Experimental Determination of the Manson−Coffin Curves for an Original Unconventional Vehicle Frame
<p>(<b>a</b>) The 3D prototype model of the suspension design for the front steered wheel of a three-wheeled vehicle with the patented steering mechanism [<a href="#B23-materials-13-04675" class="html-bibr">23</a>]; (<b>b</b>) the motion possibilities of the front wheel.</p> "> Figure 2
<p>(<b>a</b>) The experimental workplace for measuring the structure material fatigue designed by the authors; (<b>b</b>) a detail of the most important part of the testing device.</p> "> Figure 3
<p>The 3D model of the designed mechanism for cyclic loading the tested material by bending: 1—servomotor SEW-EURODRIVE CFM90S; 2—eccentric system; 3—scanner of force; 4—capstan; 5—balancer.</p> "> Figure 4
<p>The 3D model of the designed mechanism for cyclic loading the tested material by torsion: 1—servomotor SEW-EURODRIVE CFM71M; 2—eccentric system; 3—scanner of force; 4—capstan; 5—crank.</p> "> Figure 5
<p>The 3D model of the designed mechanism for cyclic loading the tested material by bending and torsion.</p> "> Figure 6
<p>(<b>a</b>) Creating a virtual model of the mechanism for determining the machine dynamics; (<b>b</b>) a kinematic scheme of the loaded mechanism for bending.</p> "> Figure 7
<p>The performance of the dynamic forces in the joints of the mechanism at the deviation of the eccentric system <span class="html-italic">e</span> = 2 mm and frequency of 100 Hz.</p> "> Figure 8
<p>The performance of the dynamic forces in the joints of the mechanism at the deviation of the eccentric system <span class="html-italic">e</span> = 2 mm and frequency of 50 Hz.</p> "> Figure 9
<p>The performance of the dynamic forces in the joints of the mechanism at the deviation of the eccentric system <span class="html-italic">e</span> = 2 mm and frequency of 30 Hz.</p> "> Figure 10
<p>3D model of the eccentric system: (<b>a</b>) the cam; (<b>b</b>) the cam body.</p> "> Figure 11
<p>(<b>a</b>) The functions of the deviations selected by the eccentric couple through mutual rotation by the corresponding number of cogs from the zero eccentricity value up to the maximal eccentricity, <span class="html-italic">e</span> = 1, 2 and 4 mm; (<b>b</b>) the scheme of adjusting the eccentricity value.</p> "> Figure 12
<p>Loading the specimen by a combined stress: (<b>a</b>) bending—torsion; (<b>b</b>) the 3D model of the designed loading mechanism.</p> "> Figure 13
<p>The simplification of the force effects in the specimen—the free body diagram.</p> "> Figure 14
<p>(<b>a</b>) The change of the cross-section of the tested specimen with dependence on the centreline <span class="html-italic">x</span>; (<b>b</b>) the resulting optimal shape of the tested specimen of the designed testing device.</p> "> Figure 15
<p>The final calibration curves of the total deformation of the basic material EN AW 6063: (<b>a</b>) the stress by bending; (<b>b</b>) the stress by torsion.</p> "> Figure 16
<p>The final calibration curves of the total deformation of the welded material EN AW 6063: (<b>a</b>) bending stress; (<b>b</b>) torsion stress.</p> "> Figure 17
<p>The functions of the equivalent stresses according to the von Mises hypothesis of the tested material: (<b>a</b>) by the bending stress with eccentricity <span class="html-italic">e</span> = 1 mm; (<b>b</b>) by the torsion stress <span class="html-italic">e</span> = 4 mm.</p> "> Figure 18
<p>(<b>a</b>) The distribution of the von Mises stresses of the tested specimen stressed by bending; (<b>b</b>) the distribution of the von Mises stresses of the tested specimen stressed by torsion.</p> "> Figure 19
<p>(<b>a</b>) Scanning the specimen surface by the ARAMIS system; (<b>b</b>) the surface sprayed with reflective paint.</p> "> Figure 20
<p>Assessing the images by the ARAMIS system: (<b>a</b>) the area of the assumed maximal deformation; (<b>b</b>) the deformation zones of the specimen.</p> "> Figure 21
<p>The distribution of the deformation value from the images.</p> "> Figure 22
<p>Comparing the determined deformations: (<b>a</b>) with the bending stress; (<b>b</b>) with the stress by torsion.</p> "> Figure 23
<p>The final Manson−Coffin fatigue curve of the basic material EN AW 6063 under the bending load.</p> "> Figure 24
<p>The final Manson−Coffin fatigue curve of the welded material EN AW 6063 under the bending load.</p> "> Figure 25
<p>The final Manson−Coffin fatigue curve of the basic material EN AW 6063 under the torsion load.</p> "> Figure 26
<p>The final Manson−Coffin fatigue curve of the welded material EN AW 6063 under the torsion load.</p> "> Figure 27
<p>(<b>a</b>) The visual evidence of changing the chemical composition due to welding consisting in the change of the colour of the specimens’ welded joint; (<b>b</b>) the macro-structure of the fracture surface of the welded specimen stressed multiaxially; (<b>c</b>) the nonwelded specimen stressed multiaxially and by low cycles.</p> "> Figure 28
<p>The consequence of friction on the material volume during the test: (<b>a</b>) the filings on the surface; (<b>b</b>) the specimen after removing the filings.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Analysis of Results
4. Conclusions
- The presented research of an unconventional vehicle is aimed at increasing the safety of the crew when it drives through curves.
