Development and Characterization of “Green Open-Cell Polyurethane Foams” with Reduced Flammability
<p>Influence of flame retardant type and content on equivalent diameter (<b>a</b>,<b>b</b>), anisotropy index (<b>c</b>,<b>d</b>) of bio-foams based on bio-polyol UCO_TEA and UCO_DEG, respectively.</p> "> Figure 2
<p>Scanning electron microscopy images of cellular structure of bio-foams based on UCO_TEA (<b>a</b>) and UCO_DEG (<b>b</b>).</p> "> Figure 3
<p>Dielectric polarization of the PUR system modified with a flame retardant (30 php).</p> "> Figure 4
<p>Apparent density (<b>a</b>), closed cells content (<b>b</b>), and compressive strength (<b>c</b>,<b>d</b>) of foams based on bio-polyols UCO_TEA and UCO_DEG.</p> "> Figure 5
<p>Representative curves of heat release rate curves of TEA (<b>a</b>) and DEG (<b>b</b>) series.</p> "> Figure 6
<p>Photographs of samples after cone calorimetry tests.</p> "> Figure 7
<p>SEM images of char residues.</p> "> Figure 8
<p>TG and DTG curves (in nitrogen atmosphere) of TEA and DEG series modified with fire retardants.</p> "> Figure 9
<p>FTIR spectra of volatile products during the non-oxidative thermal degradation of TEA and DEG series modified with fire retardants.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Open-Cell PUR Foams
2.3. Characterization of Foaming Process and PUR Foams Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kurańska, M.; Malewska, E.; Polaczek, K.; Prociak, A.; Kubacka, J. A Pathway toward a New Era of Open-Cell Polyurethane Foams—Influence of Bio-Polyols Derived from Used Cooking Oil on Foams Properties. Materials 2020, 13, 5161. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.; Xue, Y.; Gore, R.; Woskie, S.; Bello, D. Assessment and control of exposures to polymeric methylene diphenyl diisocyanate (pMDI) in spray polyurethane foam applicators. Int. J. Hyg. Environ. Health 2019, 222, 804–815. [Google Scholar] [CrossRef] [PubMed]
- Liszkowska, J.; Borowicz, M.; Paciorek-Sadowska, J.; Isbrant, M.; Czupryński, B.; Moraczewski, K. Assessment of Photodegradation and Biodegradation of RPU/PIR Foams Modified by Natural Compounds of Plant Origin. Polymers 2020, 12, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowicz, M.; Paciorek-Sadowska, J.; Lubczak, J.; Czupryński, B. Biodegradable, Flame-Retardant, and Bio-Based RigidPolyurethane/Polyisocyanurate Foams for Thermal Insulation Application. Polymers 2019, 11, 1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Bo, C.; Jia, P.-Y.; Zhou, Y.-H.; Zhang, M. Effects of Tung Oil-Based Polyols on the Thermal Stability, Flame Retardancy, and Mechanical Properties of Rigid Polyurethane Foam. Polymers 2018, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Kirpluks, M.; Kalnbunde, D.; Walterova, Z.; Cabulis, U. Rapeseed Oil as Feedstock for High Functionality Polyol Synthesis. J. Renew. Mater. 2017, 5, 258–270. [Google Scholar] [CrossRef]
- Strąkowska, A.; Członka, S.; Strzelec, K. POSS Compounds as Modifiers for Rigid Polyurethane Foams (Composites). Polymers 2019, 11, 1092. [Google Scholar] [CrossRef] [Green Version]
