Simulations of the Ultra-Fast Kinetics in Ni-Si-C Ternary Systems under Laser Irradiation
<p>Global maximum temperature (purple line) as a function of the time obtained for <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi mathvariant="italic">dens</mi> </mrow> </msub> <mo>=</mo> <mn>2.2</mn> <mo> </mo> <mi mathvariant="normal">J</mi> <mo>/</mo> <msup> <mrow> <mi>cm</mi> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> energy density laser process of a Ni (100 nm) + 4H-SiC stack. The power density released by the laser pulse in the Ni layer is shown as green line.</p> "> Figure 2
<p>Total atomic fraction as a function of the position of the three elements of the Ni-Si-C ternary system (Ni blue line, Si red line, C green line) after 100 ns (panel (<b>a</b>)) and at the end (panel (<b>b</b>)) of the simulated irradiation at <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mn>2.2</mn> <mo> </mo> <msup> <mrow> <mrow> <mi mathvariant="normal">J</mi> <mo>/</mo> <mi>cm</mi> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> energy density.</p> "> Figure 3
<p>Simulated local density (left axis scale) at the end of the process of the Ni<sub>3</sub>Si (dark yellow lines), Ni<sub>5</sub>Si<sub>2</sub> class (dark green lines) and Ni<sub>2</sub>Si (blue lines) for Laser Annealing processes with fluences <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mn>2.2</mn> <mo> </mo> <msup> <mrow> <mrow> <mi mathvariant="normal">J</mi> <mo>/</mo> <mi>cm</mi> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>. Simulated local maximum temperature <math display="inline"><semantics> <mrow> <msup> <mi>T</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msup> <mfenced> <mi>x</mi> </mfenced> </mrow> </semantics></math> (right axis scale), achieved in the different positions of the irradiated structure.</p> "> Figure 4
<p>Phase-field (black line), temperature (dark red line) and Ni total atomic fraction (blue line) as a function of the position after 220 ns of the simulated irradiation at <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mn>2.5</mn> <mo> </mo> <msup> <mrow> <mrow> <mi mathvariant="normal">J</mi> <mo>/</mo> <mi>cm</mi> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> energy density. We note the phase and atomic fraction have the same range of variation.</p> "> Figure 5
<p>Phase-field (black line and left axis) and simulated local density (right axis scale) of the Ni<sub>3</sub>Si (dark yellow lines), Ni<sub>5</sub>Si<sub>2</sub> class (dark green lines) and Ni<sub>2</sub>Si (blue lines) for a laser annealing process with fluence <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mn>2.5</mn> <mo> </mo> <msup> <mrow> <mrow> <mi mathvariant="normal">J</mi> <mo>/</mo> <mi>cm</mi> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>. Snapshots (<b>a</b>–<b>d</b>) are taken at <span class="html-italic">t</span> = 120, 160, 200, 350 ns.</p> "> Figure 6
<p>Phase-field (black line and left axis) and simulated local density (right axis scale) of the Ni<sub>3</sub>Si (dark yellow lines), Ni<sub>5</sub>Si<sub>2</sub> class (dark green lines) and Ni<sub>2</sub>Si (blue lines) at the end of a laser annealing process with fluence <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mn>2.5</mn> <mo> </mo> <msup> <mrow> <mrow> <mi mathvariant="normal">J</mi> <mo>/</mo> <mi>cm</mi> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>.</p> "> Figure 7
