Bonding Performance of Universal Adhesives Applied to Nano-Hydroxyapatite Desensitized Dentin Using Etch-and-Rinse or Self-Etch Mode
<p>Schematic illustration of the study design. Mid-coronal and disc specimens were prepared for sensitive models and applied by desensitizing treatments. Mid-coronal specimens were bonded with universal adhesives, restored by resin composite, then sectioned into beams and slabs. μTBS were tested on bonded beams. Adhesive interfaces were observed on bonded slabs by CLSM and SEM. Dentin tubular occlusion before and after adhesive application were analyzed by SEM. Wettability of universal adhesives was measured by the contact angle.</p> "> Figure 2
<p>Micro-tensile bond strength and failure mode. (<b>a</b>) Effects of desensitizer types and bonding modes on bond strength of universal adhesives. Different superscript uppercase letters indicate significant differences with etch-and-rinse mode (<span class="html-italic">p</span> < 0.05). Different superscript lowercase letters indicate significant differences with self-etch mode (<span class="html-italic">p</span> < 0.05). * denotes a significant difference between the etch-and-rinse mode and self-etch mode (<span class="html-italic">p</span> < 0.05). (<b>b</b>) Failure mode distribution of fracture specimens. M: mixed failure; A: adhesive failure; CD: cohesive failure within the dentin; and CC: cohesive failure within the composite resin.</p> "> Figure 3
<p>General condition graphs (×90) and micrographs (×2000) of adhesive and mixed failure on dentin interfaces. (<b>a</b>,<b>b</b>) Mixed failure from control group bonded with etch-and-rinse mode; (<b>c</b>,<b>d</b>) adhesive failure from desensitizing groups bonded with self-etch mode; (<b>e</b>,<b>f</b>) typical adhesive failure; and (<b>g</b>,<b>h</b>) typical mixed failure. Circle: open dentin tubules; triangle: sealed dentin tubules; and solid arrowhead: resin tags.</p> "> Figure 4
<p>SEM image observation and EDX spectrum of dentin surface after desensitization treatment (×2000 and ×5000).</p> "> Figure 5
<p>Morphological SEM images of desensitized dentin surfaces treated by universal adhesives with etch-and-rinse mode or self-etch mode. (<b>a</b>) All-Bond Universal (ABU). (<b>b</b>) Single Bond Universal (SBU). (<b>c</b>) Clearfil Universal Bond (CUB). ER: etch-and-rinse mode; SE: self-etch mode.</p> "> Figure 6
<p>Contact angle values and anterior view of universal adhesives on dentin substrates after desensitization. (<b>a</b>) All-Bond Universal. (<b>b</b>) Single Bond Universal. (<b>c</b>) Clearfil Universal Bond. * denotes a significant difference between the etch-and-rinse mode and self-etch mode (<span class="html-italic">p</span> < 0.05).</p> "> Figure 7
<p>Adhesive resin infiltration observation in etch-and-rinse mode or self-etch mode. (<b>a</b>) All-Bond Universal (ABU). (<b>b</b>) Single Bond Universal (SBU). (<b>c</b>) Clearfil Universal Bond (CUB). Long homogeneous resin tags formed in etch-and-rinse mode and short resin tags formed in self-etch mode. ER: etch-and-rinse mode; SE: self-etch mode.</p> "> Figure 8
<p>Resin tags’ length of universal adhesives in etch-and-rinse mode or self-etch mode. (<b>a</b>) All-Bond Universal. (<b>b</b>) Single Bond Universal. (<b>c</b>) Clearfil Universal Bond. Different superscript uppercase letters indicate significant differences in etch-and-rinse mode (<span class="html-italic">p</span> < 0.05). Different superscript lowercase letters indicate significant differences in self-etch mode (<span class="html-italic">p</span> < 0.05). * denotes a significant difference between the etch-and-rinse mode and self-etch mode (<span class="html-italic">p</span> < 0.05).</p> "> Figure 9
<p>Nanoleakage within the resin–dentin bonding interfaces in etch-and-rinse mode or self-etch mode. (<b>a</b>) All-Bond Universal (ABU). (<b>b</b>) Single Bond Universal (SBU). (<b>c</b>) Clearfil Universal Bond (CUB). A silver-free zone distributed along adhesive interfaces in self-etch mode. Spotted silver deposits were restricted to the hybrid layer of etch-and-rinse mode. Solid arrowhead: nanoleakage indicated by silver deposits. ER: etch-and-rinse mode; SE: self-etch mode.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensitive Specimen Preparation
2.2. Surface Desensitization
2.3. Bonding Procedure
2.4. Micro-Tensile Bond Testing (μTBS)
2.5. Dentin Tubular Sealing Observation
2.6. Contact Angle
2.7. Confocal Laser Scanning Microscopy Analysis
2.8. Nanoleakage Evaluation
2.9. Statistical Analysis
3. Results
3.1. Micro-Tensile Bond Strength
3.2. Dentin Tubular Sealing Observation
3.3. Contact Angle
3.4. Confocal Laser Scanning Microscopy Analysis
3.5. Nanoleakage Evaluation
4. Discussion
5. Conclusions
- nHAp-based desensitizing agents compromise the bond strength and adhesive resin penetration of universal adhesives with self-etch mode.