- Salasinska, K.; Borucka, M.; Leszczyńska, M.; Zatorski, W.; Celiński, M.; Gajek, A.; Ryszkowska, J. Analysis of flammability and smoke emission of rigid polyurethane foams modified with nanoparticles and halogen-free fire retardants. J. Therm. Anal. Calorim. 2017, 130, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Günther, M.; Levchik, S.V.; Schartel, B. Bubbles and collapses: Fire phenomena of flame-retarded flexible polyurethane foams. Polym. Adv. Technol. 2020, 31, 2185–2198. [Google Scholar] [CrossRef]
- Członka, S.; Strąkowska, A.; Strzelec, K.; Kairytė, A.; Kremensas, A. Melamine, silica, and ionic liquid as a novel flame retardant for rigid polyurethane foams with enhanced flame retardancy and mechanical properties. Polym. Test. 2020, 87, 106511. [Google Scholar] [CrossRef]
- Poppendieck, D.; Gong, M.; Ng, L.C.; Dougherty, B.; Pham, V.; Zimmerman, S.M. Applicability of Spray Polyurethane Foam Ventilation Guidelines for Do-It-Yourself Application Events. Build. Environ. 2019, 157, 227–234. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Chen, S.; Zhou, Y. Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine and cardanol. Polym. Degrad. Stab. 2014, 110, 27–34. [Google Scholar] [CrossRef]
- Kurańska, M.; Prociak, A. The influence of rapeseed oil-based polyols on the foaming process of rigid polyurethane foams. Ind. Crop. Prod. 2016, 89, 182–187. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 4590:2016 Rigid Cellular Plastics—Determination of the Volume Percentage of Open Cells and of Closed Cells; International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- International Organization for Standardization. ISO 845:2006 Cellular Plastics and Rubbers — Determination of Apparent Density; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. ISO 8301:1991 Thermal Insulation — Determination of Steady-State Thermal Resistance and Related Properties — Heat Flow Meter Apparatus; International Organization for Standardization: Geneva, Switzerland, 1991. [Google Scholar]
- Polish Committee for Standardization. PN-EN 826:2013-07 Thermal Insulating Products for Building Applications - Determination of Compression Behavior; Polish Committee for Standardization: Warszawa, Poland, 2013. [Google Scholar]
- International Organization for Standardization. ISO 5660-1:2015 Reaction-to-Fire Tests — Heat Release, Smoke Production and Mass Loss Rate — Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement); International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- International Organization for Standardization. ISO 4589-2:2017 Plastics — Determination of Burning Behaviour by Oxygen Index — Part 2: Ambient-Temperature Test; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Palanisamy, A.; Karuna, M.S.L.; Satyavani, T.; Kumar, D.B.R. Development and Characterization of Water-Blown Polyurethane Foams from Diethanolamides of Karanja Oil. J. Am. Oil Chem. Soc. 2011, 88, 541–549. [Google Scholar] [CrossRef]
- Septevani, A.A.; Evans, D.A.C.; Chaleat, C.; Martin, D.J.; Annamalai, P.K. A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam. Ind. Crop. Prod. 2015, 66, 16–26. [Google Scholar] [CrossRef]
