Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials
<p>Schematic diagram of the BB-PD model.</p> "> Figure 2
<p>Stress–strain diagram of tensile behavior.</p> "> Figure 3
<p>Stress-strain diagram of compression behavior.</p> "> Figure 4
<p>The two-dimensional flat plate subjected to heating loading.</p> "> Figure 5
<p>Comparison of calculation results of different methods. (<b>a</b>) Temperature; (<b>b</b>) Vertical displacement.</p> "> Figure 6
<p>The VBD specimen used in experiments.</p> "> Figure 7
<p>Splitting and destruction process of the VBD specimen. (<b>a</b>) 0 s; (<b>b</b>) 70 s; (<b>c</b>) 80 s; (<b>d</b>) 110 s; (<b>e</b>) 130 s; (<b>f</b>) 170 s.</p> "> Figure 8
<p>(<b>a</b>) Specimen before experiment; (<b>b</b>) Specimen after experiment; (<b>c</b>) The PD simulation result.</p> "> Figure 9
<p><span class="html-italic">m</span>-convergence with a fixed horizon size.</p> "> Figure 10
<p>(<b>a</b>) The vertical displacement of point A with a different non-locality parameter <span class="html-italic">m</span>; (<b>b</b>) an enlarged detail from (<b>a</b>).</p> "> Figure 11
<p><math display="inline"><semantics> <mi>δ</mi> </semantics></math>-convergence with a fixed parameter <span class="html-italic">m</span>.</p> "> Figure 12
<p>(<b>a</b>) The vertical displacement of point A with different horizon sizes <math display="inline"><semantics> <mi>δ</mi> </semantics></math>; (<b>b</b>) an enlarged detail from (<b>a</b>).</p> "> Figure 13
<p>Schematic diagram of the geometry and boundary condition of the ceramic subjected to cold shock.</p> "> Figure 14
<p>Comparison of ceramic plate thermal impact cracking results: (<b>a</b>) Specimens after thermal shock [<a href="#B36-materials-15-07401" class="html-bibr">36</a>]; (<b>b</b>) PD simulation results for the 1/2 model.</p> "> Figure 15
<p>(<b>a</b>) Granite samples containing prefabricated cracks; (<b>b</b>) PD model; (<b>c</b>) composition distribution of granite.</p> "> Figure 16
<p>PD simulation of damage in granite under uniaxial compression after thermal cycling. (<b>a</b>) Thermal cycle stage; (<b>b</b>) Uniaxial compression stage.</p> "> Figure 17
<p>Comparison of PD simulated cracks extension with experiment [<a href="#B37-materials-15-07401" class="html-bibr">37</a>,<a href="#B38-materials-15-07401" class="html-bibr">38</a>].</p> ">
Abstract
:1. Introduction
2. Thermo-Mechanical Coupling Model
2.1. Fully Coupled Thermo-Mechanical Equation
2.2. The Characterization of the Mechanical Behavior of Quasi-Static Brittle Materials
2.3. Quasi-Brittle Peridynamics Model
2.3.1. Description of the Stretching Stage
2.3.2. Description of the Compression Stage
2.3.3. Yield Criteria
2.3.4. Flow Rule
2.3.5. Consideration of Thermal Effects
2.4. Numerical Discretization and Time Integration
3. Model Verification and Convergence Analysis
3.1. Ceramic Plates Subjected to Heating Loads
3.2. Pre-Cracked Brazilian Disk under Uniaxial Compression
3.3. Convergence Analysis
4. Numerical Applications
4.1. Ceramic under Cold Shock
4.2. Granite under Uniaxial Compression after Heat Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gautam, P.K.; Verma, A.K.; Jha, M.K. Effect of high temperature on physical and mechanical properties of Jalore granite. J. Appl. Geophys. 2018, 159, 460–474. [Google Scholar] [CrossRef]
- Xie, K.; Jiang, X.; Jiang, D. Change of crackling noise in granite by thermal damage: Monitoring nuclear waste deposits. Am. Mineral. 2019, 104, 1578–1584. [Google Scholar] [CrossRef]
- Ripani, M.; Etse, G.; Vrech, S. Thermodynamic gradient-based poroplastic theory for concrete under high temperatures. Int. J. Plast. 2014, 61, 157–177. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.F.; Gao, J.W.; Wu, Z.J. An investigation of thermal effects on micro-properties of granite by X-ray CT technique. Appl. Therm. Eng. 2018, 140, 505–519. [Google Scholar] [CrossRef]
- Li, B.Q.; Gonçalves da Silva Einstein, H. Laboratory hydraulic fracturing of granite: Acoustic emission observations and interpretation. Eng. Fract. Mech. 2019, 209, 200–220. [Google Scholar] [CrossRef]
- Kumari WG, P.; Beaumont, D.M.; Ranjith, P.G. An experimental study on tensile characteristics of granite rocks exposed to different high-temperature treatments. Geomech. Geophys. Geo-Energy Geo-Resour. 2019, 5, 47–64. [Google Scholar] [CrossRef]
- Chu, I.; Lee, Y.; Amin, M.N. Application of a thermal stress device for the prediction of stresses due to hydration heat in mass concrete structure. Constr. Build. Mater. 2013, 45, 192–198. [Google Scholar] [CrossRef]