- Compared with self-etch mode, the etch-and-rinse technique produces comparable bond strength on nHAp-based desensitized dentin, but increases nanoleakage of the adhesive interfaces.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Meerbeek, B.; Yoshihara, K.; Van Landuyt, K.; Yoshida, Y.; Peumans, M. From Buonocore’s Pioneering Acid-Etch Technique to Self-Adhering Restoratives. A Status Perspective of Rapidly Advancing Dental Adhesive Technology. J. Adhes. Dent. 2020, 22, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Pashley, D.H.; Tay, F.R.; Breschi, L.; Tjäderhane, L.; Carvalho, R.M.; Carrilho, M.; Tezvergil-Mutluay, A. State of the art etch-and-rinse adhesives. Dent. Mater. 2011, 27, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Niu, L.N.; Xie, H.; Zhang, Z.Y.; Zhou, L.Q.; Jiao, K.; Chen, J.H.; Pashley, D.H.; Tay, F.R. Bonding of universal adhesives to dentine—Old wine in new bottles? J. Dent. 2015, 43, 525–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.Y.; Tian, F.C.; Niu, L.N.; Ochala, K.; Chen, C.; Fu, B.P.; Wang, X.Y.; Pashley, D.H.; Tay, F.R. Defying ageing: An expectation for dentine bonding with universal adhesives? J. Dent. 2016, 45, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Michaud, P.L.; Brown, M. Effect of universal adhesive etching modes on bond strength to dual-polymerizing composite resins. J. Prosthet. Dent. 2018, 119, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Dačić, S.; Miljković, M.; Mitić, A.; Radenković, G.; Anđelković-Apostolović, M.; Jovanović, M. Influence of etching mode and composite resin type on bond strength to dentin using universal adhesive system. Microsc. Res. Tech. 2020, 84, 1211–1219. [Google Scholar] [CrossRef]
- Marto, C.M.; Baptista Paula, A.; Nunes, T.; Pimenta, M.; Abrantes, A.M.; Pires, A.S.; Laranjo, M.; Coelho, A.; Donato, H.; Botelho, M.F.; et al. Evaluation of the efficacy of dentin hypersensitivity treatments—A systematic review and follow-up analysis. J. Oral. Rehabil. 2019, 46, 952–990. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bakri, M.M.; Yahya, F.; Ando, H.; Unno, S.; Kitagawa, J. The Role of Transient Receptor Potential (TRP) Channels in the Transduction of Dental Pain. Int. J. Mol. Sci. 2019, 20, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.L.; Zheng, G.; Lin, H.; Yang, M.; Zhang, Y.D.; Han, J.M. Network meta-analysis on the effect of desensitizing toothpastes on dentine hypersensitivity. J. Dent. 2019, 88, 103170. [Google Scholar] [CrossRef]
- Jung, J.H.; Kim, D.H.; Yoo, K.H.; Yoon, S.Y.; Kim, Y.; Bae, M.K.; Chung, J.; Ko, C.C.; Kwon, Y.H.; Kim, Y.I. Dentin sealing and antibacterial effects of silver-doped bioactive glass/mesoporous silica nanocomposite: An in vitro study. Clin. Oral. Investig. 2019, 23, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Bekes, K. Clinical presentation and physiological mechanisms of dentine hypersensitivity. In Dentine Hypersensitivity: Developing a Person-Centred Approach to Oral; Robinson, P.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 21–32. [Google Scholar] [CrossRef]
- Mantzourani, M.; Sharma, D. Dentine sensitivity: Past, present and future. J. Dent. 2013, 41 (Suppl. 4), S3–S17. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, H.; Yu, J.; Yang, H.; Song, F.; Huang, C. Application of electrophoretic deposition to occlude dentinal tubules in vitro. J. Dent. 2018, 71, 43–48. [Google Scholar] [CrossRef]
- Li, C.; Lu, D.; Deng, J.; Zhang, X.; Yang, P. Amyloid-Like Rapid Surface Modification for Antifouling and In-Depth Remineralization of Dentine Tubules to Treat Dental Hypersensitivity. Adv. Mater. 2019, 31, e1903973. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.X.; Tenenbaum, H.C.; Wilder, R.S.; Quock, R.; Hewlett, E.R.; Ren, Y.F. Pathogenesis, diagnosis and management of dentin hypersensitivity: An evidence-based overview for dental practitioners. BMC Oral. Health 2020, 20, 220. [Google Scholar] [CrossRef] [PubMed]
