Impact of Operating Time on Selected Tribological Properties of the Friction Material in the Brake Pads of Passenger Cars
<p>One of the samples used in research (mm).</p> "> Figure 2
<p>Cross-sections of brake pads used in the tests: (<b>a</b>) first group and (<b>b</b>) third group.</p> "> Figure 3
<p>Diagram of the T-20 test stand: 1—sample, 2—counter-sample (sphere), 3—displacement sensor, 4—strain gauge for measuring friction force, 5—load, 6—computer, 7—counterweight, 8—electric motor, 9—swivel leaver, 10—deck.</p> "> Figure 4
<p>Dependence of the <span class="html-italic">η</span> parameter on: (<b>a</b>) load <span class="html-italic">P</span>, (<b>b</b>) friction distance <span class="html-italic">S</span>, and (<b>c</b>) counter-rotational speed <span class="html-italic">n</span>.</p> "> Figure 5
<p>Exemplary time profile of the friction force <span class="html-italic">F</span> obtained during one of the tests: (<b>a</b>) running-in and (<b>b</b>) proper measurement period.</p> "> Figure 6
<p>Dependence of the coefficient of friction <span class="html-italic">f</span> of brake pads from the degree of wear <span class="html-italic">q</span>: — first group; - - second group; - • - third group.</p> "> Figure 7
<p>Sample photos of craters created during research: (<b>a</b>) first group of samples, <span class="html-italic">q</span> = 40%; (<b>b</b>) second group of samples, <span class="html-italic">q</span> = 15%; (<b>c</b>) second group of samples, <span class="html-italic">q</span> = 70%; (<b>d</b>) third group of samples, <span class="html-italic">q</span>= 80%; (<b>e</b>) third group of samples, <span class="html-italic">q</span> = 100%.</p> "> Figure 8
<p>Dependence of the abrasive wear factor <span class="html-italic">K<sub>c</sub></span> of brake pads from the degree of wear <span class="html-italic">q</span>: − first group; − − second group; − • − third group.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- for the friction coefficient:
- for the abrasive wear factor:
4. Conclusions
- the coefficient of friction for all tested brake pads decreases with the operation time;
- two factors have the greatest impact on changes in the coefficient of friction: (1) atmospheric conditions and large changes in operating temperature causing a change in the structure of the pads’ layers (with the increase of wear, different tribological parameters were recorded in the same layer) and (2) a change in the composition of the material from which the pad is made of (depending on the degree of wear, the working surface is friction material, binder, or support plate);
- the fastest wearout of the pads takes place when they are brand-new, which results from the “run-in” process;
- the slowest wear of the pads was noticed when the friction surface was the interlayer.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elakhame, Z.U.; Olotu, O.O.; Abiodun, Y.O.; Akubueze, E.U.; Akinsanya, O.O.; Kaffo, P.O.; Oladele, O.O. Production of Asbestos Free Brake Pad Using Periwinkle Shell as Filler Material. Int. J. Sci. Eng. Res. 2017, 8, 1728–1735. [Google Scholar]
- Matějka, V.; Metinöz, I.; Wahlström, J.; Alemani, M.; Perricone, G. On the running-in of brake pads and discs for dyno bench tests. Tribol. Int. 2017, 115, 424–431. [Google Scholar] [CrossRef]
- Plachá, D.; Vaculík, M.; Mikeska, M.; Dutko, O.; Peikertová, P.; Kukutschová, J.; Kutláková, K.M.; Růžičková, J.; Tomášek, V.; Filip, P. Release of volatile organic compounds by oxidative wear of automotive friction materials. Wear 2017, 376–377, 705–716. [Google Scholar] [CrossRef]