- Bou Jaoude, I.; Novakowski, K.; Kueper, B. Identifying and assessing key parameters controlling heat transport in discrete rock fractures. Geothermics 2018, 75, 93–104. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Z.; Ren, F. Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials. AIP Adv. 2017, 7, 105023. [Google Scholar] [CrossRef]
- Tang, S.B.; Tang, C.A. Crack propagation and coalescence in quasi-brittle materials at high temperatures. Eng. Fract. Mech. 2015, 134, 404–432. [Google Scholar] [CrossRef]
- Jiang, W.; Spencer, B.W.; Dolbow, J.E. Ceramic nuclear fuel fracture modeling with the extended finite element method. Eng. Fract. Mech. 2020, 223, 106713. [Google Scholar] [CrossRef]
- Kwon, S.; Cho, W.J. The influence of an excavation damaged zone on the thermal-mechanical and hydro-mechanical behaviors of an underground excavation. Eng. Geol. 2008, 101, 110–123. [Google Scholar] [CrossRef]
- Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 2000, 48, 175–209. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Gu, X.; Zhang, Q. A refined thermo-mechanical fully coupled peridynamics with application to concrete cracking. Eng. Fract. Mech. 2021, 242, 107463. [Google Scholar] [CrossRef]
- Shou, Y.; Zhou, X. A coupled thermomechanical nonordinary state-based peridynamics for thermally induced cracking of rocks. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 371–386. [Google Scholar] [CrossRef]
- Bazazzadeh, S.; Mossaiby, F.; Shojaei, A. An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics. Eng. Fract. Mech. 2020, 223, 106708. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, S.Q.; Chen, M. Peridynamic simulation on fracture mechanical behavior of granite containing a single fissure after thermal cycling treatment. Comput. Geotech. 2020, 120, 103414. [Google Scholar] [CrossRef]
- Chu, B.; Liu, Q.; Liu, L. A rate-dependent peridynamic model for the dynamic behavior of ceramic materials. Comput. Modeling Eng. Sci. 2020, 124, 151–178. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Mei, H. A modified rate-dependent peridynamic model with rotation effect for dynamic mechanical behavior of ceramic materials. Comput. Methods Appl. Mech. Eng. 2022, 388, 114246. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Zhang, T. Size effect of thermal shock crack patterns in ceramics, Insights from a nonlocal numerical approach. Mech. Mater. 2019, 137, 103133. [Google Scholar] [CrossRef]
- Silling, S.A.; Epton, M.; Weckner, O. Peridynamic states and constitutive modeling. J. Elast. 2007, 88, 151–184. [Google Scholar] [CrossRef] [Green Version]
- Nowinski, J.L. Theory of Thermoelasticity with Applications; Sijthoff & Noordhoff International Publishers: Alphen aan den Rijn, The Netherlands, 1978. [Google Scholar]
- Oterkus, S.; Madenci, E. Peridynamics for fully coupled thermomechanical analysis of fiber reinforced laminates. In Proceedings of the 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, National Harbor, MD, USA, 13–17 January 2014; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2014. [Google Scholar]
- Oterkus, S.; Madenci, E.; Agwai, A. Fully coupled peridynamic thermomechanics. J. Mech. Phys. Solids 2014, 64, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Oterkus, S. Peridynamics for the Solution of Multiphysics Problems; The University of Arizona: Tucson, AZ, USA, 2015. [Google Scholar]
- Lankford, J., Jr.; Anderson, C.E.; Nagy, A.J.; Walker, J.D. Inelastic response of confined aluminium oxide under dynamic loading conditions. J. Mater. Sci. 1998, 33, 1619–1625. [Google Scholar] [CrossRef]
- Wade, J.; Robertson, S.; Wu, H. Plastic deformation of polycrystalline alumina introduced by scaled-down drop-weight impacts. Mater. Lett. 2016, 175, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, M.; Dalui, S.; Dey, N.; Bysakh, S. Kumar Mukhopadhyay A. Low strain rate compressive failure mechanism of coarse grain alumina. Ceram. Int. 2016, 42, 9875–9886. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Thai, H.T.; Ngo, T. Optimised mix design and elastic modulus prediction of ultra-high strength concrete. Constr. Build. Mater. 2021, 302, 124150. [Google Scholar] [CrossRef]
- Johnson, G.R.; Holmquist, T.J. An improved computational constitutive model for brittle materials. Am. Inst. Phys. 1994, 309, 981–984. [Google Scholar]
- Belytschko, T.; Hughes, T.J. Computational method for transient analysis. Amsterdam 1986, 1, 245–263. [Google Scholar] [CrossRef] [Green Version]
- Timoshenko, S.P.; Goodier, J.N. Theory of Elasticity; Mcgraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Clarendon Press: Oxford, UK, 1959. [Google Scholar]