<p>Maximum melting extension <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mfenced> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> (melt depth for fluence <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> <mo>></mo> <mn>2.8</mn> <mo> </mo> <msup> <mrow> <mrow> <mi mathvariant="normal">J</mi> <mo>/</mo> <mi>cm</mi> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>) as a function of the fluence for an irradiated Ni-4HSiC stack. The different regimes (non-melting, partial melting at the Ni-SiC interface, partial melting at the surface, full melting) are indicated by means of the colored areas.</p> "> Figure 8
<p>Phase-field (black line and left axis) and simulated local density (right axis scale) of the Ni<sub>3</sub>Si (dark yellow lines), Ni<sub>5</sub>Si<sub>2</sub> class (dark green lines) and Ni<sub>2</sub>Si (blue lines) for a laser annealing process with fluence <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mn>3.2</mn> <mo> </mo> <mi mathvariant="normal">J</mi> <mo>/</mo> <msup> <mrow> <mi>cm</mi> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>. Snapshots (<b>a</b>–<b>d</b>) are taken at <span class="html-italic">t</span> = 120, 160, 200, 350 ns.</p> "> Figure 9
<p>Phase-field (black line and left axis) and simulated local density (right axis scale) of the Ni<sub>3</sub>Si (dark yellow lines), Ni<sub>5</sub>Si<sub>2</sub> class (dark green lines) and Ni<sub>2</sub>Si (blue lines) at the end of a laser annealing process with fluence <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mn>3.2</mn> <mo> </mo> <mi mathvariant="normal">J</mi> <mo>/</mo> <mi mathvariant="normal">c</mi> <msup> <mi mathvariant="normal">m</mi> <mn mathvariant="normal">2</mn> </msup> </mrow> </semantics></math>.</p> "> Figure 10
<p>Extension of the Ni-rich layer M<sub>Ni-rich</sub>(<math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> </mrow> </semantics></math>) (green line and square) and the extension of the silicide layer M<sub>Silicide</sub>(<math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> </mrow> </semantics></math>) (purple line and circles) as a function of <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> </mrow> </semantics></math>. Experimental values from [<a href="#B9-materials-14-04769" class="html-bibr">9</a>], of the silicide layers 18, 36 and 62 nm are also reported as black crosses for the 2.4, 3.2 and 3.8 J/cm<sup>2</sup> cases, respectively.</p> "> Figure 11
<p>Carbon cluster density ratio as a function of the fluence of the <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sub-Melting Regime
3.2. Partial-Melting Regime
3.3. Full-Melting Regime
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huet, K.; Aubin, J.; Raynal, P.-E.; Curvers, B.; Verstraete, A.; Lespinasse, B.; Mazzamuto, F.; Sciuto, A.; Lombardo, S.F.; La Magna, A.; et al. Pulsed laser annealing for advanced technology nodes: Modeling and calibration. Appl. Surf. Sci. 2020, 505, 144470. [Google Scholar] [CrossRef]
- Cristiano, F.; La Magna, A. Laser Annealing Processes in Semiconductor Technology; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Sawston, UK, 2021; ISBN 9780128202555. [Google Scholar]
- Lombardo, S.F.; Fisicaro, G.; Deretzis, I.; La Magna, A.; Curver, B.; Lespinasse, B.; Huet, K. Theoretical study of the laser annealing process in FinFET structures. Appl. Surf. Sci. 2019, 467–468, 666–672. [Google Scholar] [CrossRef]
- Yuan, Y.; Hübner, R.; Liu, F.; Sawicki, M.; Gordan, O.; Salvan, G.; Zahn, D.R.T.; Banerjee, D.; Baehtz, C.; Helm, M.; et al. Ferromagnetic Mn-Implanted GaP: Microstructures vs Magnetic Properties. ACS Appl. Mater. Interfaces 2016, 8, 3912–3918. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Hübner, R.; Birowska, M.; Xu, C.; Wang, M.; Prucnal, S.; Jakiela, R.; Potzger, K.; Böttger, R.; Facsko, S.; et al. Nematicity of correlated systems driven by anisotropic chemical phase separation. Phys. Rev. Mater. 2018, 2, 114601. [Google Scholar]