- Vano, M.; Derchi, G.; Barone, A.; Pinna, R.; Usai, P.; Covani, U. Reducing dentine hypersensitivity with nano-hydroxyapatite toothpaste: A double-blind randomized controlled trial. Clin. Oral. Investig. 2018, 22, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Rejula, F.; Sam, J.V.G.; Christaline, R.; Nair, M.G.; Dinakaran, S. Comparative Evaluation of Effect of Nano-hydroxyapatite and 8% Arginine Containing Toothpastes in Managing Dentin Hypersensitivity: Double Blind Randomized Clinical Trial. Acta Med. (Hradec Kralove) 2017, 60, 114–119. [Google Scholar] [CrossRef]
- de Melo Alencar, C.; de Paula, B.L.F.; Guanipa Ortiz, M.I.; Baraúna Magno, M.; Martins Silva, C.; Cople Maia, L. Clinical efficacy of nano-hydroxyapatite in dentin hypersensitivity: A systematic review and meta-analysis. J. Dent. 2019, 82, 11–21. [Google Scholar] [CrossRef]
- Kurt, S.; Kırtıloğlu, T.; Yılmaz, N.A.; Ertaş, E.; Oruçoğlu, H. Evaluation of the effects of Er:YAG laser, Nd:YAG laser, and two different desensitizers on dentin permeability: In vitro study. Lasers Med. Sci. 2018, 33, 1883–1890. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, J.; Malmstrom, H.S.; Ren, Y.F. Protective effects of resin sealant and flowable composite coatings against erosive and abrasive wear of dental hard tissues. J. Dent. 2016, 49, 68–74. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, J.; Zhang, S.; Malmstrom, H.S.; Ren, Y.F. Effectiveness of resin-based materials against erosive and abrasive enamel wear. Clin. Oral. Investig. 2017, 21, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hua, F.; Xu, P.; Huang, C.; Yang, H. Effects of Desensitizers on Adhesive-Dentin Bond Strength: A Systematic Review and Meta-analysis. J. Adhes. Dent. 2021, 23, 7–19. [Google Scholar] [CrossRef]
- Pei, D.; Meng, Y.; Li, Y.; Liu, J.; Lu, Y. Influence of nano-hydroxyapatite containing desensitizing toothpastes on the sealing ability of dentinal tubules and bonding performance of self-etch adhesives. J. Mech. Behav. Biomed. Mater. 2019, 91, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Makkar, S.; Goyal, M.; Kaushal, A.; Hegde, V. Effect of desensitizing treatments on bond strength of resin composites to dentin—An in vitro study. J. Conserv. Dent. 2014, 17, 458–461. [Google Scholar] [CrossRef] [Green Version]
- Arisu, H.D.; Dalkihç, E.; Üçtaşli, M.B. Effect of desensitizing agents on the microtensile bond strength of a two-step self-etch adhesive to dentin. Oper. Dent. 2011, 36, 153–161. [Google Scholar] [CrossRef]
- Escalante-Otárola, W.G.; Castro-Núñez, G.M.; Jordão-Basso, K.C.F.; Guimarães, B.M.; Palma-Dibb, R.G.; Kuga, M.C. Evaluation of dentin desensitization protocols on the dentinal surface and their effects on the dentin bond interface. J. Dent. 2018, 75, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Chen, Z.; Yan, H.; Huang, C. Effects of calcium-containing desensitizers on the bonding stability of an etch-and-rinse adhesive against long-term water storage and pH cycling. Dent. Mater. J. 2018, 37, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Cortiano, F.M.; Rached, R.N.; Mazur, R.F.; Vieira, S.; Freire, A.; de Souza, E.M. Effect of desensitizing agents on the microtensile bond strength of two-step etch-and-rinse adhesives to dentin. Eur. J. Oral. Sci. 2016, 124, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.C.; Wang, Y.L.; Lin, P.Y.; Chen, Y.Y.; Chien, C.Y.; Lin, H.P.; Lin, C.P. A mesoporous biomaterial for biomimetic crystallization in dentinal tubules without impairing the bonding of a self-etch resin to dentin. J. Formos. Med. Assoc. 