Computational Probing of Tin-Based Lead-Free Perovskite Solar Cells: Effects of Absorber Parameters and Various Electron Transport Layer Materials on Device Performance
<p>(<b>a</b>) Device architecture of the Sn based perovskite solar cell and (<b>b</b>) Energy band alignment for the proposed devices.</p> "> Figure 2
<p>Equivalent electrical circuit diagram for a solar cell under illumination.</p> "> Figure 3
<p>Effect of absorber layer thickness on (<b>a</b>) efficiency and (<b>b</b>) V<sub>oc</sub>.</p> "> Figure 4
<p>(<b>a</b>) Efficiency as a function of metal work function with varying back contacts and metal built in potential according to the metal contact (Inset). (<b>b</b>) Band diagram of constructed perovskite solar cell with different back contacts.</p> "> Figure 5
<p>Effect of density of States on (<b>a</b>) efficiency and (<b>b</b>) V<sub>oc</sub> of the device.</p> "> Figure 6
<p>Effect of device temperature on (<b>a</b>) efficiency, (<b>b</b>) V<sub>oc</sub> (<b>c</b>) J<sub>sc</sub> and (<b>d</b>) Fill factor.</p> "> Figure 7
<p>Effect of absorber layer defect density on (<b>a</b>) efficiency, (<b>b</b>) V<sub>oc</sub>, (<b>c</b>) fill factor and (<b>d</b>) J<sub>sc</sub> (<b>e</b>) recombination rate inside perovskite.</p> "> Figure 8
<p>Effect of series resistance on (<b>a</b>) efficiency and (<b>b</b>) fill factor.</p> "> Figure 9
<p>(<b>a</b>) J-V curves and (<b>b</b>) external quantum efficiency of initial and final device based on ZnO ETL.</p> "> Figure 10
<p>J-V curves for different ETL materials.</p> ">
Abstract
:1. Introduction
2. Device Modelling and Simulation
3. Results and Discussion
3.1. Effect of Absorber Layer Thickness on Device Performance
3.2. Effect of Different Metal Back Contacts on Device Performance
3.3. Effect of Density of States (DOS) on the Absorber Layer
3.4. Effect of Temperature on the Device Performance
3.5. Effect of Absorber Defect Density on Device Performance
3.6. Effect of Change in Series Resistance on Device Performance
3.7. Optimized Device Performance
3.8. Performance of Different ETL Materials in the Optimized Device Architecture
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (Version 53). Prog. Photovolt. Res. Appl. 2019, 27, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Kooijman, A.; Muscarella, L.A.; Williams, R.M. Perovskite thin film materials stabilized and enhanced by zinc(II) doping. Appl. Sci. 2019, 9, 1678. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef]
- Rehan, S.; Kim, K.Y.; Han, J.; Eo, Y.-J.; Gwak, J.; Ahn, S.K.; Yun, J.H.; Yoon, K.; Cho, A.; Ahn, S. Carbon-impurity affected depth elemental distribution in solution-processed inorganic thin films for solar cell application. ACS Appl. Mater. Interfaces 2016, 8, 5261–5272. [Google Scholar] [CrossRef]
- Shin, S.S.; Yeom, E.J.; Yang, W.S.; Hur, S.; Kim, M.G.; Im, J.; Seo, J.; Noh, J.H.; Seok, S.I. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 2017, 356, 167. [Google Scholar] [CrossRef]
- Zhao, Z.; Gu, F.; Rao, H.; Ye, S.; Liu, Z.; Bian, Z.; Huang, C. Metal halide perovskite materials for solar cells with long-term stability. Adv. Energy Mater. 2018, 9, 1802671. [Google Scholar] [CrossRef]
- Xiao, Z.; Meng, W.; Wang, J.; Mitzi, D.B.; Yan, Y. Searching for promising new perovskite-based photovoltaic absorbers: The importance of electronic dimensionality. Mater. Horiz. 2016, 4, 206–216. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef]
- Seo, J.; Noh, J.H.; Seok, S.I. Rational strategies for efficient perovskite solar cells. Acc. Chem. Res. 2016, 49, 562–572. [Google Scholar] [CrossRef]
