Design of Experiment on Concrete Mechanical Properties Prediction: A Critical Review
<p>Scatterplot patterns [<a href="#B31-materials-14-01866" class="html-bibr">31</a>].</p> "> Figure 2
<p>Function of neurons in human thinking process [<a href="#B79-materials-14-01866" class="html-bibr">79</a>].</p> "> Figure 3
<p>Basic schematic of ANNs [<a href="#B81-materials-14-01866" class="html-bibr">81</a>].</p> ">
Abstract
:1. Introduction
2. Regression Analysis
2.1. The Concept of Regression Analysis
2.2. Applications of Regression Analysis
3. Taguchi Method
3.1. The Concept of the Taguchi Method
3.2. Applications of Taguchi Method
4. Response Surface Methodology (RSM)
4.1. The Concept of the RSM
4.2. Applications of the RSM
5. Artificial Neural Networks (ANNs)
5.1. The Concept of ANNs
5.2. The Applications of ANNs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowden, G.D.; Pichler, B.J.; Maurer, A. A Design of Experiments (DoE) Approach Accelerates the Optimization of Copper-Mediated 18F-Fluorination Reactions of Arylstannanes. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Zahraee, S.M. Teaching the Design of Experiment and Response Surface Methodology Using Paper Helicopter Experiment. In Proceedings of the The 4th International Graduate Conference on Engineering Science & Humanity, Johor Bahru, Johor, Malaysia, 16–17 April 2013; 2013; pp. 1–11. [Google Scholar]
- Dejaegher, B.; Vander Heyden, Y. Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J. Pharm. Biomed. Anal. 2011, 56, 141–158. [Google Scholar] [CrossRef]
- Wu, S.S.; Li, B.Z.; Yang, J.G.; Shukla, S.K. Predictive modeling of high-performance concrete with regression analysis. IEEM 2010 IEEE Int. Conf. Ind. Eng. Eng. Manag. 2010, 1009–1013. [Google Scholar] [CrossRef]
- Tanco, M.; Viles, E.; Ilzarbe, L.; Alvarez, M.J. Is design of experiments really used? A survey of Basque industries. J. Eng. Des. 2008, 19, 447–460. [Google Scholar] [CrossRef]
- Ramana, N.V.; Harathi, R.; Babu, S.N.; Babu, S.V. Regression Models to Evaluate Compressive Strength of Polyethylene Terephthalate (PET) Fibre Reinforced Recycle Aggregate Concrete. Int. J. Eng. Res. Dev. 2013, 8, 11–16. [Google Scholar]
- Chong, B.W.; Othman, R.; Ramadhansyah, P.J.; Doh, S.I.; Li, X. Properties of concrete with eggshell powder: A review. Phys. Chem. Earth, Parts A/B/C 2020, 120, 102951. [Google Scholar] [CrossRef]
- Chong, B.W.; Othman, R.; Jaya, R.P.; Doh, S.I.; Li, X.F.; Ramli, N.I. Properties of Concrete with Eggshell Powder and Tyre Rubber Crumb. Key Eng. Mater. 2021, 879, 34–48. [Google Scholar] [CrossRef]
- Silva, F.A.N.; Delgado, J.M.P.Q.; Cavalcanti, R.S.; Azevedo, A.C.; Guimarães, A.S.; Lima, A.G.B. Use of Nondestructive Testing of Ultrasound and Artificial Neural Networks to Estimate Compressive Strength of Concrete. Buildings 2021, 11, 44. [Google Scholar] [CrossRef]
- Poorarbabi, A.; Ghasemi, M.; Moghaddam, M.A. Concrete compressive strength prediction using non-destructive tests through response surface methodology. Ain Shams Eng. J. 2020, 11, 939–949. [Google Scholar] [CrossRef]
- Ngo, L.T.Q.; Wang, Y.-R.; Chen, Y.-M. Applying Adaptive Neural Fuzzy Inference System to Improve Concrete Strength Estimation in Ultrasonic Pulse Velocity Tests. Adv. Civ. Eng. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xuan, D.; Sojobi, A.O.; Liu, S.; Chu, S.H.; Poon, C.S. Development of nano-silica treatment methods to enhance recycled aggregate concrete. Cem. Concr. Compos. 2021, 118, 103963. [Google Scholar] [CrossRef]
- Shariati, M.; Ramli-Sulong, N.H.; Mohammad Mehdi Arabnejad, K.H.; Shafigh, P.; Sinaei, H. Assessing the strength of reinforced Concrete Structures Through Ultrasonic Pulse Velocity And Schmidt Rebound Hammer tests. Sci. Res. Essays 2011, 6, 213–220. [Google Scholar] [CrossRef]