2016, 115, 455–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Yang, H.; Li, K.; Lei, J.; Zhou, L.; Huang, C. A novel application of nanohydroxyapatite/mesoporous silica biocomposite on treating dentin hypersensitivity: An in vitro study. J. Dent. 2016, 50, 21–29. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.R.; Yiu, C.; Hashimoto, M.; Breschi, L.; Carvalho, R.M.; Ito, S. Collagen degradation by host-derived enzymes during aging. J. Dent. Res. 2004, 83, 216–221. [Google Scholar] [CrossRef]
- Geng Vivanco, R.; Tonani-Torrieri, R.; Souza, A.B.S.; Marquele-Oliveira, F.; Pires-de-Souza, F.C.P. Effect of natural primer associated to bioactive glass-ceramic on adhesive/dentin interface. J. Dent. 2021, 106, 103585. [Google Scholar] [CrossRef]
- Arhun, N.; Halacoglu, D.M.; Ozduman, Z.C.; Tuncer, D. Efficacy of multi-mode adhesive systems on dentin wettability and microtensile bond strength of resin composite. J. Adhes. Sci. Technol. 2018, 32, 2405–2418. [Google Scholar] [CrossRef]
- Liu, J.; Lü, P.; Sun, Y.; Wang, Y. Wettability of dentin after Yb:KYW thin-disk femtosecond ablation. Lasers Med. Sci. 2015, 30, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Hiller, K.A.; Buchalla, W.; Grillmeier, I.; Neubauer, C.; Schmalz, G. In vitro effects of hydroxyapatite containing toothpastes on dentin permeability after multiple applications and ageing. Sci. Rep. 2018, 8, 4888. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Liu, S.; Lv, Y.; Liu, W.; Ma, W.; Xu, P. Effect of a dentifrice containing different particle sizes of hydroxyapatite on dentin tubule occlusion and aqueous Cr (VI) sorption. Int. J. Nanomed. 2019, 14, 5243–5256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baglar, S.; Erdem, U.; Dogan, M.; Turkoz, M. Dentinal tubule occluding capability of nano-hydroxyapatite; The in-vitro evaluation. Microsc. Res. Tech. 2018, 81, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, S.; Wang, X.; Egusa, H.; Sun, J. High-Performance Dental Adhesives Containing an Ether-Based Monomer. J. Dent. Res. 2020, 99, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Takamizawa, T.; Ishii, R.; Tsujimoto, A.; Hirokane, E.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Influence of Application Time on Dentin Bond Performance in Different Etching Modes of Universal Adhesives. Oper. Dent. 2020, 45, 183–195. [Google Scholar] [CrossRef]
- Tsujimoto, A.; Barkmeier, W.W.; Takamizawa, T.; Wilwerding, T.M.; Latta, M.A.; Miyazaki, M. Interfacial Characteristics and Bond Durability of Universal Adhesive to Various Substrates. Oper. Dent. 2017, 42, E59–E70. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.M.; Alderete, L.; Farge, P. Dentinal tubules driven wetting of dentin: Cassie-Baxter modelling. Eur. Phys. J. E Soft Matter 2009, 30, 187–195. [Google Scholar] [CrossRef]
- Stasic, J.N.; Selaković, N.; Puač, N.; Miletić, M.; Malović, G.; Petrović, Z.L.; Veljovic, D.N.; Miletic, V. Effects of non-thermal atmospheric plasma treatment on dentin wetting and surface free energy for application of universal adhesives. Clin. Oral. Investig. 2019, 23, 1383–1396. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.; De Munck, J.; Van Landuyt, K.L. State of the art of self-etch adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef]
- Choi, Y.J.; Bae, M.K.; Kim, Y.I.; Park, J.K.; Son, S.A. Effects of microsurface structure of bioactive nanoparticles on dentinal tubules as a dentin desensitizer. PLoS ONE 2020, 15, e0237726. [Google Scholar] [CrossRef]