- The weight of the vehicle has a significant effect on its range, as it is an electric vehicle. The weight was reduced by using the tested aluminum alloy for the construction of the vehicle frame.
- The new and original test equipment was designed by the authors in order to determine the fatigue properties of the construction material used.
- Measurement of uniaxial fatigue tests by cyclic torsion and cyclic bending was performed. The authors made a comparison of the fatigue life of the basic and welded materials. The test results confirmed that the use of a commercial aluminum alloy EN AW 6063 in the given vehicle structure was appropriate. The decrease in fatigue life due to the used welding technology was within acceptable limits.
- The finite element software ADINA was used for simulating the stress by bending and torsion on the testing specimen. The comparison of the results of the numerical analyses was realized on the basis of assessing the deformation process by comparing the measurement results by the optical contactless system ARAMIS.
- Cataloging the results of the various tested materials will play an important role in the design of machine components in general.
Author Contributions
Funding
Conflicts of Interest
References
- Różyło, P. Passive safety of a buggy-type car in the aspect of a dynamic analysis of the frame. Acta Mech. Autom. 2019, 13, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Leitner, B.; Decky, M.; Kovac, M. Road pavement longitudinal evenness quantification as stationary stochastic process. Transport 2019, 34, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Bucchi, F.; Cerù, F.; Frendo, F. Stability analysis of a novel-four-wheeled motorcycle in straight running. Meccanica 2017, 52, 2603–2613. [Google Scholar] [CrossRef] [Green Version]
- Kasaba, K.; Katagiri, K.; Sato, H.; Shimizu, H.; Kondo, Y.; Kawakami, K.; Harada, J.; Sugijama, K.; Takahashi, K. Evaluation of torsional rigidity of frame for electric Eco-Vehicle: Deformation behavior of light thin shell structure subjected to torsion and bending. JSAE Rev. 2002, 23, 251–258. [Google Scholar] [CrossRef]
- Arifurrahman, F.; Indrawanto; Budiman, B.A.; Santosa, S.P. Static analysis of an electric three-wheel vehicle. In Proceedings of the 5th International Conference on Electric Vehicular Technology (ICEVT), Surakarta, Indonesia, 30–31 October 2018; pp. 218–223. [Google Scholar] [CrossRef]
- Dunn, J.B.; Gaines, L.; Kelly, J.C.; James, C.; Gallagher, K.G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Envir. Sci. 2015, 8, 158–168. [Google Scholar] [CrossRef]
- Jo, G.J.; Ryoo, Y.J.; Daeyeong, I.; Hyunrok, C. Electric driven three-wheeled robotic vehicle (robicle) for personal mobility system. In Proceedings of the 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), Kitakyushu, Japan, 3–6 December 2014. [Google Scholar] [CrossRef]
- Arora, S.; Shen, W.; Kapoor, A. Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles. Renew. Sustain. Energy Rev. 2016, 60, 1319–1331. [Google Scholar] [CrossRef]
- Barta, D.; Mruzek, M. Factors influencing the hybrid drive of urban public transport buses. Manag. Syst. Prod. Eng. 2015, 20, 213–218. [Google Scholar] [CrossRef]