- Ke, W.; Kanatzidis, M.G. Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 2019, 10, 965. [Google Scholar] [CrossRef]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef]
- Lyu, M.; Yun, J.-H.; Chen, P.; Hao, M.; Wang, L. Addressing toxicity of lead: Progress and applications of low—Toxic metal halide perovskites and their derivatives. Adv. Energy Mater. 2017, 7, 1602512–1602537. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p—n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Shyma, A.P.; Grace, A.N.; Raghavan, V.; Jacob, G.; Sellappan, R. Tin as an Emerging Surrogate for Lead-free Perovskite Solar Cells. Nanosci. Nanotechnol.-Asia 2020, 10, 6–19. [Google Scholar] [CrossRef]
- Konstantakou, M.; Stergiopoulos, T. A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 2017, 5, 11518–11549. [Google Scholar] [CrossRef]
- Amin, N.; Matin, M.A.; Aliyu, M.M.; Alghoul, M.A.; Karim, M.R.; Sopian, K. Prospects of back surface field effect in ultra-thin high-efficiency CdS/CdTe solar cells from numerical modeling. Int. J. Photoenergy 2010, 2010, 578580. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.S.; Kim, D.W.; Hwang, D.; Suk, J.H.; Oh, L.S.; Han, B.S.; Kim, J.S.; Kim, J.Y.; Hong, K.S. Controlled interfacial electron dynamics in highly efficient Zn2SnO4-based dye-sensitized solar cells. ChemSusChem 2014, 7, 501–509. [Google Scholar] [CrossRef]
- Shin, S.S.; Yang, W.S.; Noh, J.H.; Suk, J.H.; Jeon, N.J.; Park, J.H.; Kim, J.S.; Seong, W.M.; Seok, S.I. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 2015, 6, 7410. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.-Q.; Chen, D.; Li, F.; Cheng, Y.-B.; Caruso, R.A. Solution-processed Zn2SnO4 electron transporting layer for efficient planar perovskite solar cells. Mater. Today Energy 2018, 7, 260–266. [Google Scholar] [CrossRef]
- Burgelman, M. SCAPS Manual; Ghent University: Ghent, Belgium, 2013. [Google Scholar]
- Abbas, S.; Bajgai, S.; Chowdhury, S.; Najm, A.S.; Jamal, M.S.; Techato, K.; Channumsin, S.; Sreesawet, S.; Channumsin, M.; Laref, A.; et al. Numerical simulation of the performance of Sb2Se3 solar cell via optimizing the optoelectronic properties based SCAPS-1D. Materials 2022, 15, 6272. [Google Scholar] [CrossRef]
- Li, C.; Luo, H.; Gu, H.; Li, H. BTO-coupled CIGS solar cells with high performances. Materials 2022, 15, 5883. [Google Scholar] [CrossRef]
- Sabbah, H. Numerical simulation of 30% efficient lead-free perovskite CsSnGeI3-based solar cells. Materials 2022, 15, 3229. [Google Scholar] [CrossRef]
- Stanić, D.; Kojić, V.; Čižmar, T.; Juraić, K.; Bagladi, L.; Mangalam, J.; Rath, T.; Gajović, A. Simulating the performance of a formamidinium based mixed cation lead halide perovskite solar cell. Materials 2021, 14, 6341. [Google Scholar] [CrossRef]
- Abdelaziz, S.; Zekry, A.; Shaker, A.; Abouelatta, M. Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 2020, 101, 109738. [Google Scholar] [CrossRef]
- Devi, N.; Parrey, K.A.; Aziz, A.; Datta, S. Numerical simulations of perovskite thin-film solar cells using a CdS hole blocking layer. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2018, 36, 04G105. [Google Scholar] [CrossRef]
- Hima, A.; Lakhdar, N. Enhancement of efficiency and stability of CH3NH3GeI3 solar cells with CuSbS2. Opt. Mater. 2020, 99, 109607. [Google Scholar] [CrossRef]
- Haider, S.Z.; Anwar, H.; Wang, M. A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material. Semicond. Sci. Technol. 2018, 33, 035001. [Google Scholar] [CrossRef] [Green Version]
- Du, H.J.; Wang, W.C.; Zhu, J.Z. Device simulation of lead-free CH 3 NH 3 SnI 3 perovskite solar cells with high efficiency. Chin. Phys. B 2016, 25, 108802. [Google Scholar] [CrossRef]