- Belhocine, A.; Abu Bakar, A.R.; Bouchetara, M. Thermal and structural analysis of disc brake assembly during single stop braking event. Aust. J. Mech. Eng. 2015, 14, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Dai, H.; Geng, Y.; Fujita, T.; Liu, Z.; Xie, Y.; Wu, R.; Fujii, M.; Masui, T.; Tang, L. Exploring impact of carbon tax on China’s CO 2 reductions and provincial disparities. Renew. Sustain. Energy Rev. 2017, 77, 596–603. [Google Scholar] [CrossRef]
- Talati, F.; Jalalifar, S. Analysis of heat conduction in a disk brake system. Heat. Mass. Transf. 2009, 45, 1047–1059. [Google Scholar] [CrossRef]
- Kulikowski, K.; Szpica, D. Determination of directional stiffnesses of vehicels’ tires under a static load operation. Eksploat. Niezawodn. 2014, 16, 66–72. [Google Scholar]
- Belhocine, A.; Bouchetara, M. Structural and Thermal Analysis of Automotive Disc Brake Rotor. Arch. Mech. Eng. 2014, 61, 89–113. [Google Scholar] [CrossRef]
- Borawska, E.; Borawski, A. Influence of the Initial Speed of the Agricultural Tractor on the Brakes Heating Process During Emergency Braking. Heat Transf. Res. 2020, 51, 967–974. [Google Scholar] [CrossRef]
- Manjunath, T.V.; Suresch, P.M. Structural and thermal analysis of rotor disc of disc brake. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 7741–7749. [Google Scholar]
- Grkić, A.; Mikluc, D.; Muždeka, S.; Arsenić, Ž.; Duboka, Č. A Model for the Estimation of Brake Interface Temperature. J. Mech. Eng. 2015, 61, 392–398. [Google Scholar] [CrossRef]
- Eriksson, M.; Bergman, F.; Jacobson, S. Surface characterisation of brake pads after running under silent and squealing conditions. Wear 1999, 232, 163–167. [Google Scholar] [CrossRef]
- Xian, J.; Xiaomei, L. Friction and Wear Characteristics of Polymer-Matrix Friction Materials Reinforced by Brass Fibers. J. Mater. Eng. Perform. 2004, 13, 642–646. [Google Scholar] [CrossRef]
- Borawski, A. Conventional and unconventional materials used in the production of brake pads – review. Sci. Eng. Compos. Mater. 2020, 27, 374–396. [Google Scholar] [CrossRef]
- Baltoin, J.G.; Neis, P.D.; Ferriera, N.F. Analysis of the influence of temperature on the friction coefficient of friction materials. ABCM Symp. Ser. Mechatron. 2010, 4, 898–906. [Google Scholar]
- Chen, L.; Chen, G.S.; Chang, J. An Insight to High Humidity-Caused Friction Modulation of Brake by Numerical Modeling of Dynamic Meniscus under Shearing. Lubricants 2015, 3, 437–446. [Google Scholar] [CrossRef]
- Scieszka, S.F. Hamulce Cierne—Zagadnienia Konstrukcyjne, Materiałowe i Tribologiczne; ITE: Radom, Poland, 1998. [Google Scholar]
- Eriksson, M.; Bergman, F.; Jacobson, S. On the nature of tribological contact in automotive brakes. Wear 2002, 252, 26–36. [Google Scholar] [CrossRef]
- Gawande, S.H.; Banait, A.S.; Balashowry, K. Study on wear analysis of substitute automotive brake pad materials. Aust. J. Mech. Eng. 2020, 18, 1–10. [Google Scholar] [CrossRef]
- Sinha, A.; Ischia, G.; Menapace, C.; Gialanella, S. Experimental Characterization Protocols for Wear Products from Disc Brake Materials. Atmosphere 2020, 11, 1102. [Google Scholar] [CrossRef]
- Amato, F.; Cassee, F.R.; Van Der Gon, H.A.D.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban air quality: The challenge of traffic non-exhaust emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef]