- Mruzek, M.; Barta, D.; Labuda, R.; Skrucany, T.; Gardynski, L. Possibility of increasing vehicle energy balance using coasting. Adv. Sci. Technol. 2018, 12, 228–235. [Google Scholar] [CrossRef]
- Malek, A.; Caban, J.; Wojciechowski, L. Charging electric cars as a way to increase the use of energy produced from RES. Open Eng. 2020, 10, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Deb, A.; Mahendrakumar, M.S.; Chavan, C.; Karve, J.; Blankenburg, D.; Storen, S. Design of an aluminium-based vehicle platform for front impact safety. Int. J. Impact Eng. 2004, 30, 1055–1079. [Google Scholar] [CrossRef]
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; De Smet, P.; Haszler, A.; Vieregge, A. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Hirsch, J. Aluminium in innovative light-weight car design. Mater. Trans. 2011, 52, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Brůna, M.; Remišová, A.; Sládek, A. Effect of filter thickness on reoxidation and mechanical properties of aluminium alloy AlSi7Mg0.3. Arch. Metall. Mater. 2019, 64, 1100–1106. [Google Scholar]
- Hörhold, R.; Müller, M.; Merklein, M.; Meschut, G. Mechanical properties of an innovative shear-clinching technology for ultra-high-strength steel and aluminium in lightweight car body structures. Weld World 2016, 60, 613–620. [Google Scholar] [CrossRef]
- Anyasodor, G.; Koroschetz, C. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures. J. Phys. Conf. Ser. 2017, 896, 012093. [Google Scholar] [CrossRef] [Green Version]
- Czwajda, L.; Kosacka-Olejnik, M.; Kudelska, I.; Kostrzewski, M.; Sethanan, K.; Pitakaso, R. Application of prediction markets phenomenon as decision support instrument in vehicle recycling sector. LogForum 2019, 15, 265–278. [Google Scholar] [CrossRef]
- Drozdziel, P.; Komsta, H.; Krzywonos, L. An analysis of unit repair costs as a function of mileage of vehicles in a selected transport company. Transp. Probl. 2014, 9, 73–81. [Google Scholar]
- Zhao, H.; White, D.R.; DebRoy, T. Current issues and problems in laser welding of automotive aluminium alloys. Int. Mater. Rev. 1999, 44, 238–266. [Google Scholar] [CrossRef]
- Engelhart, D.; Lindner, E. The technology of the Audi A2, a new innovative automobile concept in the compact car class. In Proceedings of the Seoul 2000 FISITA World Automotive Congress, Seoul, Korea, 12–15 June 2000; pp. 1–7. [Google Scholar]
- Richtárech, L.; Bolibruchová, D.; Brůna, M.; Caiss, J. Influence of nickel addition on properties of secondary AlSi7Mg0.3 alloy. Arch. Foundry Eng. 2015, 15, 95–98. [Google Scholar] [CrossRef]
- Harušinec, J.; Suchánek, A.; Loulová, M.; Kurčík, P. Design of a prototype frame of an electrically driven three-wheel vehicle. MATEC Web Conf. 2019, 254, 02014. [Google Scholar] [CrossRef]
- Dižo, J.; Blatnický, M.; Harušinec, J.; Kurčík, P.; Strážovec, P. Design of a three-wheeled electric car with a modified steering system. In Proceedings of the 44th Interational Scientific Conference of Departments of Transport, Handling, Building and Agriculture Machines, Kurdějov, Czech Republic, 11–12 September 2018. [Google Scholar]
- WIPO. Utility Model No. 196-2018; Industrial Property Office of the Slovak Republic: Banská Bystrica, Slovak Republic, 2018.