- Awolusi, T.F.; Oke, O.L.; Akinkurolere, O.O.; Sojobi, A.O. Application of response surface methodology: Predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler. Case Stud. Constr. Mater. 2019, 10, e00212. [Google Scholar] [CrossRef]
- Awolusi, T.F.; Oke, O.L.; Akinkurolere, O.O.; Atoyebi, O.D. Comparison of response surface methodology and hybrid-training approach of artificial neural network in modelling the properties of concrete containing steel fibre extracted from waste tyres. Cogent Eng. 2019, 6, 1–18. [Google Scholar] [CrossRef]
- Muhamad, M.S.; Osman, M.H.; Yasser, M.; Mohamad, R.N.; Sunar, N.M.; Ali, R.; Hamidon, N.; Abdul, N.H.; Harun, H. Response Surface Methodology Optimization of Concrete Strength Using Hydroxyapatite Nanopowder As Admixture. Prog. Eng. Appl. Technol. 2020, 1, 134–141. [Google Scholar]
- Cibilakshmi, G.; Jegan, J. A DOE approach to optimize the strength properties of concrete incorporated with different ratios of PVA fibre and nano-Fe2O3. Adv. Compos. Lett. 2020, 29, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chong, B.W.; Othman, R.; Sheng, T.W.; Jaya, R.P.; Abdullah, M.M.A.B. Properties of Mortar with Waste Tyre Rubber as Partial Sand Replacement. Key Eng. Mater. 2021, 879, 49–61. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Dhir, R.K. Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete. J. Clean. Prod. 2016, 112, 2171–2186. [Google Scholar] [CrossRef]
- Moustafa, A.; Elgawady, M.A. Mechanical properties of high strength concrete with scrap tire rubber. Constr. Build. Mater. 2015, 93, 249–256. [Google Scholar] [CrossRef]
- Hamada, H.M.; Al-attar, A.A.; Yahaya, F.M.; Muthusamy, K.; Tayeh, B.A.; Humada, A.M. Effect of high-volume ultrafine palm oil fuel ash on the engineering and transport properties of concrete. Case Stud. Constr. Mater. 2020, 12, e00318. [Google Scholar] [CrossRef]
- Rizalman, A.N.; Lee, C.C. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Predicting the Compressive Strength of POFA Concrete. Appl. Model. Simul. 2020, 4, 210–216. [Google Scholar]
- Wan Hassan, W.N.F.; Ismail, M.A.; Lee, H.-S.; Meddah, M.S.; Singh, J.K.; Hussin, M.W.; Ismail, M. Mixture optimization of high-strength blended concrete using central composite design. Constr. Build. Mater. 2020, 243, 118251. [Google Scholar] [CrossRef]
- Rahmatika, A.; Hariyadi, H.; Fajrin, J. The Application Of Response Surface Methods (RSM) To Study The Effect Of Partial Portland Cement Replacement Using Silica Fume On The Properties Of Mortar. Int. J. Civ. Eng. Technol. 2019, 10, 133–141. [Google Scholar]
- Engineering, T.; Reddy, M.A.K. Optimization of self compacting concrete with high volume fly ash: Response Surface Metodology (RSM) Approach. TEST Eng. Manag. 2020, 83, 1–11. [Google Scholar]
- Lokuge, W.; Wilson, A.; Gunasekara, C.; Law, D.W.; Setunge, S. Design of fly ash geopolymer concrete mix proportions using Multivariate Adaptive Regression Spline model. Constr. Build. Mater. 2018, 166, 472–481. [Google Scholar] [CrossRef]
- Arulraj, P.; Regi, F.K.; Mariya, P.; Varghese, M.K.; Johns, A.A. Appication of taughi method for the design of concrete mixes. Int. J. Eng. Adv. Technol. 2019, 8, 325–328. [Google Scholar]
- Cen, X.; Wang, Q.; Shi, X.; Su, Y.; Qiu, J. Optimization of Concrete Mixture Design Using Adaptive Surrogate Model. Sustainability 2019, 11, 1991. [Google Scholar] [CrossRef] [Green Version]
- Ziolkowski, P.; Niedostatkiewicz, M. Machine learning techniques in concrete mix design. Materials 2019, 12, 1256. [Google Scholar] [CrossRef] [Green Version]
- Ballantyne, K.N.; van Oorschot, R.A.; Mitchell, R.J. Reduce optimisation time and effort: Taguchi experimental design methods. Forensic Sci. Int. Genet. Suppl. Ser. 2008, 1, 7–8. [Google Scholar] [CrossRef]
- Reading Scatterplots. Available online: https://www.mathbootcamps.com/reading-scatterplots/ (accessed on 20 March 2021).