- Alberti, A.; Badalà, P.; Pellegrino, G.; Santangelo, A. Structural and electrical characterization of silicided Ni/Au contacts formed at low temperature (<300 °C) on p-type [001] silicon. J. Appl. Phys. 2011, 110, 123510. [Google Scholar] [CrossRef]
- Alberti, A.; La Magna, A.; Cuscunà, M.; Fortunato, G.; Privitera, V. Simultaneous nickel silicidation and silicon crystallization induced by excimer laser annealing on plastic substrate. Appl. Phys. Lett. 2010, 96, 142113. [Google Scholar] [CrossRef]
- Alberti, A.; La Magna, A. Role of the early stages of Ni-Si interaction on the structural properties of the reaction products. J. Appl. Phys. 2013, 114, 121301. [Google Scholar] [CrossRef]
- Alberti, A.; La Magna, A.; Cuscunà, M.; Fortunato, G.; Spinella, C.; Privitera, V. Nickel-affected silicon crystallization and silicidation on polyimide by multipulse excimer laser annealing. J. Appl. Phys. 2010, 108, 123511. [Google Scholar] [CrossRef]
- Badalà, P.; Rascunà, S.; Cafra, B.; Bassi, A.; Smecca, E.; Zimbone, M.; Bongiorno, C.; Calabretta, C.; La Via, F.; Roccaforte, F.; et al. Ni/4H-SiC interaction and silicide formation under excimer laser annealing for ohmic contact. Materialia 2020, 9, 100528. [Google Scholar] [CrossRef]
- Sanzaro, S.; Bongiorno, C.; Badalà, P.; Bassi, A.; Franco, G.; Vasquez, P.; Alberti, A.; La Magna, A. Inter-diffusion, melting and reaction interplay in Ni/4H-SiC under excimer laser annealing. Appl. Surf. Sci. 2021, 539, 148218. [Google Scholar] [CrossRef]
- Lombardo, S.F.; Boninelli, S.; Cristiano, F.; Deretzis, I.; Grimaldi, M.G.; Huet, K.; Napolitani, E.; La Magna, A. Phase field model of the nanoscale evolution during the explosive crystallization phenomenon. J. Appl. Phys. 2018, 123, 105105. [Google Scholar] [CrossRef]
- Available online: https://gmsh.info/ (accessed on 15 July 2021).
- Du, Y.; Schuster, J.C. Experimental Investigations and Thermodynamic Descriptions of the Ni-Si and C-Ni-Si Systems. Metall. Mater. Trans. A 1999, 30A, 2409. [Google Scholar] [CrossRef]
- Stiffler, S.; Evans, P.; Greer, A. Interfacial transport kinetics during the solidification of silicon. Acta Metall. Mater. 1992, 1617, 40. [Google Scholar] [CrossRef]
- Thurnay, K. Thermal Properties of Transition Metals; Forschungszentrum Karlsruhe GmbH: Karlsruhe, Germany, 1998; pp. 67–71. [Google Scholar]
- Powell, R.W.; Tye, R.P.; Hichmann, M.J. The thermal conductivity of nickel. Int. J. Heat Mass Tranfer. 1965, 8, 679–688. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B 1974, 9, 5056–5070. [Google Scholar] [CrossRef]
- Hixson, R.S.; Winkler, M.A.; Hodgdon, M.L. Sound speed and thermophysical properties of liquid iron and nickel. Phys. Rev. B 1990, 42, 6485. [Google Scholar] [CrossRef] [PubMed]
- Sinoviev, V.E. Thermal Properties of Metals at High Temperatures; Metallurgy: Moscow, Russia, 1989. (In Russian) [Google Scholar]
- Koji, S.K.; Yukawa, J.; Nordine, P.C. Optical properties of liquid nickel and iron. Phys. Rev. B 1997, 55, 8201. [Google Scholar]
- Goldberg, Y.; Levinshtein, M.E.; Rumyantsev, S.L. Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe; Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2001; pp. 149–188. [Google Scholar]