- Ince, A.; Glinka, G. A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings. Int. J. Fatigue 2014, 62, 34–41. [Google Scholar] [CrossRef]
- Meneghetti, G.; Campagnolo, A.; Babini, V.; Riboli, M.; Spagnoli, A. Multiaxial fatigue assessment of welded steel details according to the peak stress method: Industrial case studies. Int. J. Fatigue 2019, 125, 362–380. [Google Scholar] [CrossRef]
- Callens, A.; Bignonnet, A. Fatigue design of welded bicycle frames using a multiaxial criterion. Procedia Eng. 2012, 34, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Leitner, B.; Dvořák, Z. Special railway crane PKP 25/20i—dynamics loads and a fatigue life prediction of its load-bearing structure. Transp. Means 2013, 262–265. [Google Scholar]
- Karolcyuk, A.; Papuga, J.; Palin-Luc, T. Progress in fatigue life calculation by implementing life-dependent material parameters in multiaxial fatigue criteria. Int. J. Fatigue 2020, 134, 105509. [Google Scholar] [CrossRef]
- Uhríčik, M.; Palček, P.; Chalupová, M.; Oravcová, M.; Frkáň, M. The influence of the structure on the fatigue properties of Al-Mg cast alloy. Arch. Metall. Mater. 2017, 62, 1615–1624. [Google Scholar] [CrossRef] [Green Version]
- Blatnický, M.; Sága, M.; Dižo, J.; Brůna, M. Application of light metal alloy EN AW 6063 to vehicle frame construction with an innovated steering mechanism. Materials 2020, 13, 817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrusca, L.; Goanta, V.; Barsanescu, P.D.; Savin, A. Experimental characterization of materials subjected to combined loading conditions. Mater. Sci. Eng. IOP Conf. Ser. 2016, 147, 012092. [Google Scholar] [CrossRef] [Green Version]
- Videira, H.; Anes, V.; Freitas, M.; Reis, L. Characterisation and evaluation of the mechanical behaviour of the magnesium alloy AZ31B in multiaxial fatigue in the presence of a notch. Procedia Struct. Integr. 2016, 1, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Gourdin, C.; Bradaï, S.; Courtin, S.; Le Roux, J.C.; Gardin, C. Equi-biaxial loading effect on austenitic stainless steel fatigue life. Frat. Integrità Strutt. 2016, 10, 170–176. [Google Scholar] [CrossRef]
- Böhm, M.; Kowalski, M.; Niesłony, A. Multiaxial fatigue test stand concept—stand and control design. In Mechatronics—Ideas for Industrial Application; Advances in Intelligent Systems and Computing; Awrejcewicz, J., Szewczyk, R., Trojnacki, M., Kaliczyńska, M., Eds.; Springer: Cham, Switzerland, 2015; Volume 317, pp. 437–445. [Google Scholar] [CrossRef]
- Karolczuk, A.; Kurek, M.; Łagoda, T. Fatigue life of aluminium alloy 6082 T6 under constant and variable amplitude bending with torsion. J. Theor. Appl. Mech. 2015, 53, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Sapietová, A.; Bukovan, J.; Sapieta, M.; Jakubovičová, L. Analysis and implementation of input load effects on an air compressor piston in MSC.ADAMS. Procedia Eng. 2017, 177, 554–561. [Google Scholar] [CrossRef]
- Sapietová, A.; Gajdos, L.; Dekys, V.; Sapieta, M. Analysis of the influence of input function contact parameters of the impact force process in the MSC.ADAMS. In Advanced Mechatronics Solutions; Advances in Intelligent Systems and Computing; Jabłoński, R., Brezina, T., Eds.; Springer: Cham, Switzerland, 2016; Volume 393, pp. 243–253. [Google Scholar] [CrossRef]
- Kelemen, M.; Virgala, I.; Lipták, T.; Miková, L.; Filakovský, F.; Bulej, V. A novel approach for an inverse kinematics solution of a redundant manipulator. Appl. Sci. 2018, 8, 2229. [Google Scholar] [CrossRef] [Green Version]
- Bulej, V.; Stanček, J.; Kuric, I.; Zajačko, I. The space distribution and transfer of positioning errors from actuators to the TCP point of parallel mechanism. MATEC Web Conf. 2018, 157, 02006. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, M.; Fontanari, V.; Santus, C.; Bandini, M. Notch fatigue behaviour of shot peened high-strength aluminium alloys: Experiments and predictions using a critical distance method. Int. J. Fatigue 2010, 32, 1600–1611. [Google Scholar] [CrossRef]