- Peikertová, P.; Filip, P. Influence of the Automotive Brake Wear Debris on the Environment—A Review of Recent Research. SAE Int. J. Mater. Manuf. 2015, 9, 133–146. [Google Scholar] [CrossRef]
- Samet, J.M.; Dominici, F.; Curriero, F.C.; Coursac, I.; Zeger, S.L. Fine Particulate Air Pollution and Mortality in 20 U.S. Cities, 1987–1994. N. Engl. J. Med. 2000, 343, 1742–1749. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, M.A.; Khashaba, M.I.; Ali, W.Y. Friction and wear of automotive friction materials. J. Egypt. Soc. Tribol. 2011, 8, 40–52. [Google Scholar] [CrossRef]
- Stachowiak, G.W.; Batchelor, A.W.; Stachowiak, G.B. Experimental Methods in Tribology; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Genovese, A.; D’Angelo, G.A.; Sakhnevych, A.; Farroni, F. Review on Friction and Wear Test Rigs: An Overview on the State of the Art in Tyre Tread Friction Evaluation. Lubricants 2020, 8, 91. [Google Scholar] [CrossRef]
- Wright, N.; Kukureka, S. Wear testing and measurement techniques for polymer composite gears. Wear 2001, 251, 1567–1578. [Google Scholar] [CrossRef]
- Borawski, A. Suggested Research Method for Testing Selected Tribological Properties of Friction Components in Vehicle Braking Systems. Acta Mech. Autom. 2016, 10, 223–226. [Google Scholar] [CrossRef] [Green Version]
- Fildes, J.; Meyers, S.; Kilaparti, R.; Schlepp, E. Improved ball crater micro-abrasion test based on a ball on three disk configuration. Wear 2012, 274, 414–422. [Google Scholar] [CrossRef]
- Shipway, P.; Hogg, J. Wear of bulk ceramics in micro-scale abrasion—The role of abrasive shape and hardness and its relevance to testing of ceramic coatings. Wear 2007, 263, 887–895. [Google Scholar] [CrossRef]
- Szpica, D. Simplified numerical simulation as the base for throttle flow characteristics designation. Mechanics 2015, 21, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Mieczkowski, G.; Molski, K. Stress field singularities for reinforcing fibre with a single lateral crack. Solid Mech. Appl. 2006, 135, 185–192. [Google Scholar] [CrossRef]
- Varinauskas, V.; Diliunas, S.; Kubilius, M.; Kubilius, R. Influence of cantilever length on stress distribution in fixation screws of all-on-4 full-arch bridge. Mechanics 2013, 19, 260–263. [Google Scholar] [CrossRef] [Green Version]
- Szpica, D. Research on the influence of LPG/CNG injector outlet nozzle diameter on uneven fuel dosage. Transport 2016, 33, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Byskov, E. The calculation of stress intensity factors using the finite element method with cracked elements. Int. J. Fract. 1970, 6, 159–167. [Google Scholar] [CrossRef]
- Borawski, A.; Szpica, D.; Mieczkowski, G. Verification tests of frictional heat modelling results. Mechanics 2020, 26, 260–264. [Google Scholar] [CrossRef]
- Borawski, A. Effects of initial speed and load of universal semitrailer on braking systems friction pair heating. Heat Transf. Res. 2020, 51, 1417–1428. [Google Scholar] [CrossRef]
- Cozza, R.C.; Wilcken, J.T.D.S.L.; Schön, C.G. Influence of abrasive wear modes on the coefficient of friction of thin films. Tecnol. Metal. Mater. Min. 2018, 15, 504–509. [Google Scholar] [CrossRef]
- Gee, M.; Gant, A.; Hutchings, I.; Bethke, R.; Schiffmann, K.; Van Acker, K.; Poulat, S.; Gachon, Y.; Von Stebut, J. Progress towards standardisation of ball cratering. Wear 2003, 255, 1–13. [Google Scholar] [CrossRef]
- Osuch-Słomka, E.; Słomka, Z.; Ruta, R. The use of a modern method of designing experiments in ball-cratering abrasive wear testing. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2013, 227, 1177–1187. [Google Scholar] [CrossRef]
