Composites Based on Hydroxyapatite and Whey Protein Isolate for Applications in Bone Regeneration
"> Figure 1
<p>(<b>a</b>) XRD diffractograms of hydroxyapatite obtained by methods A and B; (<b>b</b>) FTIR spectra of hydroxyapatite obtained by methods A and B; (<b>c</b>) FT-IR spectra of WPI hydrogel.</p> "> Figure 2
<p>FT-IR spectra of composites with different Hap contents indicated by a green circle: (<b>a</b>) WPI/HAp A; (<b>b</b>) WPI/HAp B.</p> "> Figure 3
<p>Conductivity analysis of hydrogels during a 14-day incubation in fluids simulating the biological environment: (<b>a</b>) incubation in artificial saliva; (<b>b</b>) incubation in SBF; (<b>c</b>) incubation in Ringer’s fluid; (<b>d</b>) incubation in distilled water.</p> "> Figure 4
<p>Potentiometry analysis of the hydrogels during a 14-day incubation in fluids simulating the biological environment: (<b>a</b>) incubation in artificial saliva; (<b>b</b>) incubation in SBF; (<b>c</b>) incubation in Ringer’s fluid; (<b>d</b>) incubation in distilled water.</p> "> Figure 5
<p>Swelling ability of hydrogels during a 14-day incubation in fluids simulating the biological environment: (<b>a</b>) incubation in artificial saliva; (<b>b</b>) incubation in SBF; (<b>c</b>) incubation in Ringer’s fluid; (<b>d</b>) incubation in distilled water.</p> "> Figure 5 Cont.
<p>Swelling ability of hydrogels during a 14-day incubation in fluids simulating the biological environment: (<b>a</b>) incubation in artificial saliva; (<b>b</b>) incubation in SBF; (<b>c</b>) incubation in Ringer’s fluid; (<b>d</b>) incubation in distilled water.</p> "> Figure 6
<p>Morphology analysis of the HAp powders and composite materials before the incubation period: (<b>a</b>) SEM images of hydroxyapatite obtained by method A; (<b>b</b>) SEM images of hydroxyapatite obtained by method B; (<b>c</b>) SEM image of the WPI/HAp A5 composite; (<b>d</b>); SEM image of the WPI/HAp B5 composite; (<b>e</b>) SEM image of a pure WPI hydrogel matrix.</p> "> Figure 6 Cont.
<p>Morphology analysis of the HAp powders and composite materials before the incubation period: (<b>a</b>) SEM images of hydroxyapatite obtained by method A; (<b>b</b>) SEM images of hydroxyapatite obtained by method B; (<b>c</b>) SEM image of the WPI/HAp A5 composite; (<b>d</b>); SEM image of the WPI/HAp B5 composite; (<b>e</b>) SEM image of a pure WPI hydrogel matrix.</p> "> Figure 7
<p>SEM morphology and EDS microanalysis of the composites and the pure WPI matrix after incubation in SBF: (<b>a</b>) WPI A5; (<b>b</b>) WPI A15; (<b>c</b>) WPI B5; (<b>d</b>) WPI D15; (<b>e</b>) pure WPI hydrogel.</p> "> Figure 7 Cont.