- Kocáb, D.; Misák, P.; Cikrle, P. Characteristic Curve and Its Use in Determining the Compressive Strength of Concrete by the Rebound Hammer Test. Materials 2019, 12, 2705. [Google Scholar] [CrossRef] [Green Version]
- Adisa Olonade, K.; Fitriani, H.; Toluwalase Kola, O. Regression models for compressive strength of concrete under different curing conditions. MATEC Web Conf. 2017, 101, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Halabe, U.B.; Ray, I. Comparisons of Linear Regression Models for Properties of Alkaliactivated Binder Concrete. Eur. Sci. J. 2015, 11, 5–8. [Google Scholar] [CrossRef]
- QIU, S.; TANG, B. Application of Mutiple Linear Regression Analysis in Polymer Modified Mortar Quality Control. In Proceedings of the 2nd International Conference on Electronic and Mechanical Engineering and Information Technology (2012), Shenyang, China, 7 September 2012; Atlantis Press: Paris, France, 2012; pp. 1124–1127. [Google Scholar]
- Matejević, B.; Zlatanović, M. Regression model for predicting productivity of RC slab concreting process. J. Croat. Assoc. Civ. Eng. 2017, 69, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Siddique, R.; Aggarwal, P.; Aggarwal, Y. Compressive Strength Modeling Of SCC Using Linear Regression And Artificial Neural Network Approach. In Proceedings of the Second International Symposium on Design, Performance and Use of Self-Consolidating Concrete; RILEM Publishing: Beijing, China, 2009; pp. 391–398. [Google Scholar]
- Khademi, F.; Behfarnia, K. Evaluation of Concrete Compressive Strength Using Artificial Neural Network and Multiple Linear Regression Models. Int. J. Optim. Civ. Eng. 2016, 6, 423–432. [Google Scholar]
- Aggarwal, R.; Kumar, M.; Sharma, R.K.; Sharma, M.K. Reliability Based Design Optimization of Concrete Mix Proportions Using Generalized Ridge Regression Model. Int. J. Sci. Eng. (IJSE) 2015, 8, 26–37. [Google Scholar] [CrossRef]
- Garcia-Taengua, E. Fundamental Fresh State Properties of Self-Consolidating Concrete: A Meta-Analysis of Mix Designs. Adv. Civ. Eng. 2018, 2018, 11–13. [Google Scholar] [CrossRef]
- Raharjo, D.; Subakti, A. Tavio Mixed concrete optimization using fly ash, silica fume and iron slag on the SCC’s compressive strength. Procedia Eng. 2013, 54, 827–839. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Li, K.; Li, Z. Prediction of concrete compressive strength based on principal component analysis and radial basis function neural network. IOP Conf. Ser. Mater. Sci. Eng. 2019, 677, 022045. [Google Scholar] [CrossRef]
- Jin, R.; Chen, Q.; Soboyejo, A.B.O. Non-linear and mixed regression models in predicting sustainable concrete strength. Constr. Build. Mater. 2018, 170, 142–152. [Google Scholar] [CrossRef]
- Zain, M.F.M.; Abd, S.M.; Sopian, K.; Jamil, M.; Che-Ani, A.I. Mathematical Regression Model for the Prediction of Concrete Strength. In Proceedings of the Mathematics and computers in Science and Engineering, UKM Bangi, Selangor Darul Ehsan, Malaysia, 26 October 2008; 2008; pp. 396–402. [Google Scholar]
- Zain, M.F.M.; Abd, S.M. Multiple regression model for compressive strength prediction of high performance concrete. J. Appl. Sci. 2009, 9, 155–160. [Google Scholar] [CrossRef]
- Onwuka, D.O.; Okere, C.E.; Arimanwa, J.I.; Onwuka, S.U. Prediction of concrete mix ratios using modified regression theory. Comp. Meth. Civ. Eng. 2011, 2, 95–107. [Google Scholar]
- Sahoo, K.; Sarkar, P.; Robin Davis, P. Artificial Neural Networks for Prediction of Compressive Strength of Recycled Aggregate Concrete. Int. J. Res. Chem. Metall. Civ. Eng. 2016, 3, 1–5. [Google Scholar] [CrossRef]