- Shoemaker, A.C.; Kacker, R.N. A methodology for planning experiments in robust product and process design. Qual. Reliab. Eng. Int. 1988, 4, 95–103. [Google Scholar] [CrossRef]
- Lewandowski, A.; Using, G. Taguchi’s Research Planning Method for Analysis and Optimisation of Cast Iron EN-GJLP-250 Surface Burnishing. Tribologia 2013, 2, 103–113. [Google Scholar]
- Rao, R.S.; Kumar, C.G.; Prakasham, R.S.; Hobbs, P.J. The Taguchi methodology as a statistical tool for biotechnological ap-plications: A critical appraisal. Biotechnol. J. 2008, 3, 510–523. [Google Scholar] [CrossRef] [PubMed]
- Osuch-Słomka, E. Proposed method for determining the values of tests for the ball-cratering metod. Tribologia 2011, 240, 161–171. [Google Scholar]
- BSI. BS EN 1071-6:2007 Advanced Technical Ceramics—Methods of Test for Ceramic Coatings—Part 6: Determination of the Abrasion Resistance of Coatings by a Micro-Abrasion Wear Test; BSI: London, UK, 2007. [Google Scholar]
- Borawski, A.; Tarasiuk, W. Comparative analysis of protective coatings of car paints. In Proceedings of the IOP Conference Series: Materials Science and Engineering (KONMOT 2018), Kraków, Poland, 13–14 September 20018; pp. 30–32. [Google Scholar]
Brake Pads Group No. | Layer | Composition (% of Total Mass) |
---|---|---|
1 | Friction material | Phenolic resin—21.31%, Steel fibers—4.16%, Glass fiber—7.98%, Cast iron fibers—4.73%, Silicon carbide—1.18%, Zeolits—5.84%, Zinc oxide—1.19%, Graphite—1.57%, Copper—5.96%, Barite—15.66%, Silicates—8.38%, Magnesium oxides—15.25%, Rubber particles—6.79% |
Binder layer (interlayer) | Phenolic resin—38.43%, Steel fibers—2.64%, Cast iron fibers—1.58%, Silicon carbide—0.49%, Zeolits—5.19%, Zinc oxide—0.82%, Graphite—1.57%, Barite—21.63%, Silicates—11.3%, Magnesium oxides—16.35% | |
Support plate (backplate) | C—0.18%, Mn—1.38%, Si—0.2%, P—0.03%, S—0.02%, Fe—98.19% | |
2 | Friction material | Phenolic resin—27.35%, Steel fibers—3.11%, Glass fiber—5.71%, Cast iron fibers—2.96%, Silicon carbide—0.82%, Zinc oxide—2.14%, Graphite—3.27%, Copper—8.19%, Barite—18.69%, Silicates—10.53%, Magnesium oxides—17.23% |
Binder layer (interlayer) | Phenolic resin—45.74%, Steel fibers—1.49%, Cast iron fibers—1.31%, Silicon carbide—0.39%, Zeolits—3.51%, Zinc oxide—1.69%, Copper—7.94%, Graphite—2.19%, Barite—14.93%, Silicates—4.83%, Magnesium oxides—15.98% | |
Support plate (backplate) | C—0.17%, Mn—1.44%, Si—0.11%, P—0.03%, S—0.03%, Fe—98.22% | |
3 | Friction material | Phenolic resin—27.83%, Steel fibers—2.97%, Glass fiber—5.52%, Cast iron fibers—2.19%, Silicon carbide—0.79%, Zinc oxide—2.44%, Graphite—3.73%, Copper—8.85%, Barite—18.71%, Silicates—11.02%, Magnesium oxides—15.95% |
Binder layer (interlayer) | Phenolic resin—47.27%, Steel fibers—1.41%, Cast iron fibers—1.22%, Silicon carbide—0.43%, Zeolits—3.54%, Zinc oxide—1.75%, Copper—8.22%, Graphite—2.11%, Barite—15.62%, Silicates—5.09%, Magnesium oxides—13.34% | |
Support plate (backplate) | C—0.18%, Mn—1.42%, Si—0.19%, P—0.03%, S—0.02%, Fe—98.16% |
Preliminary Test No. | Load P (N) | Distance S (m) | Rotation Speed of Counter-Sample n (RPM) |
---|---|---|---|
1 | 2 | 50 | 38 |
2 | 2 | 100 | 80 |
3 | 2 | 150 | 150 |
4 | 4 | 50 | 80 |
5 | 4 | 100 | 150 |
6 | 4 | 150 | 38 |
7 | 6 | 50 | 50 |
8 | 6 | 100 | 150 |
9 | 6 | 150 | 80 |
Parameter | Value | Unit |
---|---|---|
Load | 5 | N |
Distance | 150 | m |
Rotation speed of counter-sample | 150 | RPM |