<p>SEM morphology and EDS microanalysis of the composites and the pure WPI matrix after incubation in SBF: (<b>a</b>) WPI A5; (<b>b</b>) WPI A15; (<b>c</b>) WPI B5; (<b>d</b>) WPI D15; (<b>e</b>) pure WPI hydrogel.</p> "> Figure 8
<p>(<b>a</b>) SEM morphology of WPI A15 after incubation in Ringer’s fluid; (<b>b</b>) SEM morphology of WPI B15 after incubation in Ringer’s fluid; (<b>c</b>) SEM morphology of WPI A15 after incubation in distilled water; (<b>d</b>) SEM morphology of WPI B15 after incubation in distilled water.</p> "> Figure 9
<p>Analysis of the stability of the HAp A and HAp B suspensions in distilled water: (<b>a</b>) transmission of HAp A; (<b>b</b>) backscattering of HAp A; (<b>c</b>) transmission of HAp B; (<b>d</b>) backscattering of HAp B.</p> "> Figure 10
<p>(<b>a</b>) The viability of murine fibroblasts L-929 after 24 h incubation with WPI modified HAp A and HAp B biocomposites, evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay according to ISO-10993-5:2009. The cells incubated without composites served as a positive control of the viability (100%). The data are presented as mean ± SD for the three separate experiments. The green line indicates the minimum level (70%) of the cells’ metabolic activity required to recognize the biomaterial as non-cytotoxic at the in vitro level; (<b>b</b>) NF-κB induction in THP1-Blue™ monocytes incubated for 24 h with WPI modified HAp A, and HAp B biocomposites. The cells incubated without composites served as a negative control of the monocyte’s activation (NC), and monocytes stimulated with <span class="html-italic">S. cerevisiae</span> β-glucan served as the positive control (PC). The data are presented as the mean ± SD for the four separate experiments. The green line indicates the physiological level (0.114 ± 0.013) of the non-stimulated monocytes. * <span class="html-italic">p</span> values (<0.05) calculate in comparison to the untreated cell cultures.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Hydroxyapatite
2.3. Preparation of the Composite Hydrogels
2.4. X-ray Diffraction Analysis
2.5. Fourier Transform Infrared Spectroscopy Analysis
2.6. Incubation In Vitro
2.7. Swelling Capacity
2.8. Morphology Analysis
2.9. Stability Measurements
2.10. In Vitro Cytocompatibility
2.10.1. Cell Culture
2.10.2. Direct Contact Cytotoxicity Assay
2.11. Monocyte Activation
3. Results
3.1. X-ray Diffraction Analysis of HAp
3.2. Fourier-Transform Infrared Spectroscopy Analysis
3.2.1. FT-IR Analysis of HAp
3.2.2. FT-IR Analysis of the WPI Matrix and WPI/HAp Composites
3.3. Incubation In Vitro
3.3.1. Electroanalytical Analysis—Conductivity
3.3.2. Electrochemical Analysis—Potentiometry
3.3.3. Swelling Capacity
3.4. Morphology Analysis
3.4.1. Hydroxyapatite Morphology
3.4.2. Hydrogels’ Morphology before Incubation
3.4.3. Hydrogels’ Morphology after Incubation
3.5. Stability Measurements
3.6. The Viability of Cells in the Milieu of the Biocomposites