- Kharazi, M.; Lye, L.M.; Hussein, A. Designing and optimizing of concrete mix proportion using statistical mixture design methodology. Proc. Annu. Conf. Can. Soc. Civ. Eng. 2013, 3, 2269–2278. [Google Scholar]
- Vidivelli, B.; Subbulakshmi, T. Statistical Modeling and Prediction of Compressive Strength of High Performance Concrete. Int. J. Eng. Technol. Manag. Appl. Sci. 2016, 4, 146–151. [Google Scholar]
- Roy, R.K. Design of Experiments Using the Taguchi Approach; Wiley-Interscience: Hoboken, NJ, USA, 2001; ISBN 978-0-471-36101-5. [Google Scholar]
- Ross, P.J. Taguchi Techniques for Quality Engineering, 2nd ed.; McGraw-Hill: New York, NY, USA, 1996; ISBN 978-0070539587. [Google Scholar]
- Rao, R.S.; Kumar, C.G.; Prakasham, R.S.; Hobbs, P.J. The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal. Biotechnol. J. 2008, 3, 510–523. [Google Scholar] [CrossRef] [PubMed]
- Türkmen, I.; Gül, R.; Çelik, C. A Taguchi approach for investigation of some physical properties of concrete produced from mineral admixtures. Build. Environ. 2008, 43, 1127–1137. [Google Scholar] [CrossRef]
- Shiri, N.D.; Bhat, S.; Babisha, K.C.; Moger, K.M.; D’almeida, M.P.; Menezes, C.J. Taguchi Analysis on the Compressive Strength Behaviour of Waste Plastic-Rubber Composite Materials. Am. J. Mater. Sci. 2016, 6, 88–93. [Google Scholar] [CrossRef]
- Abbasi, E.; Pasandideh, H.R.; Zandiyeh, M.; Behboodi, M.H. Optimizing durability of the high performance nano-concrete applying taguchi method and desirability function. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Rabat, Morocco, 11–13 April 2017; pp. 957–970. [Google Scholar]
- Sabarish, K.V.; Akish Remo, M.; Paul, P. Optimizing the Concrete Materials by Taguchi Optimization Method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 574. [Google Scholar] [CrossRef]
- Jithendra, C.; Elavenil, S. Influences of Parameters on Slump Flow and Compressive Strength Properties of Aluminosilicate Based Flowable Geopolymer Concrete Using Taguchi Method. Silicon 2020, 12, 595–602. [Google Scholar] [CrossRef]
- Ogheneochuko, D.E.; Orie, O.U. Optimization of superplasticized concrete using Taguchi approach: A case study of hydroplast 200. Niger. J. Technol. 2018, 37, 611. [Google Scholar] [CrossRef] [Green Version]
- Teimortashlu, E.; Dehestani, M.; Jalal, M. Application of Taguchi method for compressive strength optimization of tertiary blended self-compacting mortar. Constr. Build. Mater. 2018, 190, 1182–1191. [Google Scholar] [CrossRef]
- Kaushik, S.; Raj, N.; Alam, P.; Ali, S.; Palariya, N.C. Optimization of Compressive Strength for Fly Ash Building Bricks Using Taguchi Method. Int. J. Emerg. Technol. 2017, 8, 394–402. [Google Scholar]
- Hadi, M.N.S.; Farhan, N.A.; Sheikh, M.N. Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Constr. Build. Mater. 2017, 140, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Bradley, N. Response Surface Methodology; Indiana University South Bend: South Bend, IN, USA, 2009; Volume 1. [Google Scholar]
- Boyaci, I.H. A new approach for determination of enzyme kinetic constants using response surface methodology. Biochem. Eng. J. 2005, 25, 55–62. [Google Scholar] [CrossRef]
- Aydar, A.Y. Utilization of Response Surface Methodology in Optimization of Extraction of Plant Materials. In Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes; InTech: London, UK, 2018. [Google Scholar]