- Takamizawa, T.; Barkmeier, W.W.; Tsujimoto, A.; Berry, T.P.; Watanabe, H.; Erickson, R.L.; Latta, M.A.; Miyazaki, M. Influence of different etching modes on bond strength and fatigue strength to dentin using universal adhesive systems. Dent. Mater. 2016, 32, e9–e21. [Google Scholar] [CrossRef]
- Jang, J.H.; Lee, M.G.; Woo, S.U.; Lee, C.O.; Yi, J.K.; Kim, D.S. Comparative study of the dentin bond strength of a new universal adhesive. Dent. Mater. J. 2016, 35, 606–612. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, M.A.; Luque-Martinez, I.; Malaquias, P.; Hass, V.; Reis, A.; Campanha, N.H.; Loguercio, A.D. In vitro longevity of bonding properties of universal adhesives to dentin. Oper. Dent. 2015, 40, 282–292. [Google Scholar] [CrossRef]
- Yan, H.; Wang, S.; Han, L.; Peng, W.; Yi, L.; Guo, R.; Liu, S.; Yang, H.; Huang, C. Chlorhexidine-encapsulated mesoporous silica-modified dentin adhesive. J. Dent. 2018, 78, 83–90. [Google Scholar] [CrossRef] [PubMed]
Adhesive | pH | Basic Compositions | Etch-and-Rinse Strategy | Self-Etch Strategy |
---|---|---|---|---|
All-Bond Universal (Bisco, USA) | 3.2 | 10-MDP, HEMA, Bis-GMA, ethanol, water, photoinitiators | 1. Apply etchant for 15 s; 2. Rinse thoroughly with water spray and remove excess water by air-drying or blotting with cotton pellets; leaving the surface moist; 3. Apply adhesive as the self-etch mode. | 1. Apply two separate coats of adhesive and scrub for 10–15 s per coat; 2. Evaporate excess solvent by thoroughly air-drying for at least 10 s until there is no visible movement of the adhesive; 3. The surface should have a uniform glossy appearance; otherwise, apply an additional coat of adhesive and repeat Step 2; 4. Light cure for 10 s. |
Single Bond Universal (3M ESPE, USA) | 2.7 | 10-MDP, HEMA, Bis-GMA, DCDMA, MPTMS, VitrebondTM copolymer, silane, ethanol, water, photoinitiators | 1. Apply etchant for 15 s; 2. Rinse thoroughly with water spray and dry and remove excess water by water- and oil-free air or blotting with cotton pellets; leaving moist; 3. Apply adhesive as the self-etch mode. | 1. Apply the adhesive and rub for 20 s; 2. Evaporate solvent by gently air-drying for approximately 5 s; 3. Light cure for 10 s. |
Clearfil Universal Bond Quick (Kuraray Noritake Dental, Japan) | 2.3 | 10-MDP, 2-HEMA, Bis-GMA, hydrophilic amide methacrylate, MPTMS, NaF, colloidal silica, silane coupling agent, photoinitiators | 1. Apply etchant, leave it in place for 15 s, then rinse and dry; 2. Apply adhesive as the self-etch mode. | 1. Apply the adhesive with a rubbing motion without waiting time; 2. Dry the surface sufficiently by blowing mild air for more than 5 s until the adhesive does not move; 3. Light-cure for 10 s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Huang, F.; Wang, S.; Li, M.; Lu, Y.; Pei, D.; Li, A. Bonding Performance of Universal Adhesives Applied to Nano-Hydroxyapatite Desensitized Dentin Using Etch-and-Rinse or Self-Etch Mode. Materials 2021, 14, 4746. https://doi.org/10.3390/ma14164746
Meng Y, Huang F, Wang S, Li M, Lu Y, Pei D, Li A. Bonding Performance of Universal Adhesives Applied to Nano-Hydroxyapatite Desensitized Dentin Using Etch-and-Rinse or Self-Etch Mode. Materials. 2021; 14(16):4746. https://doi.org/10.3390/ma14164746
Chicago/Turabian StyleMeng, Yuchen, Fan Huang, Silin Wang, Meiwen Li, Yi Lu, Dandan Pei, and Ang Li. 2021. "Bonding Performance of Universal Adhesives Applied to Nano-Hydroxyapatite Desensitized Dentin Using Etch-and-Rinse or Self-Etch Mode" Materials 14, no. 16: 4746. https://doi.org/10.3390/ma14164746
APA StyleMeng, Y., Huang, F., Wang, S., Li, M., Lu, Y., Pei, D., & Li, A. (2021). Bonding Performance of Universal Adhesives Applied to Nano-Hydroxyapatite Desensitized Dentin Using Etch-and-Rinse or Self-Etch Mode. Materials, 14(16), 4746. https://doi.org/10.3390/ma14164746