3.7. The Biocomposite-Mediated Monocyte Activation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baird, J.; Jacob, C.; Barker, M.; Fall, C.H.D.; Hanson, M.; Harvey, N.C.; Inskip, H.M.; Kumaran, K.; Cooper, C. Developmental Origins of Health and Disease: A Lifecourse Approach to the Prevention of Non-Communicable Diseases. Healthcare 2017, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Nugent, R.; Bertram, M.Y.; Jan, S.; Niessen, L.W.; Sassi, F.; Jamison, D.T.; González Pier, E.; Beaglehole, R. Investing in non-communicable disease prevention and management to advance the Sustainable Development Goals. Lancet 2018, 391, 2029–2035. [Google Scholar] [CrossRef]
- Sözen, T.; Özışık, L.; Başaran, N.C. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef]
- Ström, O.; Borgström, F.; Kanis, J.A.; Compston, J.; Cooper, C.; McCloskey, E.V.; Jönsson, B. Osteoporosis: Burden, health care provision and opportunities in the EU. Arch. Osteoporos. 2011, 6, 59–155. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.-X.; Yu, Q. Primary osteoporosis in postmenopausal women. Chronic Dis. Transl. Med. 2015, 1, 9–13. [Google Scholar]
- Mackey, P.A.; Whitaker, M.D. Osteoporosis: A Therapeutic Update. J. Nurse Pract. 2015, 11, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Khosla, S.; Hofbauer, L.C. Osteoporosis treatment: Recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 2017, 5, 898–907. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Sonny Bal, B.; Rahaman, M.N. Preparation of resorbable carbonate-substituted hollow hydroxyapatite microspheres and their evaluation in osseous defects in vivo. Mater. Sci. Eng. C 2016, 60, 324–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.T.; Imura, M.; Nemoto, Y.; Cheng, C.H.; Yamauchi, Y. Block-copolymer-assisted synthesis of hydroxyapatite nanoparticles with high surface area and uniform size. Sci. Technol. Adv. Mater. 2011, 12, 1–7. [Google Scholar] [CrossRef]
- Kolmas, J.; Krukowski, S.; Laskus, A.; Jurkitewicz, M. Synthetic hydroxyapatite in pharmaceutical applications. Ceram. Int. 2016, 42, 2472–2487. [Google Scholar] [CrossRef]
- Murata, M.; Hino, J.; Kabir, M.A.; Yokozeki, K.; Sakamoto, M.; Nakajima, T.; Akazawa, T. Osteoinduction in Novel Micropores of Partially Dissolved and Precipitated Hydroxyapatite Block in Scalp of Young Rats. Materials 2021, 14, 196. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; He, Y.; Sun, J.; Yang, W.; Luo, W.; Dou, C.; Kang, F.; Zhao, C.; He, J.; Yang, X.; et al. Chemical self-assembly of multi-functional hydroxyapatite with coral-like nanostructure for osteoporotic bone reconstruction. ACS Appl. Mater. Interfaces 2018, 10, 25547–25560. [Google Scholar] [CrossRef] [PubMed]
- Arcos, D.; Boccaccini, A.R.; Bohner, M.; Díez-Pérez, A.; Epple, M.; Gómez-Barrena, E.; Herrera, A.; Planell, J.A.; Rodríguez-Mañas, L.; Vallet-Regí, M. The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomater. 2014, 10, 1793–1805. [Google Scholar] [CrossRef] [Green Version]
- Germaini, M.M.; Detsch, R.; Grünewald, A.; Magnaudeix, A.; Lalloue, F.; Boccaccini, A.R.; Champion, E. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Biomed. Mater. 2017, 6, 035008. [Google Scholar] [CrossRef] [PubMed]
