Physicochemical and Optical Characterization of Citrus aurantium Derived Biochar for Solar Absorber Applications
<p>SEM images of SOPRAW, SOP400, SOP600, and SOP800.</p> "> Figure 2
<p>FTIR spectra of SOPRAW and SOP400, SOP600, and SOP800.</p> "> Figure 3
<p>(<b>a</b>) TG-DTG curves; (<b>b</b>) DSC curves of SOPRAW.</p> "> Figure 4
<p>TG curves of the SOPRAW and biochars.</p> "> Figure 5
<p>XRD patterns of SOPRAW and biochars SOP400, SOP600, and SOP800.</p> "> Figure 6
<p>Raman spectra SOPRAW and biochars SOP400, SOP600, and SOP800.</p> "> Figure 7
<p>Raman evolution of D band width vs disorder parameter.</p> "> Figure 8
<p>XPS survey spectra of SOPRAW and biochars.</p> "> Figure 9
<p>UV−VIS−NIR diffuse reflectance of SOPRAW and biochars.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Pyrolysis Experiments
2.3. Physicochemical Characterization
2.3.1. Morphology
2.3.2. Elemental Analysis
2.3.3. Fourier Transform Infrared (FTIR) Spectroscopy
2.3.4. Thermal Analysis (TGA-DSC)
2.3.5. X-ray Diffraction (XRD)
2.3.6. Raman Spectroscopy
2.3.7. X-ray Photoelectron (XPS) Spectroscopy
2.4. Optical Characterization
3. Results and Discussion
3.1. Carbonization Yield
3.2. Morphology
3.3. Elemental Analysis
3.4. Fourier Transform Infrared (FTIR) Spectrocopy
3.5. Thermal Analysis (TGA-DSC)
3.6. X-ray Diffraction (XRD) Analysis
3.7. Raman Spectroscopy
3.8. X-ray Photoelectron (XPS) Spectroscopy
3.9. UV−VIS−NIR Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luque, R.; Clark, J.H. Valorisation of Food Residues: Waste to Wealth Using Green Chemical Technologies. Sustain. Chem. Process. 2013, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and Vegetable Waste Management: Conventional and Emerging Approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef] [PubMed]
- Tovar, A.K.; Godínez, L.A.; Spiel, F.; Ramírez-Zamora, R.-M.; Robles, I. Optimization of the Integral Valorization Process for Orange Peel Waste Using a Design of Experiments Approach: Production of High-Quality Pectin and Activated Carbon. Waste Manag. 2019, 85, 202–213. [Google Scholar] [CrossRef] [PubMed]
- SADER. México, Quinto Productor Mundial de Cítricos. Available online: https://www.gob.mx/agricultura%7Cyucatan/articulos/mexico-quinto-productor-mundial-de-citricos (accessed on 16 May 2020).