- Anitha, G.; Pandey, V.P. Review on: Statistical designs and response surface methodology (RSM) as a tool for the optimization of HPLC Methods. Anal. Res. 2016, 5, 552–569. [Google Scholar]
- Ferreira, S.L.C.; Dos Santos, W.N.L.; Quintella, C.M.; Neto, B.B.; Bosque-Sendra, J.M. Doehlert matrix: A chemometric tool for analytical chemistry—Review. Talanta 2004, 63, 1061–1067. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Senthil Kumar, K.; Baskar, K. Response Surfaces for Fresh and Hardened Properties of Concrete with E-Waste (HIPS). J. Waste Manag. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zahid, M.; Shafiq, N. Effects of Sand / Fly Ash and the Water / Solid Ratio on the Mechanical Properties of Engineered Geopolymer. Minerals 2020, 10, 333. [Google Scholar] [CrossRef] [Green Version]
- ENV 1992-1 Eurocode 2. Design of Concrete Structures—Part 1: General Rules and Rules for Buildings; British Standards Institution: London, UK, 2004.
- Nambiar, E.K.K.; Ramamurthy, K. Models relating mixture composition to the density and strength of foam concrete using response surface methodology. Cem. Concr. Compos. 2006, 28, 752–760. [Google Scholar] [CrossRef]
- Şimşek, B.; İç, Y.T.; Şimşek, E.H. A RSM-Based Multi-Response Optimization Application for Determining Optimal Mix Proportions of Standard Ready-Mixed Concrete. Arab. J. Sci. Eng. 2016, 41, 1435–1450. [Google Scholar] [CrossRef]
- Mrudul, P.M.; Upender, T.; Balachandran, M.; Mini, K.M. Study on silica infused recycled aggregate concrete using design of experiments. J. Eng. Sci. Technol. 2017, 12, 958–971. [Google Scholar]
- Hammoudi, A.; Moussaceb, K.; Belebchouche, C.; Dahmoune, F. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr. Build. Mater. 2019, 209, 425–436. [Google Scholar] [CrossRef]
- Busari, A. Response Surface Analysis of the Compressive Strength of Metakoalin Self-Compacting Concrete. Adv. Sci. Technol. Res. J. 2019, 13, 7–13. [Google Scholar] [CrossRef]
- Vasudevan, S.; Poornima, V.; Balachandran, M. Influence of admixtures on properties of concrete and optimization using response surface methodology. Mater. Today Proc. 2020, 24, 650–661. [Google Scholar] [CrossRef]
- Salem Alsanusi; Loubna Bentaher Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (RSM). Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2015, 9, 1522–1526.
- Grabiec, A.M.; Piasta, Z. Study on compatibility of cement-superplasticiser assisted by multicriteria statistical optimisation. J. Mater. Process. Technol. 2004, 154, 197–2203. [Google Scholar] [CrossRef]
- Zigiaris, S. A View of Artificial Neural Network. In Proceedings of the IEEE International Conference on Advances in Engineering & Technology Research (ICAETR - 2014), Unnao, India, 1–2 August 2014; p. 1. [Google Scholar]
- Mohammed, B.S.; Khed, V.C.; Nuruddin, M.F. Rubbercrete mixture optimization using response surface methodology. J. Clean. Prod. 2018, 171, 1605–1621. [Google Scholar] [CrossRef]
- Behnood, A.; Golafshani, E.M. Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves. J. Clean. Prod. 2018, 202, 54–64. [Google Scholar] [CrossRef]
- Sharma, V.; Rai, S.; Dev, A. A Comprehensive Study of Artificial Neural Networks. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2012, 2, 278–284. [Google Scholar]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Mijwil, M.M. Artificial Neural Networks Advantages and Disadvantages. Available online: https://www.linkedin.com/pulse/artificial-neural-networks-advantages-disadvantages-maad-m-mijwel (accessed on 2 August 2019).