- Suárez-González, D.; Barnhart, K.; Migneco, F.; Flanagan, C.; Hollister, S.J.; Murphy, W.L. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release. Biomaterials 2012, 33, 713–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Family, R.; Solati-Hashjin, M.; Nik, S.N.; Nemati, A. Surface modification for titanium implants by hydroxyapatite nanocomposite. Casp. J. Intern. Med. 2012, 3, 460–465. [Google Scholar]
- Corcione, C.E.; Gervaso, F.; Scalera, F.; Montagna, F.; Maiullaro, T.; Sannino, A.; Maffezzoli, A. 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering. J. Polym. Eng. 2017, 37, 741–746. [Google Scholar] [CrossRef]
- Bai, X.; Gao, M.; Syed, S.; Zhuang, J.; Xu, X.; Zhang, X.Q. Bioactive hydrogels for bone regeneration. Bioact. Mater. 2018, 3, 401–417. [Google Scholar] [CrossRef]
- Wu, G.; Feng, C.; Quan, J.; Wang, Z.; Wei, W.; Zang, S.; Kang, S.; Hui, G.; Chen, X.; Wang, Q. In situ controlled release of stromal cell-derived factor-1α and antimiR-138 for on-demand cranial bone regeneration. Carbohydr. Polym. 2018, 182, 215–224. [Google Scholar] [CrossRef]
- Wang, X.; Ao, Q.; Tian, X.; Fan, J.; Tong, H.; Hou, W.; Bai, S. Gelatin-based hydrogels for organ 3D bioprinting. Polymers 2017, 9, 401. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, V.J.; Döbl, A.; Scheibel, T. Silk-Based Materials for Hard Tissue Engineering. Materials 2021, 14, 674. [Google Scholar] [CrossRef]
- Silva, R.; Fabry, B.; Boccaccini, A.R. Fibrous protein-based hydrogels for cell encapsulation. Biomaterials 2014, 35, 6727–6738. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xue, Y.; Wang, J.; Zhu, Y.; Zhu, Y.; Zhang, X.; Liao, J.; Li, X.; Wu, X.; Qin, Y.-X.; et al. A Composite Hydrogel with High Mechanical Strength, Fluorescence, and Degradable Behavior for Bone Tissue Engineering. Polymers 2019, 11, 1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, N.; Hua, J.; Gao, L.; Zhang, B.; Pang, J. The Interplay between Whey Protein Fibrils with Carbon Nanotubes or Carbon Nano-Onions. Materials 2021, 14, 608. [Google Scholar] [CrossRef]
- Shang, J.; Liao, M.; Jin, R.; Teng, X.; Li, H.; Xu, Y.; Zhang, L.; Liu, N. Molecular Properties of Flammulina velutipes Polysaccharide–Whey Protein Isolate (WPI) Complexes via Noncovalent Interactions. Foods 2021, 10, 1. [Google Scholar] [CrossRef]
- Mayorova, A.O.; Jolly, B.C.N.; Verkhovskii, R.A.; Plastun, V.O.; Sindeeva, O.A.; Douglas, T.E.L. pH-Sensitive Dairy-Derived Hydrogels with a Prolonged Drug Release Profile for Cancer Treatment. Materials 2021, 14, 749. [Google Scholar] [CrossRef]
- Castro, L.H.A.; de Araújo, F.H.S.; Olimpio, M.Y.M.; de B. Primo, R.B.; Pereira, T.T.; Lopes, L.A.F.; de M. Trindade, E.B.S.; Fer-nandes, R.; Oesterreich, S.A. Comparative Meta-Analysis of the Effect of Concentrated, Hydrolyzed, and Isolated Whey Protein Supplementation on Body Composition of Physical Activity Practitioners. Nutrients 2019, 11, 2047. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Shah, N. Health benefits of whey proteins. Nutrafoods 2010, 9, 39–45. [Google Scholar] [CrossRef]
- Spotti, M.J.; Tarhan, Ö.; Schaffter, S.; Corvalan, C.; Campanella, O.H. Whey protein gelation induced by enzymatic hydrolysis and heat treatment: Comparison of creep and recovery behavior. Food Hydrocoll. 2017, 63, 696–704. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Ko, S.; Xiao, L. Use of whey proteins for encapsulation and controlled delivery applications. J. Food Eng. 2007, 83, 31–40. [Google Scholar] [CrossRef]