- Covarrubias-Cárdenas, A.; Patrón-Vázquez, J.; Espinosa-Andrews, H.; Ayora-Talavera, T.; García-Ruiz, U.; Pacheco, N. Antioxidant Capacity and UPLC–PDA ESI–MS Polyphenolic Profile of Citrus aurantium Extracts Obtained by Ultrasound Assisted Extraction. J. Food Sci. Technol. 2018, 55, 5106–5114. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Silva, A.M.; Nunes, F.M. Citrus reticulata Blanco Peels as a Source of Antioxidant and Anti-Proliferative Phenolic Compounds. Ind. Crops Prod. 2018, 111, 141–148. [Google Scholar] [CrossRef]
- Ersus, S.; Cam, M. Determination of Organic Acids, Total Phenolic Content, and Antioxidant Capacity of Sour Citrus aurantium Fruits. Chem. Nat. Compd. 2007, 43, 607–609. [Google Scholar] [CrossRef]
- Ashtaputrey, S.D.; Ashtaputrey, P.D. Preparation and Characterization of Activated Charcoal Derived from Orange Peel. J. Adv. Chem. Sci. 2016, 2, 360–362. [Google Scholar]
- Santos, C.M.; Dweck, J.; Viotto, R.S.; Rosa, A.H.; de Morais, L.C. Application of Orange Peel Waste in the Production of Solid Biofuels and Biosorbents. Bioresour. Technol. 2015, 196, 469–479. [Google Scholar] [CrossRef]
- de Sousa Ribeiro, L.A.; Alvares Rodrigues, L.; Patrocínio Thim, G. Preparation of Activated Carbon from Orange Peel and Its Application for Phenol Removal. Int. J. Eng. Res. Sci. 2017, 3, 2395–6992. [Google Scholar]
- Pandiarajan, A.; Kamaraj, R.; Vasudevan, S.; Vasudevan, S. OPAC (Orange Peel Activated Carbon) Derived from Waste Orange Peel for the Adsorption of Chlorophenoxyacetic Acid Herbicides from Water: Adsorption Isotherm, Kinetic Modelling and Thermodynamic Studies. Bioresour. Technol. 2018, 261, 329–341. [Google Scholar] [CrossRef]
- Subramani, K.; Sudhan, N.; Karnan, M.; Sathish, M. Orange Peel Derived Activated Carbon for Fabrication of High-Energy and High-Rate Supercapacitors. ChemistrySelect 2017, 2, 11384–11392. [Google Scholar] [CrossRef]
- Suntar, I.; Khan, H.; Patel, S.; Celano, R.; Rastrelli, L. An Overview on Citrus aurantium L.: Its Functions as Food Ingredient and Therapeutic Agent. Oxid. Med. Cell. Longev. 2018, 2018, 7864269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, S.S.; Khodaiyan, F.; Yarmand, M.S. Optimization of Microwave Assisted Extraction of Pectin from Sour Orange Peel and Its Physicochemical Properties. Carbohydr. Polym. 2016, 140, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Sawalha, S.M.S.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Quantification of Main Phenolic Compounds in Sweet and Bitter Orange Peel Using CE–MS/MS. Food Chem. 2009, 116, 567–574. [Google Scholar] [CrossRef]
- Gatti, T.; Manfredi, N.; Boldrini, C.; Lamberti, F.; Abbotto, A.; Menna, E. A D-π-A Organic Dye—Reduced Graphene Oxide Covalent Dyad as a New Concept Photosensitizer for Light Harvesting Applications. Carbon N. Y. 2017, 115, 746–753. [Google Scholar] [CrossRef]
- López-Sosa, L.B.; González-Avilés, M.; Hernández-Ramírez, L.M.; Medina-Flores, A.; López-Luke, T.; Bravo-Sánchez, M.; Zárate-Medina, J. Ecological Solar Absorber Coating: A Proposal for the Use of Residual Biomass and Recycled Materials for Energy Conversion. Sol. Energy 2020, 202, 238–248. [Google Scholar] [CrossRef]
