Different Impression Techniques and Materials on Multiple Implants Through 3-Dimensional Laser Scanner. Implant. Dent. 2016, 25, 232–237. [Google Scholar] [CrossRef]
- Pesce, P.; Bagnasco, F.; Pancini, N.; Colombo, M.; Canullo, L.; Pera, F.; Bressan, E.; Annunziata, M.; Menini, M. Trueness of Intraoral Scanners in Implant-Supported Rehabilitations: An In Vitro Analysis on the Effect of Operators’ Experience and Implant Number. J. Clin. Med. 2021, 10, 5917. [Google Scholar] [CrossRef]
- Pesce, P.; Pera, F.; Setti, P.; Menini, M. Precision and Accuracy of a Digital Impression Scanner in Full-Arch Implant Rehabilitation. Int. J. Prosthodont. 2018, 31, 171–175. [Google Scholar] [CrossRef]
- Rudolph, H.; Salmen, H.; Moldan, M.; Kuhn, K.; Sichwardt, V.; Wostmann, B.; Luthardt, R.G. Accuracy of intraoral and extraoral digital data acquisition for dental restorations. J. Appl. Oral. Sci. 2016, 24, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Holst, S.; Persson, A.; Wichmann, M.; Karl, M. Digitizing implant position locators on master casts: Comparison of a noncontact scanner and a contact-probe scanner. Int. J. Oral. Maxillofac. Implant. 2012, 27, 29–35. [Google Scholar]
- Rhee, Y.K.; Huh, Y.H.; Cho, L.R.; Park, C.J. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition. J. Adv. Prosthodont. 2015, 7, 460–467. [Google Scholar] [CrossRef]
- Gimenez, B.; Pradies, G.; Martinez-Rus, F.; Ozcan, M. Accuracy of two digital implant impression systems based on confocal microscopy with variations in customized software and clinical parameters. Int. J. Oral. Maxillofac. Implant. 2015, 30, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Mizumoto, R.M.; Alp, G.; Özcan, M.; Yilmaz, B. The effect of scanning the palate and scan body position on the accuracy of complete-arch implant scans. Clin. Implant. Dent. Relat. Res. 2019, 21, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Papaspyridakos, P.; De Souza, A.; Finkelman, M.; Sicilia, E.; Gotsis, S.; Chen, Y.w.; Vazouras, K.; Chochlidakis, K. Digital vs Conventional Full-Arch Implant Impressions: A Retrospective Analysis of 36 Edentulous Jaws. J. Prosthodont. 2022, 10, 5917. [Google Scholar] [CrossRef] [PubMed]
- Pera, F.; Pesce, P.; Solimano, F.; Tealdo, T.; Pera, P.; Menini, M. Carbon fibre versus metal framework in full-arch immediate loading rehabilitations of the maxilla—A cohort clinical study. J. Oral. Rehabil. 2017, 44, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Pera, P.; Menini, M.; Pesce, P.; Bevilacqua, M.; Pera, F.; Tealdo, T. Immediate Versus Delayed Loading of Dental Implants Supporting Fixed Full-Arch Maxillary Prostheses: A 10-year Follow-up Report. Int. J. Prosthodont. 2019, 32, 27–31. [Google Scholar] [CrossRef]
- Pesce, P.; Lagazzo, A.; Barberis, F.; Repetto, L.; Pera, F.; Baldi, D.; Menini, M. Mechanical characterisation of multi vs. uni-directional carbon fiber frameworks for dental implant applications. Mater. Sci. Eng. C 2019, 102, 186–191. [Google Scholar] [CrossRef]
- Pera, P.; Menini, M.; Bevilacqua, M.; Pesce, P.; Pera, F.; Signori, A.; Tealdo, T. Factors affecting the outcome in the immediate loading rehabilitation of the maxilla: A 6-year prospective study. Int. J. Periodontics Restor. Dent. 2014, 34, 657–665. [Google Scholar] [CrossRef]
- Tealdo, T.; Bevilacqua, M.; Menini, M.; Pera, F.; Ravera, G.; Drago, C.; Pera, P. Immediate versus delayed loading of dental implants in edentulous maxillae: A 36-month prospective study. Int. J. Prosthodont. 2011, 24, 294–302. [Google Scholar] [PubMed]
- Tealdo, T.; Bevilacqua, M.; Pera, F.; Menini, M.; Ravera, G.; Drago, C.; Pera, P. Immediate function with fixed implant-supported maxillary dentures: A 12-month pilot study. J. Prosthet. Dent. 2008, 99, 351–360. [Google Scholar] [CrossRef]
- Tealdo, T.; Menini, M.; Bevilacqua, M.; Pera, F.; Pesce, P.; Signori, A.; Pera, P. Immediate versus delayed loading of dental implants in edentulous patients’ maxillae: A 6-year prospective study. Int. J. Prosthodont. 2014, 27, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Pera, F.; Migliorati, M.; Pesce, P.; Pera, P. Adhesive strength of the luting technique for passively fitting screw-retained implant-supported prostheses: An in vitro evaluation. Int. J. Prosthodont. 2015, 28, 37–39. [Google Scholar] [CrossRef] [Green Version]
- Menini, M.; Pesce, P.; Bagnasco, F.; Carossa, M.; Mussano, F.; Pera, F. Evaluation of internal and external hexagon connections in immediately loaded full-arch rehabilitations: A within-person randomised split-mouth controlled trial. Int. J. Oral. Implantol. 2019, 12, 169–179. [Google Scholar]