- Sukhodub, L.B.; Sukhodub, L.F.; Kumeda, M.O.; Prylutska, S.V.; Deineka, V.; Prylutskyy, Y.I.; Ritter, U. C60 Fullerene Loaded Hydroxyapatite-Chitosan Beads as a Promising System for Prolonged Drug Release. Carbohydr. Polym. 2019, 223, 115067. [Google Scholar] [CrossRef] [PubMed]
- Gazińska, M.; Kroks, A.; Kobielarz, M.; Włodarczyk, M.; Skibińska, P.; Stępak, B.; Antończak, A.; Morawiak, M.; Płociński, P.; Rudnicka, K. Influence of Hydroxyapatite Surface Functionalization on Thermal and Biological Properties of Poly(l-Lactide)- and Poly(l-Lactide-co-Glycolide)-Based Composites. Int. J. Mol. Sci. 2020, 21, 6711. [Google Scholar] [CrossRef] [PubMed]
- Nawrotek, K.; Tylman, M.; Adamus-Włodarczyk, A.; Rudnicka, K.; Gatkowska, J.; Wieczorek, M.; Wach, R. Influence of chitosan average molecular weight on degradation and stability of electrodeposited conduits. Carbohydr. Polym. 2020, 244, 116484. [Google Scholar] [CrossRef] [PubMed]
- Nazarpak, M.H.; Shahabi, S.; Najafi, F. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef]
- Youness, R.A.; Taha, M.A.; Elhaes, H.; Ibrahim, M. Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis. Mater. Chem. Phys. 2017, 190, 209–218. [Google Scholar] [CrossRef]
- Adzila, S.; Sopyan, I.; Hamdi, M. Mechanochemical synthesis of hydroxyapatite nanopowder: Effects of rotation speed and milling time on powder properties. Appl. Mech. Mater. 2012, 110–116, 3639–3644. [Google Scholar] [CrossRef]
- Lala, S.; Satpati, B.; Kar, T.; Pradhan, S.K. Structural and microstructural characterizations of nanocrystalline hydroxyapatite synthesized by mechanical alloying. Mater. Sci. Eng. C 2013, 33, 2891–2898. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.Y.; Wang, M.; Cheung, W.L.; Guo, B.C.; Jia, D.M. Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. J. Mater. Sci. Mater. Med. 2008, 19, 103–110. [Google Scholar] [CrossRef]
- Pereira, J.O.; Soares, J.; Costa, E.; Silva, S.; Gomes, A.; Pintado, M. Characterization of edible films based on alginate or whey protein incorporated with Bifidobacterium animalis subsp. lactis BB-12 and prebiotics. Coatings 2019, 9, 493. [Google Scholar] [CrossRef] [Green Version]
- Gbassi, G.; Yolou, F.; Sarr, S.; Atheba, P.; Amin, C.; Ake, M. Whey proteins analysis in aqueous medium and in artificial gastric and intestinal fluids. Int. J. Biol. Chem. Sci. 2012, 6, 1828–1837. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.; Kocot, M.; Tryba, A.M.; Serafim, A.; Stancu, I.C.; Jaegermann, Z.; Pamuła, E.; Reilly, G.C.; Douglas, T.E.L. Novel naturally derived whey protein isolate and aragonite biocomposite hydrogels have potential for bone regeneration. Mater. Des. 2020, 188, 108408. [Google Scholar] [CrossRef]