Ambient temperature | 21 | °C |
Humidity | 45 | % |
1st Group of Samples | 2nd Group of Samples | 3rd Group of Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
q (%) | Number of Tests Performed | Average f Value | Standard Deviation | q (%) | Number of Tests Performed | Average f Value | Standard Deviation | q (%) | Number of Tests Performed | Average f Value | Standard Deviation |
0 | 12 | 0.72 | ± 0.051 | 0 | 12 | 0.48 | ± 0.018 | 0 | 12 | 0.45 | ± 0.045 |
~15 | 6 | 0.69 | ± 0.032 | ~20 | 8 | 0.48 | ± 0.021 | ~10 | 6 | 0.46 | ± 0.022 |
~20 | 18 | 0.64 | ± 0.048 | ~25 | 8 | 0.45 | ± 0.014 | ~25 | 14 | 0.43 | ± 0.031 |
~30 | 12 | 0.61 | ± 0.046 | ~35 | 6 | 0.43 | ± 0.033 | ~40 | 10 | 0.4 | ± 0.014 |
~40 | 15 | 0.63 | ± 0.038 | ~40 | 10 | 0.42 | ± 0.052 | ~45 | 8 | 0.41 | ± 0.016 |
~50 | 15 | 0.6 | ± 0.035 | ~50 | 12 | 0.4 | ± 0.015 | ~50 | 16 | 0.39 | ± 0.031 |
~60 | 18 | 0.61 | ± 0.047 | ~60 | 10 | 0.38 | ± 0.048 | ~60 | 18 | 0.36 | ± 0.021 |
~70 | 21 | 0.58 | ± 0.071 | ~70 | 16 | 0.39 | ± 0.028 | ~70 | 22 | 0.37 | ± 0.024 |
~80 | 18 | 0.59 | ± 0.025 | ~80 | 18 | 0.36 | ± 0.035 | ~80 | 16 | 0.35 | ± 0.052 |
~90 | 9 | 0.57 | ± 0.031 | ~90 | 12 | 0.36 | ± 0.016 | ~90 | 14 | 0.6 | ± 0.037 |
100 | 6 | 0.87 | ± 0.022 | 100 | 6 | 0.91 | ± 0.011 | 100 | 6 | 0.85 | ± 0.049 |
1st Group of Samples | 2nd Group of Samples | 3rd Group of Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
q (%) | Number of Tests Performed | Kc Value (10−13·m3·N−1·m−1) | Standard Deviation | q (%) | Number of Tests Performed | Kc Value (10−13·m3·N−1·m−1) | Standard Deviation | q (%) | Number of Tests Performed | Kc Value (10−13·m3·N−1·m−1) | Standard Deviation |
0 | 12 | 4.264 | ± 0.724 | 0 | 12 | 4.574 | ± 0.548 | 0 | 12 | 5.134 | ± 0.417 |
~15 | 6 | 3.213 | ± 0.994 | ~20 | 8 | 3.341 | ± 0.221 | ~10 | 6 | 2.994 | ± 0.805 |
~20 | 18 | 3.115 | ± 0.347 | ~25 | 8 | 3.107 | ± 0.304 | ~25 | 14 | 2.743 | ± 0.572 |
~30 | 12 | 2.795 | ± 1.054 | ~35 | 6 | 2.824 | ± 0.047 | ~40 | 10 | 2.889 | ± 1.094 |
~40 | 15 | 2.845 | ± 0.943 | ~40 | 10 | 2.734 | ± 0.177 | ~45 | 8 | 2.671 | ± 0.902 |
~50 | 15 | 2.677 | ± 0.617 | ~50 | 12 | 2.841 | ± 0.097 | ~50 | 16 | 2.747 | ± 0.394 |
~60 | 18 | 2.549 | ± 0.448 | ~60 | 10 | 2.611 | ± 0.759 | ~60 | 18 | 2.703 | ± 0.615 |
~70 | 21 | 0.116 | ± 0.003 | ~70 | 16 | 2.594 | ± 0.607 | ~70 | 22 | 2.655 | ± 0.677 |
~80 | 18 | 0.121 | ± 0.047 | ~80 | 18 | 2.648 | ± 0.050 | ~80 | 16 | 2.611 | ± 0.284 |
~90 | 9 | 0.124 | ± 0.029 | ~90 | 12 | 0.106 | ± 0.036 | ~90 | 14 | 0.164 | ± 0.032 |
100 | 6 | 0.399 | ± 0.260 | 100 | 6 | 0.338 | ± 0.077 | 100 | 6 | 0.432 | ± 0.106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borawski, A. Impact of Operating Time on Selected Tribological Properties of the Friction Material in the Brake Pads of Passenger Cars. Materials 2021, 14, 884. https://doi.org/10.3390/ma14040884
Borawski A. Impact of Operating Time on Selected Tribological Properties of the Friction Material in the Brake Pads of Passenger Cars. Materials. 2021; 14(4):884. https://doi.org/10.3390/ma14040884
Chicago/Turabian StyleBorawski, Andrzej. 2021. "Impact of Operating Time on Selected Tribological Properties of the Friction Material in the Brake Pads of Passenger Cars" Materials 14, no. 4: 884. https://doi.org/10.3390/ma14040884
APA StyleBorawski, A. (2021). Impact of Operating Time on Selected Tribological Properties of the Friction Material in the Brake Pads of Passenger Cars. Materials, 14(4), 884. https://doi.org/10.3390/ma14040884