- Jíša, D.; Liškutín, P.; Kruml, T.; Polák, J. Small fatigue crack growth in aluminium alloy EN-AW 6082/T6. Int. J. Fatigue 2010, 32, 1913–1920. [Google Scholar] [CrossRef]
- Chaves, V.; Beretta, G.; Balbín, J.A.; Navarro, A. Fatigue life and crack growth direction in 7075-T6 aluminium alloy specimen with a circular hole under biaxial loading. Int. J. Fatigue 2019, 125, 222–236. [Google Scholar] [CrossRef]
- Larson, E.A.; Ren, X.; Adu-Gyamfi, S.; Zhang, H.; Ren, Y. Effects of scanning path gradient on the residual stress distribution and fatigue life of AA2024-T351 aluminium alloy induced by LSP. Results Phys. 2019, 13, 102123. [Google Scholar] [CrossRef]
- Carach, J.; Lehocka, D.; Legutko, S.; Hloch, S.; Chattopadhyaya, S.; Dixit, A.R. Surface Roughness of graphite and aluminium alloy after hydro-abrasive machining. In Advances in Manufacturing; Lecture Notes in Mechanical Engineering; Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 805–813. [Google Scholar] [CrossRef]
- Pastirčák, R.; Ščury, J.; Moravec, J. The Effects of pressure during the crystallization on properties of the AlSi12 alloy. Arch. Foundry Eng. 2017, 17, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Moravec, J. Electromagnetic forming of thin-walled tubes introduction. In Proceedings of the 26th International Conference on Metallurgy and Materials, Brno, Czech Republic, 24–26 May 2017; pp. 326–331. [Google Scholar]
- Böhm, M.; Kowalski, M. Fatigue life estimation of explosive cladded transition joints with the use of the spectral method for the case of a random sea state. Mar. Struct. 2020, 17, 102739. [Google Scholar] [CrossRef]
- Harušinec, J.; Suchánek, A.; Loulová, M. Creation of prototype 3d models using rapid prototyping. MATEC Web Conf. 2019, 254, 01013. [Google Scholar] [CrossRef]
- Sadowski, T.; Golewski, P. Modelling end experimental testing of hybrid joints made of: Aluminium adherends, adhesive layers and rivets for aerospace applications. Arch. Metall. Mater. 2017, 62, 1577–1583. [Google Scholar] [CrossRef] [Green Version]
- Banat, D.; Mania, R.J. Damage analysis of thin-walled GLARE members under axial compression—Numerical and experimental investigation. Compos. Struct. 2020, 241, 112102. [Google Scholar] [CrossRef]
- Kubiak, M.; Domański, T.; Dekýš, V.; Sapietová, A. Measurement of strain during tension test of welded joint using multi-camera 3D correlation system. Procedia Eng. 2017, 177, 107–113. [Google Scholar] [CrossRef]
- Smirnov, V.; Repko, A. Workpiece temperature variations during flat peripheral grinding. Manag. Syst. Prod. Eng. 2018, 26, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Macko, M.; Szczepański, Z.; Mikołajewska, E.; Nowak, J.; Mikołajewski, D. Repository of 3D images for education and everyday clinical practice purposes. Bio-Algorithms Med-Syst. 2017, 13, 111–116. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sága, M.; Blatnický, M.; Vaško, M.; Dižo, J.; Kopas, P.; Gerlici, J. Experimental Determination of the Manson−Coffin Curves for an Original Unconventional Vehicle Frame. Materials 2020, 13, 4675. https://doi.org/10.3390/ma13204675
Sága M, Blatnický M, Vaško M, Dižo J, Kopas P, Gerlici J. Experimental Determination of the Manson−Coffin Curves for an Original Unconventional Vehicle Frame. Materials. 2020; 13(20):4675. https://doi.org/10.3390/ma13204675
Chicago/Turabian StyleSága, Milan, Miroslav Blatnický, Milan Vaško, Ján Dižo, Peter Kopas, and Juraj Gerlici. 2020. "Experimental Determination of the Manson−Coffin Curves for an Original Unconventional Vehicle Frame" Materials 13, no. 20: 4675. https://doi.org/10.3390/ma13204675
APA StyleSága, M., Blatnický, M., Vaško, M., Dižo, J., Kopas, P., & Gerlici, J. (2020). Experimental Determination of the Manson−Coffin Curves for an Original Unconventional Vehicle Frame. Materials, 13(20), 4675. https://doi.org/10.3390/ma13204675