- Prociak, A.; Kurańska, M.; Cabulis, U.; Ryszkowska, J.; Leszczyńska, M.; Uram, K.; Kirpluks, M. Effect of bio-polyols with different chemical structures on foaming of polyurethane systems and foam properties. Ind. Crop. Prod. 2018, 120, 262–270. [Google Scholar] [CrossRef]
- Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Haponiuk, J.T.; Gazda, M. Preparation and characterization of rigid polyurethane–polyglycerol nanocomposite foams. Eur. Polym. J. 2012, 48, 1726–1733. [Google Scholar] [CrossRef]
- Kurańska, M.; Polaczek, K.; Auguścik-królikowska, M.; Prociak, A.; Ryszkowska, J. Open-cell polyurethane foams based on modified used cooking oil. Polimery 2020, 65, 216–225. [Google Scholar] [CrossRef]
- Paciorek-Sadowska, J.; Borowicz, M.; Isbrant, M.; Czupryński, B.; Apiecionek, Ł. The Use of Waste from the Production of Rapeseed Oil for Obtaining of New Polyurethane Composites. Polymers 2019, 11, 1431. [Google Scholar] [CrossRef] [Green Version]
- Kurańska, M.; Polaczek, K.; Auguścik-Królikowska, M.; Prociak, A.; Ryszkowska, J. Open-cell rigid polyurethane bio-foams based on modified used cooking oil. Polymer 2020, 190, 122164. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Zhu, M. Flame retardant, mechanical and thermal insulating properties of rigid polyurethane foam modified by nano zirconium amino-tris-(methylenephosphonate) and expandable graphite. Polym. Degrad. Stab. 2019, 170, 108997. [Google Scholar] [CrossRef]
- Schartel, B.; Wilkie, C.A.; Camino, G. Recommendations on the scientific approach to polymer flame retardancy: Part 1—Scientific terms and methods. J. Fire Sci. 2016, 34, 447–467. [Google Scholar] [CrossRef]
- Lv, Y.F.; Thomas, W.; Chalk, R.; Singamneni, S. Flame retardant polymeric materials for additive manufacturing. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Xi, W.; Qian, L.; Huang, Z.; Cao, Y.; Li, L. Continuous flame-retardant actions of two phosphate esters with expandable graphite in rigid polyurethane foams. Polym. Degrad. Stab. 2016, 130, 97–102. [Google Scholar] [CrossRef]
- Wang, S.-X.; Zhao, H.-B.; Rao, W.-H.; Huang, S.-C.; Wang, T.; Liao, W.; Wang, Y.-Z. Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer 2018, 153, 616–625. [Google Scholar] [CrossRef]
- Lorenzetti, A.; Modesti, M.; Besco, S.; Hrelja, D.; Donadi, S. Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams. Polym. Degrad. Stab. 2011, 96, 1455–1461. [Google Scholar] [CrossRef]
- Liu, X.; Salmeia, K.A.; Rentsch, D.; Hao, J.; Gaan, S. Thermal decomposition and flammability of rigid PU foams containing some DOPO derivatives and other phosphorus compounds. J. Anal. Appl. Pyrolysis 2017, 124, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Gaan, S.; Liang, S.; Mispreuve, H.; Perler, H.; Naescher, R.; Neisius, M. Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym. Degrad. Stab. 2015, 113, 180–188. [Google Scholar] [CrossRef]
- Chen, X.; Huo, L.; Jiao, C.; Li, S. TG–FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J. Anal. Appl. Pyrolysis 2013, 100, 186–191. [Google Scholar] [CrossRef]
- He, J.-J.; Jiang, L.; Sun, J.-H.; Lo, S. Thermal degradation study of pure rigid polyurethane in oxidative and non-oxidative atmospheres. J. Anal. Appl. Pyrolysis 2016, 120, 269–283. [Google Scholar] [CrossRef]