- Wei, R.; Song, S.; Yang, K.; Cui, Y.; Peng, Y.; Chen, X.; Hu, X.; Xu, X. Thermal conductivity of 4H-SiC single crystals. J. Appl. Phys. 2013, 113, 053503. [Google Scholar] [CrossRef]
- Watanabe, N.; Kimoto, T.; Suda, J. Temperature dependence of optical absorption coefficient of 4H-and 6H-SiC from room temperature to 300 °C. Jpn. J. Appl. Phys. 2014, 53, 108003. [Google Scholar] [CrossRef]
- Okhotin, A.S.; Pushkarskij, A.S.; Gorbachev, V.V. Thermophysical Properties of Semiconductors; INIS: Vienna, Austria, 1972. [Google Scholar]
- La Magna, A.; Alippi, P.; Privitera, V.; Fortunato, G.; Camalleri, M.; Svensson, B. A phase-field approach to the simulation of the excimer laser annealing process in Si. J. Appl. Phys. 2004, 95, 4806–4814. [Google Scholar] [CrossRef]
Sym. [units] | Description | Expression | Ref. |
---|---|---|---|
Density | 8902 | [16] | |
Melting Temperature | 1728 | [16] | |
Thermal Capacitance | 488.98 + 5.93 × 10−3 × T + 5.4 × 10−5 × T2 | [16] | |
Thermal Conductivity | 84 + 2.13 × 10−6 × T/(−0.0121 + 2.29 × 10−4 × T + 6.1 × 10−10 × T3) | [17] | |
Latent Heat | 291,346 | [16] | |
Permittivity Real | −0.70023 | [18] | |
Permittivity Imaginary | 8.7767 | [18] | |
Speed Pre-factor | 1000 | This work | |
Activation Energy | −0.42 | This work |
Sym. [units] | Description | Expression | Ref. |
---|---|---|---|
Density | 7902 | [19] | |
Melting Temperature | |||
Thermal Capacitance | 735 | [19] | |
Thermal Conductivity | 69 | [20] | |
Latent Heat | - | ||
Permittivity Real | −2.66 | [21] | |
Permittivity Imaginary | 13.17 | [21] | |
Speed Pre-factor | - | ||
Activation Energy | - |
Sym. [units] | Description | Expression | Ref. |
---|---|---|---|
Density | 3160 | [22] | |
Melting Temperature | 3100 | [22] | |
Thermal Capacitance | 160 × (T ≤ 165) + (1600 – 247.16/(T − 28.38)) × (T > 165) | [22] | |
Thermal Conductivity | [160 × 3160 × (1.895 × 10−5 + 8.07 × 10−4 × e(−T/144)] × (T ≤ 165) + 3160 × [(1600 – 247.16/(T − 28.38)] × [1.895 × 10−5 + 8.07 × 10−4 × e(−T/144)] × (T > 165) | [22,23] | |
Latent Heat | 360,000 | [22] | |
Permittivity Real | 7.2704 | [22,24,25] | |
Permittivity Imaginary | 0.756 | [22,24,25] | |
Speed Pre-factor | 1000 | This work | |
Activation Energy | 0.42 | This work |
Reaction Constants | |
---|---|
] | |
] | |
] | |
] | |
] | |
] | |
] | |
Intermixing coefficient X = Si, Ni or C | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanzaro, S.; Bongiorno, C.; Badalà, P.; Bassi, A.; Deretzis, I.; Enachescu, M.; Franco, G.; Fisicaro, G.; Vasquez, P.; Alberti, A.; et al. Simulations of the Ultra-Fast Kinetics in Ni-Si-C Ternary Systems under Laser Irradiation. Materials 2021, 14, 4769. https://doi.org/10.3390/ma14164769
Sanzaro S, Bongiorno C, Badalà P, Bassi A, Deretzis I, Enachescu M, Franco G, Fisicaro G, Vasquez P, Alberti A, et al. Simulations of the Ultra-Fast Kinetics in Ni-Si-C Ternary Systems under Laser Irradiation. Materials. 2021; 14(16):4769. https://doi.org/10.3390/ma14164769
Chicago/Turabian StyleSanzaro, Salvatore, Corrado Bongiorno, Paolo Badalà, Anna Bassi, Ioannis Deretzis, Marius Enachescu, Giovanni Franco, Giuseppe Fisicaro, Patrizia Vasquez, Alessandra Alberti, and et al. 2021. "Simulations of the Ultra-Fast Kinetics in Ni-Si-C Ternary Systems under Laser Irradiation" Materials 14, no. 16: 4769. https://doi.org/10.3390/ma14164769
APA StyleSanzaro, S., Bongiorno, C., Badalà, P., Bassi, A., Deretzis, I., Enachescu, M., Franco, G., Fisicaro, G., Vasquez, P., Alberti, A., & La Magna, A. (2021). Simulations of the Ultra-Fast Kinetics in Ni-Si-C Ternary Systems under Laser Irradiation. Materials, 14(16), 4769. https://doi.org/10.3390/ma14164769