- Tonyali, B.; Cikrikci, S.; Oztop, M.H. Physicochemical and microstructural characterization of gum tragacanth added whey protein based films. Food Res. Int. 2017, 105, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pagès-Hélary, S.; Andriot, I.; Guichard, E.; Canon, F. Retention effect of human saliva on aroma release and respective contribution of salivary mucin and α-amylase. Food Res. Int. 2014, 64, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Holz, J.P.; Bottene, M.K.; Jahno, V.D.; Einloft, S.; Ligabue, R. Menthol-loaded PLGA micro and nanospheres: Synthesis, characterization and degradation in artificial saliva. Mater. Res. 2018, 21, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Shibata, H.; Yokoi, T.; Goto, T.; Kim, I.Y.; Kawashita, M.; Kikkuta, K.; Ohtsuki, C. Behavior of hydroxyapatite crystals in a simulated body fluid: Effects of crystal face. J. Ceram. Soc. Jpn. 2013, 121, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Owonubi, S.J.; Mukwevho, E.; Aderibigbe, B.A.; Revaprasadu, N.; Sadiku, E.R. Cytotoxicity and in vitro evaluation of whey protein-based hydrogels for diabetes mellitus treatment. Int. J. Ind. Chem. 2019, 10, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Dziadek, M.; Kudlackova, R.; Zima, A.; Slosarczyk, A.; Ziabka, M.; Jelen, P.; Shkarina, S.; Cecilia, A.; Zuber, M.; Baumbach, T.; et al. Novel multicomponent organic-inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering. J. Biomed. Mater. Res. 2019, 107, 2479–2491. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ng, S.; Heng, B.C.; Guo, J.; Ma, L.; Tan, T.T.Y.; Ng, K.W.; Loo, S.C.J. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch. Toxicol. 2013, 87, 1037–1052. [Google Scholar] [CrossRef] [PubMed]
- Baht, G.S.; Vi, L.; Alman, B.A. The Role of the Immune Cells in Fracture Healing. Curr. Osteoporos. Rep. 2018, 16, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogle, M.E.; Segar, C.E.; Sridhar, S.; Botchwey, E.A. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp. Biol. Med. 2016, 241, 1084–1097. [Google Scholar] [CrossRef]
- Kiewiet, M.B.G.; Faas, M.M.; de Vos, P. Immunomodulatory protein hydrolysates and their application. Nutrients 2018, 10, 904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khokhani, P.; Rahmani, N.R.; Kok, A.; Öner, F.C.; Alblas, J.; Weinans, H.; Kruyt, M.C.; Croes, M. Use of Therapeutic Pathogen Recognition Receptor Ligands for Osteo-Immunomodulation. Materials 2021, 14, 1119. [Google Scholar] [CrossRef] [PubMed]
Sample Symbol | Ceramic Content (%) |
---|---|
WPI 0 | - |
WPI A5 | 5 |
WPI A10 | 10 |
WPI A15 | 15 |
WPI B5 | 5 |
WPI B10 | 10 |
WPI B15 | 15 |
Component | Amount (g/L) |
---|---|
NaCl | 8.600 |
KCl | 0.300 |
CaCl2·H2O | 0.480 |
Component | Amount (g/L) |
---|---|
NaCl | 0.400 |
KCl | 0.400 |
CaCl2·H2O | 0.795 |
Na2HPO4·H2O | 0.780 |
Na2S·9H2O | 0.005 |
CH4N2O | 1.000 |
Component | Amount (g/L) |
---|---|
NaCl | 8.035 |
NaHCO3 | 0.355 |
KCl | 0.225 |
K2HPO4·3 H2O | 0.231 |
MgCl2·6 H2O | 0.311 |
1M HCl | 39 mL |
CaCl2 | 0.292 |
Na2SO4 | 0.072 |
Tris | 6.118 |
Type of Hydroxyapatite | Wavenumber (cm−1) | Peak Assignment |
---|---|---|
HAp A | 2900–3640 | Band corresponding to H2O absorption |
1620 | Band corresponding to H2O absorption | |
1480 | Carbonate ions | |
1320 | Carbonate ions | |
1011 | Asymmetric Stretching mode of P-O | |
840 | Carbonate ions | |
565 | Triply degenerate Bending of PO43− (O−P−O) | |
555 | Triply degenerate bending of PO43− (O−P−O) | |