- Patrón-Vázquez, J.; Baas-Dzul, L.; Medina-Torres, N.; Ayora-Talavera, T.; Sánchez-Contreras, Á.; García-Cruz, U.; Pacheco, N. The Effect of Drying Temperature on the Phenolic Content and Functional Behavior of Flours Obtained from Lemon Wastes. Agronomy 2019, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Agricultural Based Activated Carbons for the Removal of Dyes from Aqueous Solutions: A Review. J. Hazard. Mater. 2009, 167, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chaves Fernandes, B.C.; Ferreira Mendes, K.; Dias Júnior, A.F.; da Silva Caldeira, V.P.; da Silva Teófilo, T.M.; Severo Silva, T.; Mendonça, V.; de Freitas Souza, M.; Valadão Silva, D. Impact of Pyrolysis Temperature on the Properties of Eucalyptus Wood-Derived Biochar. Materials 2020, 13, 5841. [Google Scholar] [CrossRef]
- Li, S.; Barreto, V.; Li, R.; Chen, G.; Hsieh, Y.P. Nitrogen Retention of Biochar Derived from Different Feedstocks at Variable Pyrolysis Temperatures. J. Anal. Appl. Pyrolysis 2018, 133, 136–146. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, J.-Y.; Cho, T.-S.; Choi, J.W. Influence of Pyrolysis Temperature on Physicochemical Properties of Biochar Obtained from the Fast Pyrolysis of Pitch Pine (Pinus rigida). Bioresour. Technol. 2012, 118, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Zhu, L.; Peh, C.K.; Ho, G.W. Solar Absorber Material and System Designs for Photothermal Water Vaporization towards Clean Water and Energy Production. Energy Environ. Sci. 2019, 12, 841–864. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemist, 15th ed.; Horwitz, W., Latimer, G., Eds.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Leng, L.; Huang, H. An Overview of the Effect of Pyrolysis Process Parameters on Biochar Stability. Bioresour. Technol. 2018, 270, 627–642. [Google Scholar] [CrossRef]
- Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.W.; Hou, D. Effect of Pyrolysis Temperature, Heating Rate, and Residence Time on Rapeseed Stem Derived Biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Gómez, N.; Rosas, J.G.; Cara, J.; Martínez, O.; Alburquerque, J.A.; Sánchez, M.E. Slow Pyrolysis of Relevant Biomasses in the Mediterranean Basin. Part 1. Effect of Temperature on Process Performance on a Pilot Scale. J. Clean. Prod. 2016, 120, 181–190. [Google Scholar] [CrossRef]
- Spokas, K.A. Review of the Stability of Biochar in Soils: Predictability of O:C Molar Ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef] [Green Version]
- Dhyani, V.; Bhaskar, T. A Comprehensive Review on the Pyrolysis of Lignocellulosic Biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Köseoğlu, E.; Akmil-Başar, C. Preparation, Structural Evaluation and Adsorptive Properties of Activated Carbon from Agricultural Waste Biomass. Adv. Powder Technol. 2015, 26, 811–818. [Google Scholar] [CrossRef]
- Siddiqui, M.T.H.; Nizamuddin, S.; Mubarak, N.M.; Shirin, K.; Aijaz, M.; Hussain, M.; Baloch, H.A. Characterization and Process Optimization of Biochar Produced Using Novel Biomass, Waste Pomegranate Peel: A Response Surface Methodology Approach. Waste Biomass Valorization 2019, 10, 521–532. [Google Scholar] [CrossRef]
- Guizani, C.; Jeguirim, M.; Valin, S.; Limousy, L.; Salvador, S. Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity. Energies 2017, 10, 796. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.-X.; Ta, N.; Wang, X.-D. Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material. Energies 2017, 10, 1293. [Google Scholar] [CrossRef] [Green Version]