- Ayatollahi, M.R.; Berto, F.; Lazzarin, P. Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite. Carbon 2011, 49, 2465–2474. [Google Scholar] [CrossRef]
- Bobaru, F.; Yang, M.; Alves, L.F. Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. 2009, 77, 852–877. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.P.; Wu, X.F.; Li, J. A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock. Acta Mater. 2012, 60, 4540–4550. [Google Scholar] [CrossRef]
- Yang, S.Q.; Huang, Y.H.; Tian, W.L. Effect of High Temperature on deformation failure behavior of granite specimen containing a single fissure under uniaxial compression. Rock Mech. Rock Eng. 2019, 52, 2087–2107. [Google Scholar] [CrossRef]
- Yang, S.Q.; Huang, Y.H. An experimental study on deformation and failure mechanical behavior of granite containing a single fissure under different confining pressures. Environ. Earth Sci. 2017, 76, 1–22. [Google Scholar] [CrossRef]
- Li, G.; Tang, C.A. statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock. Int. J. Rock Mech. Min. Sci. 2015, 74, 133–150. [Google Scholar] [CrossRef]
- Kiani, K.; Wang, Q. Nonlocal magneto-thermo-vibro-elastic analysis of vertically aligned arrays of single-walled carbon nanotubes. Eur. J. Mech. A/Solids 2018, 72, 497–515. [Google Scholar] [CrossRef]
- Kiani, K.; Pakdaman, H. Nonlocal vibrations and potential instability of monolayers from double-walled carbon nanotubes subjected to temperature gradients. Int. J. Mech. Sci. 2018, 144, 576–599. [Google Scholar] [CrossRef]
- Khanchehgardan, A.; Shah, M.A.; Rezazadeh, G. Thermo-elastic damping in nano-beam resonators based on nonlocal theory. Int. J. Eng. 2012, 26, 1505–1514. [Google Scholar] [CrossRef]
- Ansari, R.; Gholami, R. Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory. Int. J. Appl. Mech. 2016, 8, 1–33. [Google Scholar] [CrossRef]
- Liu, C.; Ke, L.L.; Wang, Y.S.; Yang, J. Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos. Struct. 2013, 106, 167–174. [Google Scholar] [CrossRef]
Parameter | Value | |
---|---|---|
PD parameters | Number of discrete points in the direction | 200 200 |
Material point spacing (m) | 0.005 | |
non-locality parameter | 3 | |
Mechanical parameters | Heat transfer time step () | |
Young’s modulus () | 1 | |
Poisson’s ratio | 0.33 | |
Density () | 1 | |
Thermal parameters | Thermal conductivity () | 1 |
Coefficient of thermal expansion () | 0.02 | |
Specific heat capacity () | 1 |
Parameter | Value | |
---|---|---|
PD parameters | Number of discrete points in the direction | 500 100 |
Material point spacing (m) | 0.00005 | |
Non-locality parameter | 3 | |
Mechanical parameters [36] | Heat transfer time step () | |
Young’s modulus () | 370 | |
Poisson’s ratio | 0.33 | |
Density () | 3980 | |
Fracture energy () | 24.3 | |
Thermal parameters [36] | Thermal conductivity () | 31 |
Coefficient of thermal expansion () | ||
Specific heat capacity () | 880 |
Temperature Field (K) | Evolution of Cracks (Damge) | |
---|---|---|
Time = 10 ms | ||
Time = 50 ms | ||
Time = 100 ms | ||
Time = 300 ms | ||
Time = 600 ms |
Parameter | Value | |
---|---|---|
PD parameters | Number of discrete points in the direction | 100 200 |
Material point spacing (m) | 0.00008 | |
Non-locality parameter | 3 | |
Mechanical parameters [37] | Heat transfer time step () | |
Mechanical time step during single-axis compression (s) | ||
Young’s modulus () | 36 | |
Poisson’s ratio | 0.33 | |
Density () | 2790 | |
Fracture energy () | 50 | |
Thermal parameters [37] | Thermal conductivity () | 3.5 |
Specific heat capacity () | 900 |
Type of Mineral 1 | Proportion (%) | Coefficient of Thermal Expansion |
---|---|---|
Quartz | 17.73 | 24.3 |
Muscovite | 36.33 | 17.3 |
Labradorite | 39.32 | 14.1 |
Hornblende (rock-forming mineral, type of amphibole) | 6.62 | 8.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, L.; Lai, X.; Mei, H.; Liu, X. Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials. Materials 2022, 15, 7401. https://doi.org/10.3390/ma15207401
Zhang H, Liu L, Lai X, Mei H, Liu X. Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials. Materials. 2022; 15(20):7401. https://doi.org/10.3390/ma15207401
Chicago/Turabian StyleZhang, Haoran, Lisheng Liu, Xin Lai, Hai Mei, and Xiang Liu. 2022. "Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials" Materials 15, no. 20: 7401. https://doi.org/10.3390/ma15207401
APA StyleZhang, H., Liu, L., Lai, X., Mei, H., & Liu, X. (2022). Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials. Materials, 15(20), 7401. https://doi.org/10.3390/ma15207401