- Menini, M.; Pesce, P.; Bevilacqua, M.; Pera, F.; Tealdo, T.; Barberis, F.; Pera, P. Effect of Framework in an Implant-Supported Full-Arch Fixed Prosthesis: 3D Finite Element Analysis. Int. J. Prosthodont. 2015, 28, 627–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rino Neto, J.; Silva, F.P.; Chilvarquer, I.; Paiva, J.B.; Hernandez, A.M. Hausdorff Distance evaluation of orthodontic accessories’ streaking artifacts in 3D model superimposition. Braz. Oral. Res. 2012, 26, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Cappare, P.; Sannino, G.; Minoli, M.; Montemezzi, P.; Ferrini, F. Conventional versus Digital Impressions for Full Arch Screw-Retained Maxillary Rehabilitations: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2019, 16, 829. [Google Scholar] [CrossRef] [Green Version]
- Chochlidakis, K.; Papaspyridakos, P.; Tsigarida, A.; Romeo, D.; Chen, Y.W.; Natto, Z.; Ercoli, C. Digital Versus Conventional Full-Arch Implant Impressions: A Prospective Study on 16 Edentulous Maxillae. J. Prosthodont. 2020, 29, 281–286. [Google Scholar] [CrossRef]
- Abduo, J. Fit of CAD/CAM implant frameworks: A comprehensive review. J. Oral. Implantol. 2014, 40, 758–766. [Google Scholar] [CrossRef]
- Delucchi, F.; De Giovanni, E.; Pesce, P.; Bagnasco, F.; Pera, F.; Baldi, D.; Menini, M. Framework Materials for Full-Arch Implant-Supported Rehabilitations: A Systematic Review of Clinical Studies. Materials 2021, 14, 3251. [Google Scholar] [CrossRef]
- Menini, M.; Pesce, P.; Pera, F.; Barberis, F.; Lagazzo, A.; Bertola, L.; Pera, P. Biological and mechanical characterization of carbon fiber frameworks for dental implant applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70, 646–655. [Google Scholar] [CrossRef]
- Ogawa, T.; Dhaliwal, S.; Naert, I.; Mine, A.; Kronstrom, M.; Sasaki, K.; Duyck, J. Impact of implant number, distribution and prosthesis material on loading on implants supporting fixed prostheses. J. Oral. Rehabil. 2010, 37, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Pozzan, M.C.; Grande, F.; Mochi Zamperoli, E.; Tesini, F.; Carossa, M.; Catapano, S. Assessment of Preload Loss after Cyclic Loading in the OT Bridge System in an “All-on-Four” Rehabilitation Model in the Absence of One and Two Prosthesis Screws. Materials 2022, 15, 1582. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Tsoi, J.K.H.; Lam, W.Y.H.; Pow, E.H.N. Implant framework misfit: A systematic review on assessment methods and clinical complications. Clin. Implant. Dent. Relat. Res. 2021, 23, 244–258. [Google Scholar] [CrossRef]
- Ma, T.; Nicholls, J.I.; Rubenstein, J.E. Tolerance measurements of various implant components. Int. J. Oral. Maxillofac. Implant. 1997, 12, 371–375. [Google Scholar] [PubMed]
- Kim, S.; Nicholls, J.I.; Han, C.H.; Lee, K.W. Displacement of implant components from impressions to definitive casts. Int. J. Oral. Maxillofac. Implant. 2006, 21, 747–755. [Google Scholar]
Discrepancy between Cast 2 and the Intraoral Scan | Discrepancy between Cast 1 and the Intraoral Scan | |
---|---|---|
p = 0.006 | 0.08 | 0.13 |
Point 1 (n = 11) | Point 2 (n = 11) | Point 3 (n = 11) | Point 4 (n = 11) | Point 5 (n = 4) | Point 6 (n = 3) | |
---|---|---|---|---|---|---|
Mean (SD) | 0.13 (0.06) | 0.09 (0.03) | 0.10 (0.04) | 0.16 (0.08) | 0.12 (0.07) | 0.06 (0.04) |
X | Y | Z | |
Mean Dist | +0.03 | +0.01 | +0.02 |
St. Dev | 0.10 | 0.05 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pera, F.; Pesce, P.; Bagnasco, F.; Pancini, N.; Carossa, M.; Baldelli, L.; Annunziata, M.; Migliorati, M.; Baldi, D.; Menini, M. Comparison of Milled Full-Arch Implant-Supported Frameworks Realised with a Full Digital Workflow or from Conventional Impression: A Clinical Study. Materials 2023, 16, 833. https://doi.org/10.3390/ma16020833
Pera F, Pesce P, Bagnasco F, Pancini N, Carossa M, Baldelli L, Annunziata M, Migliorati M, Baldi D, Menini M. Comparison of Milled Full-Arch Implant-Supported Frameworks Realised with a Full Digital Workflow or from Conventional Impression: A Clinical Study. Materials. 2023; 16(2):833. https://doi.org/10.3390/ma16020833
Chicago/Turabian StylePera, Francesco, Paolo Pesce, Francesco Bagnasco, Nicolò Pancini, Massimo Carossa, Lorenzo Baldelli, Marco Annunziata, Marco Migliorati, Domenico Baldi, and Maria Menini. 2023. "Comparison of Milled Full-Arch Implant-Supported Frameworks Realised with a Full Digital Workflow or from Conventional Impression: A Clinical Study" Materials 16, no. 2: 833. https://doi.org/10.3390/ma16020833
APA StylePera, F., Pesce, P., Bagnasco, F., Pancini, N., Carossa, M., Baldelli, L., Annunziata, M., Migliorati, M., Baldi, D., & Menini, M. (2023). Comparison of Milled Full-Arch Implant-Supported Frameworks Realised with a Full Digital Workflow or from Conventional Impression: A Clinical Study. Materials, 16(2), 833. https://doi.org/10.3390/ma16020833