- Amutio, M.; Lopez, G.; Aguado, R.; Artetxe, M.; Bilbao, J.; Olazar, M. Kinetic Study of Lignocellulosic Biomass Oxidative Pyrolysis. Fuel 2012, 95, 305–311. [Google Scholar] [CrossRef]
- Zapata, B.; Balmaseda, J.; Fregoso-Israel, E.; Torres-García, E. Thermo-Kinetics Study of Orange Peel in Air. J. Therm. Anal. Calorim. 2009, 98, 309. [Google Scholar] [CrossRef]
- Sánchez Orozco, R.; Balderas Hernández, P.; Roa Morales, G.; Ureña Núñez, F.; Orozco Villafuerte, J.; Lugo Lugo, V.; Flores Ramírez, N.; Barrera Díaz, C.E.; Cajero Vázquez, P. Characterization of Lignocellulosic Fruit Waste as an Alternative Feedstock for Bioethanol Production. Bioresour. 2014, 9, 1873–1885. [Google Scholar] [CrossRef] [Green Version]
- Yeboah, M.L.; Li, X.; Zhou, S. Facile Fabrication of Biochar from Palm Kernel Shell Waste and Its Novel Application to Magnesium-Based Materials for Hydrogen Storage. Materials 2020, 13, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Shuai, Y.; Yuan, Y.; Liu, B. Effects of Material Selection on the Thermal Stresses of Tube Receiver under Concentrated Solar Irradiation. Mater. Des. 2012, 33, 284–291. [Google Scholar] [CrossRef]
- Tomul, F.; Arslan, Y.; Başoğlu, F.T.; Babuçcuoğlu, Y.; Tran, H.N. Efficient Removal of Anti-Inflammatory from Solution by Fe-Containing Activated Carbon: Adsorption Kinetics, Isotherms, and Thermodynamics. J. Environ. Manag. 2019, 238, 296–306. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Wu, B.; Xu, Y.; Wen, R.; Liu, Y.; Fang, M.; Wu, X.; Min, X.; Huang, Z. Preparation and Performance of Shape-Stable Phase Change Materials Based on Carbonized-Abandoned Orange Peel and Paraffin. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 289–298. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.Y.; Zhao, X.J.; Zhou, Z. Citrus Pectin Derived Porous Carbons as a Superior Adsorbent toward Removal of Methylene Blue. J. Solid State Chem. 2016, 243, 101–105. [Google Scholar] [CrossRef]
- Hussain, R.; Qadeer, R. X-Ray Diffraction Study of Heat-Treated Graphitized and Ungraphitized Carbon. Turk. J. Chem. 2000, 24, 177–184. [Google Scholar]
- Tran, H.N.; You, S.-J.; Chao, H.-P. Effect of Pyrolysis Temperatures and Times on the Adsorption of Cadmium onto Orange Peel Derived Biochar. Waste Manag. Res. 2016, 34, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, T.; Zhi, J.; Zheng, Q.; Chen, Q.; Zhang, C.; Li, Y. Utilization of Jujube Biomass to Prepare Biochar by Pyrolysis and Activation: Characterization, Adsorption Characteristics, and Mechanisms for Nitrogen. Materials 2020, 13, 5594. [Google Scholar] [CrossRef] [PubMed]
- Dehkhoda, A.M.; Ellis, N.; Gyenge, E. Electrosorption on Activated Biochar: Effect of Thermo-Chemical Activation Treatment on the Electric Double Layer Capacitance. J. Appl. Electrochem. 2014, 44, 141–157. [Google Scholar] [CrossRef]
- Mena-Durán, C.J.; Alonso-Lemus, I.L.; Quintana, P.; Barbosa, R.; Ordoñez, L.C.; Escobar, B. Preparation of Metal-Free Electrocatalysts from Cassava Residues for the Oxygen Reduction Reaction: A Sulfur Functionalization Approach. Int. J. Hydrogen Energy 2018, 43, 3172–3179. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martínez-Alonso, A.; Tascón, J.M.D. Raman Microprobe Studies on Carbon Materials. Carbon 1994, 32, 1523–1532. [Google Scholar] [CrossRef]