- Li, E.Y. Artificial Neural Networks and Their Business Applications. Inf. Manag. 1994, 27, 303–313. [Google Scholar]
- Verm, A.; Verma, I. Use of artificial neural network in design of fly ash blended cement concrete mixes. Int. J. Recent Technol. Eng. 2019, 8, 4222–4233. [Google Scholar] [CrossRef]
- Atici, U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Syst. Appl. 2011, 38, 9609–9618. [Google Scholar] [CrossRef]
- Asteris, P.G.; Mokos, V.G. Concrete compressive strength using artificial neural networks. Neural Comput. Appl. 2020, 32, 11807–11826. [Google Scholar] [CrossRef]
- Noorzaei, J.; Hakim, S.; Jaafar, M. Development of Artificial Neural Networks for Predicting Concrete Compressive Strength. Int. J. Eng. Technol. 2007, 4, 141–153. [Google Scholar]
- Nikoo, M.; Torabian Moghadam, F.; Sadowski, Ł. Prediction of Concrete Compressive Strength by Evolutionary Artificial Neural Networks. Adv. Mater. Sci. Eng. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Gupta, S. Concrete Mix Design Using Artificial Neural Network. J. Today’s Ideas-Tomorrow’s Technol. 2013, 1, 29–43. [Google Scholar] [CrossRef]
- Najafi, Z.; Ahangari, K. The Prediction of Concrete Temperature during Curing Using Regression and Artificial Neural Network. J. Eng. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Siddique, R.; Aggarwal, P.; Aggarwal, Y. Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv. Eng. Softw. 2011, 42, 780–786. [Google Scholar] [CrossRef]
- Chopra, P.; Sharma, R.K.; Kumar, M. Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming. Adv. Mater. Sci. Eng. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S. Using Artificial Neural Network to Predict the Compressive Strength of Concrete containing Nano-silica. Civ. Eng. Archit. 2013, 1, 96–102. [Google Scholar] [CrossRef]
- Alquzweeni, S.S. Artificial Neural Network Model for Predicting Compressive Strength of High Strength Concrete after Burning. Int. J. Civ. Environ. Eng. IJCEE-IJENS 2015, 15, 1–14. [Google Scholar]
- Santosa, S.; Purbo Santosa, Y. Evolutionary Artificial Neural Networks for Concrete Mix Design Modelling. Int. J. Comput. Appl. 2017, 5, 1–11. [Google Scholar] [CrossRef]
- Khashman, A.; Akpinar, P. Non-Destructive Prediction of Concrete Compressive Strength Using Neural Networks. Procedia Comput. Sci. 2017, 108, 2358–2362. [Google Scholar] [CrossRef]
- Logothetis, L. Combination of Three Non-Destructive Methods for the Determination of the Strength of Concrete; National Technical University of Athens: Athens, Greece, 1978. [Google Scholar]
- Chandwani, V.; Agrawal, V.; Nagar, R. Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks. Expert Syst. Appl. 2015, 42, 885–893. [Google Scholar] [CrossRef]
- Fakhri, M.; Amoosoltani, E.; Farhani, M.; Ahmadi, A. Determining optimal combination of roller compacted concrete pavement mixture containing recycled asphalt pavement and crumb rubber using hybrid artificial neural network-genetic algorithm method considering energy absorbency approach. Can. J. Civ. Eng. 2017, 44, 945–955. [Google Scholar] [CrossRef]
- Mendoza Rinchon, J.P. Strength Durability-Based Design Mix of Self-Compacting Concrete with Cementitious Blend using Hybrid Neural Network-Genetic Algorithm. IPTEK J. Proc. Ser. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Ramadan Suleiman, A.; Nehdi, M. Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm–Artificial Neural Network. Materials 2017, 10, 135. [Google Scholar] [CrossRef]