- Umari, P.; Mosconi, E.; de Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 2014, 4, 4467. [Google Scholar] [CrossRef]
- Hossain, M.I.; Alharbi, F.H.; Tabet, N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol. Energy 2015, 120, 370–380. [Google Scholar] [CrossRef]
- Rafee Mahbub, M.; Islam, S.; Anwar, F.; Satter, S.S.; Ullah, S.M. Simulation of CZTS thin film solar cell for different buffer layers for high efficiency performance. South Asian J. Eng. Technol. 2017, 2, 1–10. [Google Scholar]
- Tan, K.; Lin, P.; Wang, G.; Liu, Y.; Xu, Z.; Lin, Y. Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electron. 2016, 126, 75–80. [Google Scholar] [CrossRef]
- Khoshsirat, N.; Yunus, N.A.; Hamidon, M.N.; Shafie, S.; Amin, N. Analysis of absorber layer properties effect on CIGS solar cell performance using SCAPS. Optik 2015, 126, 681–686. [Google Scholar] [CrossRef]
- Saparov, B.; Hong, F.; Sun, J.P.; Duan, H.S.; Meng, W.; Cameron, S.; Hill, I.G.; Yan, Y.; Mitzi, D.B. Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem. Mater. 2015, 27, 5622–5632. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; You, J. Make perovskite solar cells stable. Nature 2017, 544, 155–156. [Google Scholar] [CrossRef]
- Minemoto, T.; Murata, M. Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. Curr. Appl. Phys. 2014, 14, 1428–1433. [Google Scholar] [CrossRef]
- Jäger, T.; Romanyuk, Y.E.; Bissig, B.; Pianezzi, F.; Nishiwaki, S.; Reinhard, P.; Steinhauser, J.; Schwenk, J.; Tiwari, A.N. Improved open-circuit voltage in Cu(In,Ga)Se2 solar cells with high work function transparent electrodes. J. Appl. Phys. 2015, 117, 225303. [Google Scholar] [CrossRef] [Green Version]
- Anwar, F.; Mahbub, R.; Satter, S.S.; Ullah, S.M. Effect of different HTM layers and electrical parameters on ZnO nanorod-based lead-free perovskite solar cell for high-efficiency performance. Int. J. Photoenergy 2017, 2017, 9846310. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, R.; Singh, V.; Bhattacharya, B.; Khan, Z.H. New class of lead free perovskite material for low-cost solar cell application. Mater. Res. Bull. 2018, 97, 572–577. [Google Scholar]
- Adewoyin, A.D.; Olopade, M.A.; Oyebola, O.O.; Chendo, M.A. Development of CZTGS/CZTS tandem thin film solar cell using SCAPS-1D. Optik 2019, 176, 132–142. [Google Scholar] [CrossRef]
- Fahrenbruch, A.L.; Bube, R.H. (Eds.) Chapter 1—Survey of basic concepts. In Fundamentals of Solar Cells; Academic Press: Cambridge, MA, USA, 1983; pp. 1–25. [Google Scholar]
- Nakada, T.; Mizutani, M. 18% Efficiency Cd-free Cu(In, Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Jpn. J. Appl. Phys. 2002, 41, L165–L167. [Google Scholar] [CrossRef]
- Chelvanathan, P.; Hossain, M.I.; Amin, N. Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 2010, 10 (Suppl. S3), S387–S391. [Google Scholar] [CrossRef]
- Yin, W.-J.; Shi, T.; Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658. [Google Scholar] [CrossRef]
- De Wolf, S.; Holovsky, J.; Moon, S.-J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F.-J.; Yum, J.-H.; Ballif, C. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 2014, 5, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Shao, G.; Luo, J. Numerical study of metal oxide hetero-junction solar cells with defects and interface states. Semicond. Sci. Technol. 2013, 28, 055004. [Google Scholar] [CrossRef]
- Heriche, H.; Rouabah, Z.; Bouarissa, N. New ultra thin CIGS structure solar cells using SCAPS simulation program. Int. J. Hydrogen Energy 2017, 42, 9524–9532. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef]