- Johnson, C.A.; Patrick, J.W.; Mark Thomas, K. Characterization of Coal Chars by Raman Spectroscopy, X-ray Diffraction and Reflectance Measurements. Fuel 1986, 65, 1284–1290. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, R.W. Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Chen, S.; Xiang, H.; Gong, X.-G. Hybrid Crystalline sp2sp3 Carbon as a High-Efficiency Solar Cell Absorber. Carbon 2016, 109, 246–252. [Google Scholar] [CrossRef]
- Baillères, H.; Davrieux, F.; Ham-Pichavant, F. Near Infrared Analysis as a Tool for Rapid Screening of Some Major Wood Characteristics in a Eucalyptus Breeding Program. Ann. For. Sci. 2002, 59. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Sheng, K. Characterization of Biochar Properties Affected by Different Pyrolysis Temperatures Using Visible-Near-Infrared Spectroscopy. ISRN Spectrosc. 2012, 2012, 712837. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wang, X.; Fan, D.; Yang, H.; Xu, H.; Min, H.; Yang, X. Biomass Derived Janus Solar Evaporator for Synergic Water Evaporation and Purification. Sustain. Mater. Technol. 2020, 25, e00180. [Google Scholar] [CrossRef]
- Zhu, M.; Yu, J.; Ma, C.; Zhang, C.; Wu, D.; Zhu, H. Carbonized Daikon for High Efficient Solar Steam Generation. Sol. Energy Mater. Sol. Cells 2019, 191, 83–90. [Google Scholar] [CrossRef]
Sample | Pyrolysis Temperature (°C) | CY (%) |
---|---|---|
SOP400 | 400 | 36.35 ± 0.47 |
SOP600 | 600 | 28.83 ± 0.11 |
SOP800 | 800 | 27.14 ± 0.09 |
Sample | % C | % H | % N | % S | % O * | H/C | O/C |
---|---|---|---|---|---|---|---|
SOPRAW | 47.82 ± 1.48 | 5.99 ± 0.06 | 0 | 0 | 46.09 ± 1.54 | 0.125 ± 0.003 | 0.963 ± 0.062 |
SOP400 | 54.6 ± 7.44 | 3.51 ± 0.48 | 0 | 0 | 41.89 ± 7.92 | 0.064 ± 0.000 | 0.784 ± 0.252 |
SOP600 | 60.59 ± 0.99 | 1.65 ± 0.05 | 0 | 0 | 37.77 ± 1.04 | 0.027 ± 0.000 | 0.624 ± 0.027 |
SOP800 | 72.26 ± 0.62 | 0.88 ± 0.01 | 0 | 0 | 26.86 ± 0.64 | 0.012 ± 0.000 | 0.372 ± 0.012 |
Sample | ID/IG | ID/(ID + IG) |
---|---|---|
SOP400 | 0.581 | 0.367 |
SOP600 | 0.700 | 0.411 |
SOP800 | 0.926 | 0.481 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Canche, N.G.; Carrillo, J.G.; Escobar-Morales, B.; Salgado-Tránsito, I.; Pacheco, N.; Pech-Cohuo, S.C.; Peña-Cruz, M.I. Physicochemical and Optical Characterization of Citrus aurantium Derived Biochar for Solar Absorber Applications. Materials 2021, 14, 4756. https://doi.org/10.3390/ma14164756
Gonzalez-Canche NG, Carrillo JG, Escobar-Morales B, Salgado-Tránsito I, Pacheco N, Pech-Cohuo SC, Peña-Cruz MI. Physicochemical and Optical Characterization of Citrus aurantium Derived Biochar for Solar Absorber Applications. Materials. 2021; 14(16):4756. https://doi.org/10.3390/ma14164756
Chicago/Turabian StyleGonzalez-Canche, Nancy G., Jose G. Carrillo, Beatriz Escobar-Morales, Iván Salgado-Tránsito, Neith Pacheco, Soledad Cecilia Pech-Cohuo, and Manuel I. Peña-Cruz. 2021. "Physicochemical and Optical Characterization of Citrus aurantium Derived Biochar for Solar Absorber Applications" Materials 14, no. 16: 4756. https://doi.org/10.3390/ma14164756
APA StyleGonzalez-Canche, N. G., Carrillo, J. G., Escobar-Morales, B., Salgado-Tránsito, I., Pacheco, N., Pech-Cohuo, S. C., & Peña-Cruz, M. I. (2021). Physicochemical and Optical Characterization of Citrus aurantium Derived Biochar for Solar Absorber Applications. Materials, 14(16), 4756. https://doi.org/10.3390/ma14164756