Types of Regression | Expression | Dependent Variable | Independent Variable |
---|---|---|---|
Linear | |||
Second-order polynomial | |||
Exponential | |||
Logarithmic | |||
Types of Regression | Combination of the above |
Sources | Dependent Variable | No. of Variables | Methodology | R2 |
---|---|---|---|---|
[6] | Compressive strength | 1 | Linear Regression | 0.890 |
[32] | Compressive strength | 1 | Linear Regression | 0.878–0.963 |
[33] | Compressive strength | 1 | Linear Regression | 0.870–0.980 |
[34] | Compressive strength | 1 | Modified LR | – |
[35] | Compressive strength | 1 | Modified LR | – |
[35] | Stress-strength ratio | 2 | Classic MLR | 0.738 |
[48] | Compressive strength | 5 | Classic MLR | 0.82 |
Slump | 5 | Classic MLR | 0.73–0.88 | |
[49] | Compressive strength | 5 | Classic MLR | 0.612 |
[37] | Compressive strength | 4 | Classic MLR | 0.962 |
[47] | Compressive strength | 7 | Classic MLR | 0.96–0.98 |
[38] | Compressive strength | 8 | Classic MLR | 0.800 |
[44] | Compressive strength | 6 | Logarithmic Regression | 0.758–0.866 |
[45] | Compressive strength | 8 | Logarithmic Regression | 0.999 |
[36] | Compressive strength | 10 | Backward MLR | 0.857 |
[46] | Concreting productivity | 4 | Modified Regression | – |
[43] | Cost of concrete | 9 (numeric) | Classic MLR | 0.907 |
Compressive strength | 8 (relative) | Exponential Regression | 0.876 | |
Compressive strength | 8 (relative) | Logarithmic Regression | 0.953 | |
Compressive strength | 8 (relative) | Mixed Regression | 0.740–0.914 | |
[4] | Compressive strength | 8 | Mixed Regression | 0.844 |
Trail | Factors | ||
---|---|---|---|
A | B | C | |
1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 |
3 | 2 | 1 | 2 |
4 | 2 | 2 | 1 |
Array | Factors | Full Factorial Combinations | OVAT | Taguchi |
---|---|---|---|---|
L-4 | 3 two-level factors | 8 | 6 | 4 |
L-8 | 7 two-level factors | 128 | 14 | 8 |
L-12 | 11 two-level factors | 2048 | 22 | 12 |
L-16 | 15 two-level factors | 32,768 | 30 | 16 |
L-32 | 31 two-level factors | 2,147,483,648 | 62 | 32 |
L-9 | 4 three-level factors | 81 | 12 | 9 |
L-18 | 1 two-level and 7 three-level factors | 4374 | 23 | 18 |
L-27 | 13 three-level factors | 1,594,323 | 39 | 27 |
L-16 * | 5 four-level factors | 1024 | 20 | 16 |
L-32 * | 1 two-level and 9 four level factors | 524,288 | 38 | 32 |
Sources | Dependent Variable | Factors | Level | Array | R2 |
---|---|---|---|---|---|
[53] | Porosity | 4 | 4 | L-16 * | 0.813 |
[57] | Compressive strength | 4 | 3 | L-9 | 0.963 |
[56] | Compressive strength | 4 | 3 | L-9 | - |
[58] | Dry density | 5 | 4 | L-16 * | 0.637 |
Flexural strength | 5 | 4 | L-16 * | 0.900 | |
[59] | 14d Compressive strength | 3 | 4 | L-16 * | 0.528 |
28d Compressive strength | 3 | 4 | L-16 * | 0.720 | |
[60] | Compressive strength | 3 | 3 | L-9 | 0.954 |
Water absorption | 3 | 3 | L-9 | 0.960 | |
[54] | Compressive strength | 4 | 3 | L-9 | 0.962 |
[55] | Compressive strength | 3 | 2, 3, 12 | L-18 * | 0.911 |
Electric resistance | 3 | 2, 3, 12 | L-18 * | 0.801 | |
Permeability | 3 | 2, 3, 12 | L-18 * | 0.634 | |
[27] | Compressive strength | 5 | 2, 4 | L-16 * | 0.374 |
Tensile strength | 5 | 2, 4 | L-16 * | 0.449 | |
[61] | 7d Compressive strength | 3 | 3 | L-9 | 0.905 |
28d Compressive strength | 3 | 3 | L-9 | 0.890 |