HAp B | 2900–3540 | Band corresponding to H2O absorption |
1620 | Band corresponding to H2O absorption | |
1026 | Asymmetric Stretching mode of P−O | |
965 | Asymmetric Stretching mode of P−O | |
845 | Carbonate ions | |
600 | Triply degenerate bending of PO43− (O−P−O) | |
565 | Triply degenerate bending of PO43− (O−P−O) |
Wavenumber (cm−1) | Peak Assignment |
---|---|
3600–3000 | Stretching vibrations of −OH and −NH |
3000–2850 | Stretching vibrations of C−H |
1632 | Amide I |
1520 | Amide II |
1400–1200 | Amide III |
1040 | Stretching vibrations of C-O |
Sample | Spot | Atomic Percentage (wt.%) |
---|---|---|
WPI A5 | 1 | C: 12.8, O: 17.1, Na: 1.1, Mg: 0.5, P: 16.9, Cl: 2.5, K: 0.2, Ca: 38.9, Au: 10.0 |
2 | C: 46.7, O: 22.4, Na: 1.6, Mg: 0.4, P: 5.6, Cl: 2.6, K: 0.4, Ca: 10.8, Au: 9.5 | |
WPI A15 | 1 | C: 19.1, O: 24.4, Na: 1.1, Mg: 0.5, P: 16.2, Cl: 1.3, K: 0.1, Ca: 30.3, Au: 7.2 |
2 | C: 39.8, O: 19.9, Na: 1.5, Mg: 0.4, P: 8.3, Cl: 1.7, K: 0.3, Ca: 15.8, Au: 12.3 | |
WPI B5 | 1 | C: 8.8, O: 20.6, Na: 1.1, Mg: 0.6, P: 20.6, Cl: 2.0, K: 0.1, Ca: 39.9, Au: 6.3 |
2 | C: 48.3, O: 24.0, Na: 1.9, Mg: 0.4, P: 3.8, Cl: 3.0, K: 0.4, Ca: 6.6, Au: 11.6 | |
WPI B15 | 1 | C: 22.1, O: 18.7, Na: 1.2, Mg: 0.2, P: 14.7, Cl: 1.8, K: 0.3, Ca: 34.5, Au: 6.5 |
2 | C: 17.4, O: 14.5, Na: 1.0, Mg: 0.4, P: 13.5, Cl: 2.0, K: 0.3, Ca: 43.6, Au: 7.3 | |
WPI 0 | 1 | C: 40.8, O: 13.6, Na: 3.3, Mg: 0.3, P: 0.6, Cl: 9.9, K: 0.8, Ca: 1.4, Au: 29.3 |
2 | C: 40.2, O: 14.9, Na: 3.4, Mg: 0.5, P: 1.2, Cl: 9.7, K: 0.5, Ca: 1.1, Au: 28.5 |
Hydroxyapatite | Weight (g) | V H2O (mL) | Measurement Temperature (°C) | Cp (%) |
---|---|---|---|---|
A | 0.0440 | 3 | 25 | 1.279 |
B | 0.0404 | 1.328 |
Suspension | HAp | Sedimentation Rate [mm/min] |
---|---|---|
Distilled water | HAp A | −12.320 ± 1.003 |
HAp B | −35.130 ± 2.147 | |
WPI solution | HAp A | −0.050 ± 0.037 |
HAp B | −0.110 ± 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słota, D.; Głąb, M.; Tyliszczak, B.; Douglas, T.E.L.; Rudnicka, K.; Miernik, K.; M. Urbaniak, M.; Rusek-Wala, P.; Sobczak-Kupiec, A. Composites Based on Hydroxyapatite and Whey Protein Isolate for Applications in Bone Regeneration. Materials 2021, 14, 2317. https://doi.org/10.3390/ma14092317
Słota D, Głąb M, Tyliszczak B, Douglas TEL, Rudnicka K, Miernik K, M. Urbaniak M, Rusek-Wala P, Sobczak-Kupiec A. Composites Based on Hydroxyapatite and Whey Protein Isolate for Applications in Bone Regeneration. Materials. 2021; 14(9):2317. https://doi.org/10.3390/ma14092317
Chicago/Turabian StyleSłota, Dagmara, Magdalena Głąb, Bożena Tyliszczak, Timothy E. L. Douglas, Karolina Rudnicka, Krzysztof Miernik, Mateusz M. Urbaniak, Paulina Rusek-Wala, and Agnieszka Sobczak-Kupiec. 2021. "Composites Based on Hydroxyapatite and Whey Protein Isolate for Applications in Bone Regeneration" Materials 14, no. 9: 2317. https://doi.org/10.3390/ma14092317
APA StyleSłota, D., Głąb, M., Tyliszczak, B., Douglas, T. E. L., Rudnicka, K., Miernik, K., M. Urbaniak, M., Rusek-Wala, P., & Sobczak-Kupiec, A. (2021). Composites Based on Hydroxyapatite and Whey Protein Isolate for Applications in Bone Regeneration. Materials, 14(9), 2317. https://doi.org/10.3390/ma14092317