Bio-Polyol | Hval [mgKOH/g] | Aval [mgKOH/g] | Mn, [g/mol] | f | D | Ƞ, [mPa·s] | d, [g/cm3] | H2O, [wt.%] |
---|---|---|---|---|---|---|---|---|
UCO_DEG | 277 | 1.00 | 381 | 1.88 | 1.29 | 56 | 0.958 | 0.05 |
UCO_TEA | 348 | 2.31 | 357 | 2.21 | 1.46 | 182 | 0.975 | 0.05 |
Properties/Flame Retardant Symbol | TCPP | TEP | DMPP |
---|---|---|---|
Phosphorus content, % | 9.5 | 17.0 | 20.3 |
Chlorine content, % | 32.5 | - | - |
Acid value, mgKOH/g | <0.05 | <0.05 | <0.05 |
Density, g/cm3 | 1.289 | 1.065–1.074 | 1.072 |
Boiling point, °C | 270 | 215 | 185 |
Viscosity, mPa·s | 75 | 1.7 | 2.5 |
Component [g] | TEA_REF | TEA_TCPP_10 | TEA_TEP_10 | TEA_DMPP_10 | TEA_TCPP_20 | TEA_TEP_20 | TEA_DMPP_20 | TEA_TCPP_30 | TEA_TEP_30 | TEA_DMPP_30 |
---|---|---|---|---|---|---|---|---|---|---|
UCO_TEA | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Polycat 218 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Tegostab B 8870 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |
Ortegol 500 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Water | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
TCPP | 0 | 10 | 0 | 0 | 20 | 0 | 0 | 30 | 0 | 0 |
TEP | 0 | 0 | 10 | 0 | 0 | 20 | 0 | 0 | 30 | 0 |
DMPP | 0 | 0 | 0 | 10 | 0 | 0 | 20 | 0 | 0 | 30 |
Ongronat 2100 | 312 | 312 | 312 | 312 | 312 | 312 | 312 | 312 | 312 | 312 |
%UCO_TEA * | 22.9 | 22.4 | 22.4 | 22.4 | 21.9 | 21.9 | 21.9 | 21.5 | 21.5 | 21.5 |
Component [g] | DEG_REF | DEG _TCPP_10 | DEG _TEP_10 | DEG _DMPP_10 | DEG _TCPP_20 | DEG _TEP_20 | DEG _DMPP_20 | DEG _TCPP_30 | DEG _TEP_30 | DEG _DMPP_30 |
---|---|---|---|---|---|---|---|---|---|---|
UCO_DEG | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Polycat 218 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Tegostab B 8870 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |
Ortegol 500 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Water | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
TCPP | 0 | 10 | 0 | 0 | 20 | 0 | 0 | 30 | 0 | 0 |
TEP | 0 | 0 | 10 | 0 | 0 | 20 | 0 | 0 | 30 | 0 |
DMPP | 0 | 0 | 0 | 10 | 0 | 0 | 20 | 0 | 0 | 30 |
Ongronat 2100 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 289 | 289 |
%UCO_DEG ** | 24.2 | 23.6 | 23.6 | 23.6 | 23.1 | 23.1 | 23.1 | 22.6 | 22.6 | 22.6 |
Symbol | Coefficient of Thermal Conductivity [mW/m·K] | |||||
---|---|---|---|---|---|---|
−10 °C/10 °C | 0 °C/20 °C | 10 °C/30 °C | ||||
TEA_REF | 37.15 | ±1.41 | 39.06 | ±1.31 | 40.44 | ±1.22 |
TEA_TCPP_10 | 39.03 | ±0.61 | 41.01 | ±0.58 | 43.26 | ±0.43 |
TEA_TCPP_20 | 38.50 | ±0.69 | 40.41 | ±0.49 | 42.57 | ±0.91 |
TEA_TCPP_30 | 38.10 | ±0.32 | 40.47 | ±0.30 | 42.30 | ±0.38 |
TEA_TEP_10 | 38.35 | ±0.09 | 40.44 | ±0.21 | 42.44 | ±0.17 |
TEA_TEP_20 | 38.56 | ±1.08 | 40.80 | ±1.15 | 42.38 | ±0.17 |
TEA_TEP_30 | 38.52 | ±1.19 | 40.63 | ±1.44 | 42.63 | ±1.85 |
TEA_DMPP_10 | 37.52 | ±0.14 | 39.11 | ±0.33 | 41.34 | ±0.29 |
TEA_DMPP_20 | 37.50 | ±0.22 | 39.35 | ±0.21 | 40.47 | ±1.08 |
TEA_DMPP_30 | 36.73 | ±0.81 | 38.46 | ±0.70 | 40.35 | ±0.69 |
DEG_REF | 39.15 | ±0.44 | 41.34 | ±0.58 | 43.17 | ±0.44 |