Effect | Term |
---|---|
Intercept/Constant | |
First order | , |
Second order | , |
Interaction | |
General Expression |
Variables (K) | Number of Coefficient (p) | Number of Experiments (f) | Efficiency (p/f) | ||||
---|---|---|---|---|---|---|---|
CCD | DM | BBD | CCD | DM | BBD | ||
2 | 6 | 9 | 7 | - | 0.67 | 0.86 | - |
3 | 10 | 15 | 13 | 13 | 0.67 | 0.77 | 0.77 |
4 | 15 | 25 | 21 | 25 | 0.60 | 0.71 | 0.60 |
5 | 21 | 43 | 31 | 41 | 0.49 | 0.68 | 0.61 |
6 | 28 | 77 | 43 | 61 | 0.36 | 0.65 | 0.46 |
7 | 36 | 143 | 57 | 85 | 0.25 | 0.63 | 0.42 |
8 | 45 | 273 | 73 | 113 | 0.16 | 0.62 | 0.40 |
Sources | Dependent Variable | Factor | Method |
---|---|---|---|
[77] | Compressive strength | 5 | BBD |
[75] | Compressive strength | 2 | - |
[74] | Compressive strength | 3 | CCD |
[78] | Cement-SP compatibility | 3 | CCD |
[71] | Compressive strength, dry density | 3 | CCD |
[72] | Slump, compressive strength, split tensile strength | 3 | CCD |
[68] | Slump, density, compressive strength, split tensile strength | 2 | CCD |
[73] | Compressive strength | 2 | CCD |
[76] | Compressive strength, permeability, sorptivity | 3 | CCD |
[69] | Mechanical properties | 2 | CCD |
[14] | Mechanical properties, water absorption | 3 | CCD |
Sources | No. of Variables | No. of Hidden Nodes | No. of Data | Training-to-Testing Ratio | R2 |
---|---|---|---|---|---|
[38] | 7 | 15 | 140 | 85-15 | 0.961 |
[37] | 4 | NS | 15 | NS | 0.898 |
[74] | 4 | 4 | 17 | NS | 0.980 |
[87] | 3-5 | 4–6 | 28 | 70–15–15 | 0.891–0.990 |
[89] | 6 | 12,6 | 639 | 63–15–22 | - |
[95] | 7 | 4 | 32 | k-fold | 0.869 |
[90] | 7 | 4 | 173 | 80–10–10 | 0.899 |
[92] | 5 | 6, 6 | 2340 | 60–20–20 | 0.999 |
[96] | 3 | 3 | 12 | NS | 0.970 |
[86] | 8 | NS | 1030 | Levenberg-Marquardt algorithm | 0.916 |
[93] | 6, 8 | 8 | 80, 31 | k-fold | 0.919–0.969 |
[97] | 7 | 8 | 103 | NS | NS |
[91] | 5 | NS | 55 | NS | 0.879–0.893 |
[94] | 4–6 | 50 | 49, 27 | 75–25 | 0.898–1.000 |
[98] | 9 | NS | 1030 | 50–50 | 0.860 |
[88] | 2 | NS | 209 | Levenberg-Marquardt algorithm | 0.800–1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chong, B.W.; Othman, R.; Putra Jaya, R.; Mohd Hasan, M.R.; Sandu, A.V.; Nabiałek, M.; Jeż, B.; Pietrusiewicz, P.; Kwiatkowski, D.; Postawa, P.; et al. Design of Experiment on Concrete Mechanical Properties Prediction: A Critical Review. Materials 2021, 14, 1866. https://doi.org/10.3390/ma14081866
Chong BW, Othman R, Putra Jaya R, Mohd Hasan MR, Sandu AV, Nabiałek M, Jeż B, Pietrusiewicz P, Kwiatkowski D, Postawa P, et al. Design of Experiment on Concrete Mechanical Properties Prediction: A Critical Review. Materials. 2021; 14(8):1866. https://doi.org/10.3390/ma14081866
Chicago/Turabian StyleChong, Beng Wei, Rokiah Othman, Ramadhansyah Putra Jaya, Mohd Rosli Mohd Hasan, Andrei Victor Sandu, Marcin Nabiałek, Bartłomiej Jeż, Paweł Pietrusiewicz, Dariusz Kwiatkowski, Przemysław Postawa, and et al. 2021. "Design of Experiment on Concrete Mechanical Properties Prediction: A Critical Review" Materials 14, no. 8: 1866. https://doi.org/10.3390/ma14081866
APA StyleChong, B. W., Othman, R., Putra Jaya, R., Mohd Hasan, M. R., Sandu, A. V., Nabiałek, M., Jeż, B., Pietrusiewicz, P., Kwiatkowski, D., Postawa, P., & Abdullah, M. M. A. B. (2021). Design of Experiment on Concrete Mechanical Properties Prediction: A Critical Review. Materials, 14(8), 1866. https://doi.org/10.3390/ma14081866