- Yasin, S.; Al Zoubi, T.; Moustafa, M. Design and simulation of high efficiency lead-free heterostructure perovskite solar cell using SCAPS-1D. Optik 2021, 229, 166258. [Google Scholar] [CrossRef]
- Chen, Q.; Ni, Y.; Dou, X.; Yoshinori, Y. The Effect of Energy Level of Transport Layer on the Performance of Ambient Air Prepared Perovskite Solar Cell: A SCAPS-1D Simulation Study. Crystals 2022, 12, 68. [Google Scholar] [CrossRef]
Parameters | ZnO | TiO2 | SnS2 | Zn2SnO4 | CH3NH3SnI3 | Spiro OMeTAD |
---|---|---|---|---|---|---|
Thickness (nm) | 100–500 | 100 | 100 | 100 | 100–1400 | 100 |
Bandgap (eV) | 3.4 | 3 | 2.24 | 3.35 | 1.30 | 3.2 |
Electron affinity (eV) | 4.3 | 4 | 4.24 | 4.5 | 4.2 | 2.1 |
Dielectric permittivity | 9 | 9 | 10 | 9 | 10 | 3 |
CB Effective density of states (1/cm3) | 2 × 1018 | 2.2 × 1018 | 2.2 × 1018 | 2.2 × 1018 | 1 × 1018 | 2.5 × 1018 |
VB Effective density of sates (1/cm3) | 1.8 × 1020 | 1.9 × 1018 | 1.8 × 1019 | 1.8 × 1019 | 1.0 × 1018 | 1.8 × 1019 |
Electron thermal velocity (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Hole thermal velocity (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Electron mobility (cm2/Vs) | 1 × 102 | 2 | 50 | 32 | 1.6 | 2 × 10−4 |
Hole mobility (cm2/Vs) | 2.5 | 1 | 50 | 3 | 1.6 | 2 × 10−4 |
Donor density ND (1/cm3) | 1 × 1019 | 1 × 1018 | 1 × 1017 | 1 × 1019 | 0 | 0 |
Acceptor desity NA (1/cm3) | 0 | 0 | 0 | 0 | 3.2 × 1015 | 1.0 × 1020 |
Parameters | Front Contact | Back Contact |
---|---|---|
Surface recombination velocity of electrons (cm/s) | 1 × 107 | 1 × 105 |
Surface recombination velocity of holes (cm/s) | 1 × 105 | 1 × 107 |
Metal work function (eV) | 4.3000 | 5.5000 |
Majority carrier barrier height relative to Ef (eV) | 4.3000 | −0.2000 |
Majority carrier barrier height relative to Ev (eV | 0.2796 | −0.0912 |
Defect density (cm−3) | 1014 | 1015 | 1016 | 1017 |
Diffusion length (nm) | 2000 | 750 | 500 | 320 |
Ag | Fe | Cu | Au | Ni | Pt | |
---|---|---|---|---|---|---|
Metal work function (Ev) | 4.74 | 4.81 | 5.00 | 5.10 | 5.50 | 5.70 |
Efficiency (%) | 9.98 | 11.53 | 15.38 | 15.75 | 15.77 | 15.77 |
Fill Factor | 41.33 | 47.09 | 61.2 | 62.56 | 62.61 | 62.61 |
Voc (V) | 0.8311 | 0.8311 | 0.8322 | 0.8319 | 0.8319 | 0.8319 |
Jsc (mA cm−2) | 29.057 | 29.457 | 30.2032 | 30.2703 | 30.2729 | 30.2729 |
ETL | Voc (V) | Jsc (mA cm−2) | FF | PCE (%) |
---|---|---|---|---|
Zn2SnO4 | 1.1857 | 32.301538 | 64.58 | 24.73 |
ZnO | 1.1089 | 30.458087 | 58.08 | 19.62 |
SnS2 | 1.1075 | 30.398688 | 56.96 | 19.18 |
TiO2 | 1.1066 | 30.112588 | 56.56 | 18.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shyma, A.P.; Sellappan, R. Computational Probing of Tin-Based Lead-Free Perovskite Solar Cells: Effects of Absorber Parameters and Various Electron Transport Layer Materials on Device Performance. Materials 2022, 15, 7859. https://doi.org/10.3390/ma15217859
Shyma AP, Sellappan R. Computational Probing of Tin-Based Lead-Free Perovskite Solar Cells: Effects of Absorber Parameters and Various Electron Transport Layer Materials on Device Performance. Materials. 2022; 15(21):7859. https://doi.org/10.3390/ma15217859
Chicago/Turabian StyleShyma, Arunkumar Prabhakaran, and Raja Sellappan. 2022. "Computational Probing of Tin-Based Lead-Free Perovskite Solar Cells: Effects of Absorber Parameters and Various Electron Transport Layer Materials on Device Performance" Materials 15, no. 21: 7859. https://doi.org/10.3390/ma15217859
APA StyleShyma, A. P., & Sellappan, R. (2022). Computational Probing of Tin-Based Lead-Free Perovskite Solar Cells: Effects of Absorber Parameters and Various Electron Transport Layer Materials on Device Performance. Materials, 15(21), 7859. https://doi.org/10.3390/ma15217859