DEG_TCPP_10 | 39.26 | ±0.44 | 41.22 | ±0.58 | 43.64 | ±1.30 |
DEG_TCPP_20 | 38.46 | ±0.05 | 39.97 | ±0.13 | 41.63 | ±0.18 |
DEG_TCPP_30 | 37.93 | ±0.09 | 39.86 | ±0.27 | 41.86 | ±0.46 |
DEG_TEP_10 | 38.39 | ±0.25 | 40.63 | ±0.36 | 42.63 | ±0.40 |
DEG_TEP_20 | 38.75 | ±1.25 | 41.07 | ±1.28 | 42.70 | ±1.09 |
DEG_TEP_30 | 38.54 | ±0.63 | 40.26 | ±0.72 | 41.85 | ±1.00 |
DEG_DMPP_10 | 38.64 | ±0.01 | 40.56 | ±0.37 | 41.90 | ±1.08 |
DEG_DMPP_20 | 36.13 | ±0.12 | 37.83 | ±0.04 | 39.90 | ±0.06 |
DEG_DMPP_30 | 35.19 | ±0.13 | 36.95 | ±0.13 | 38.91 | ±0.07 |
Sample | TTI | TOF | pHRR | MARHE | THR | EHC | TSR | Residue [%] | LOI [%] |
---|---|---|---|---|---|---|---|---|---|
[s] | [s] | [kW/m2] | [kW/m2] | [MJ/m2] | [MJ/kg] | [m2/m2] | |||
TEA_REF | 2 ± 1 | 45 ± 2 | 297 ± 21 | 198 ± 11 | 7 ± 2 | 18 ± 2 | 277 ± 37 | 3 ± 1 | 19.6 |
TEA_TCPP_30 | 3 ± 1 | 44 ± 1 | 254 ± 11 | 169 ± 11 | 6 ± 0 | 17 ± 1 | 300 ± 25 | 6 ± 1 | 21.7 |
TEA_TEP_30 | 3 ± 1 | 45 ± 5 | 259 ± 2 | 179 ± 5 | 6 ± 1 | 17 ± 1 | 303 ± 38 | 12 ± 4 | 21.2 |
TEA_DMPP_30 | 5 ± 2 | 50 ± 13 | 181 ± 41 | 135 ± 35 | 6 ± 1 | 17 ± 1 | 284 ± 40 | 11 ± 4 | 22.0 |
DEG_REF | 3 ± 1 | 46 ± 6 | 263 ± 25 | 201 ± 18 | 7 ± 0 | 21 ± 1 | 255 ± 18 | 13 ± 4 | 18.6 |
DEG_TCPP_30 | 3 ± 1 | 43 ± 4 | 227 ± 15 | 161 ± 7 | 6 ± 0 | 16 ± 1 | 307 ± 24 | 11 ± 3 | 21.3 |
DEG_TEP_30 | 2 ± 1 | 51 ± 4 | 232 ± 20 | 170 ± 11 | 7 ± 0 | 19 ± 1 | 313 ± 19 | 12 ± 3 | 21.0 |
DEG_DMPP_30 | 3 ± 1 | 54 ± 3 | 182 ± 2 | 144 ± 12 | 6 ± 0 | 17 ± 4 | 316 ± 29 | 16 ± 4 | 21.8 |
Symbol | Td 5% [°C] | Td 10% [°C] | Td max1 [°C] | Td max2 [°C] | Td max3 [°C] | Char at 750 °C [wt.%] |
---|---|---|---|---|---|---|
TEA_REF | 275 | 301 | - | 360 | 470 | 14.7 |
TEA_TCPP_30 | 207 | 262 | 209 | 349 | 477 | 14.0 |
TEA_TEP_30 | 234 | 281 | 171 | 339 | 440 | 16.4 |
TEA_DMPP_30 | 234 | 278 | 167 | 354 | 427 | 22.5 |
DEG_REF | 274 | 292 | - | 336 | 408 | 16.9 |
DEG_TCPP_30 | 205 | 268 | 190 | 333 | 409 | 16.5 |
DEG_TEP_30 | 208 | 275 | 154 | 339 | 407 | 19.1 |
DEG_DMPP_30 | 259 | 278 | 147 | 325 | 389 | 18.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurańska, M.; Beneš, H.; Sałasińska, K.; Prociak, A.; Malewska, E.; Polaczek, K. Development and Characterization of “Green Open-Cell Polyurethane Foams” with Reduced Flammability. Materials 2020, 13, 5459. https://doi.org/10.3390/ma13235459
Kurańska M, Beneš H, Sałasińska K, Prociak A, Malewska E, Polaczek K. Development and Characterization of “Green Open-Cell Polyurethane Foams” with Reduced Flammability. Materials. 2020; 13(23):5459. https://doi.org/10.3390/ma13235459
Chicago/Turabian StyleKurańska, Maria, Hynek Beneš, Kamila Sałasińska, Aleksander Prociak, Elżbieta Malewska, and Krzysztof Polaczek. 2020. "Development and Characterization of “Green Open-Cell Polyurethane Foams” with Reduced Flammability" Materials 13, no. 23: 5459. https://doi.org/10.3390/ma13235459
APA StyleKurańska, M., Beneš, H., Sałasińska, K., Prociak, A., Malewska, E., & Polaczek, K. (2020). Development and Characterization of “Green Open-Cell Polyurethane Foams” with Reduced Flammability. Materials, 13(23), 5459. https://doi.org/10.3390/ma13235459