Current Status and Prospects of Polymer Powder 3D Printing Technologies
<p>3D printing technical classification according to printing materials.</p> "> Figure 2
<p>Polymer materials used with specific building methods in additive manufacturing (AM).</p> "> Figure 3
<p>Scheme of the hybrid selective laser sintering (SLS) process. (<b>a</b>) Fluid material is injected to SLS powder bed; (<b>b</b>) curing reaction of the liquid initiated via IR radiation; (<b>c</b>) SLS powders are melted with a CO<sub>2</sub> laser.</p> "> Figure 4
<p>Working scheme of binder jetting technology (BJ).</p> "> Figure 5
<p>BJ printed full-color portrait.</p> "> Figure 6
<p>Working scheme of SLS.</p> "> Figure 7
<p>SLS printed artwork.</p> "> Figure 8
<p>SLS printed micro PCB (IPA: isopropyl alcohol).</p> "> Figure 9
<p>Mechanism of HSS. (<b>a</b>) Material recoating; (<b>b</b>) applying ink to the selected area; (<b>c</b>) irradiation by infra-red lamp; (<b>d</b>) powders with ink are fused.</p> "> Figure 10
<p>HP printed color part.</p> ">
Abstract
:1. Introduction
2. Binder Jetting Technology (BJ)
2.1. Overview
2.2. The Development of BJ
2.3. Research Focus and Prospects of BJ
2.3.1. Hardware
2.3.2. Printing Materials
2.3.3. Binder Materials
2.3.4. Process Optimization
3. Selective Laser Sintering (SLS)
3.1. Overview
3.2. The Development of SLS
3.3. The Development of SLS
3.3.1. Process Optimization
3.3.2. Printing Material
3.3.3. Application Extension
4. High-Speed Sintering (HSS)
4.1. Overview
4.2. The Development of HSS
4.3. Research Focus and Prospects of HSS
4.3.1. Parameter Optimization
4.3.2. Development of New Materials
4.3.3. Commercialization of HSS
5. BJ and SLS and HSS Technology Comparison
6. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Berman, B. 3-D printing: The new industrial revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Chapiro, M. Current achievements and future outlook for composites in 3D printing. Reinf. Plast. 2016, 60, 372–375. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.; Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput. Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Campbell, T.; Williams, C.; Ivanova, O.; Garrett, B. Could 3D Printing Change the World? Technologies, Potential, and Implications of Additive Manufacturing; Atlantic Council: Washington, DC, USA, 2011; p. 3. [Google Scholar]
- Standard, A.J.A.F.-e. ISO/ASTM 52900: 2015 Additive Manufacturing-General Principles-Terminology; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Standard, A.J.A.I. Standard Terminology for Additive Manufacturing Technologies; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, Q.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Mousa, A.A.; Bashir, M.O. Additive Manufacturing: A New Industrial Revolution-A review. J. Sci. Achiev. 2017, 2, 19–31. [Google Scholar]
- Tofail, S.A.; Koumoulos, E.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C.A. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today 2018, 21, 22–37. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Wang, X. A critical review of the use of 3-D printing in the construction industry. Autom. Constr. 2016, 68, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Ventola, C.L. Medical Applications for 3D Printing: Current and Projected Uses. P T Peer Rev. J. Formul. Manag. 2014, 39, 704–711. [Google Scholar]
- Kazmer, D. Three-Dimensional Printing of Plastics. In Applied Plastics Engineering Handbook; Elsevier: Amsterdam, The Netherlands, 2017; pp. 617–634. [Google Scholar]
- Lee, J.-Y.; An, J.; Chua, C.K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Nasr, E.A.; Kamrani, A.K. Computer Based Design and Manufacturing; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Gibson, I.; Shi, N. Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyp. J. 1997, 3, 129–136. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stansbury, J.W.; Idacavage, M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Sutton, A.T.; Kriewall, C.S.; Leu, M.C.; Newkirk, J.W.J.V.; Prototyping, P. Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys. Prototyp. 2017, 12, 3–29. [Google Scholar] [CrossRef]
- Dizon, J.R.C.; Espera, A.H., Jr.; Chen, Q.; Advincula, R.C.J.A.M. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018, 20, 44–67. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Wudy, K.; Drummer, D. Infiltration Behavior of Thermosets for Use in a Combined Selective Laser Sintering Process of Polymers. JOM 2018, 71, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Utela, B.; Storti, D.; Anderson, R.; Ganter, M. A review of process development steps for new material systems in three dimensional printing (3DP). J. Manuf. Process. 2008, 10, 96–104. [Google Scholar] [CrossRef]
- Vaezi, M.; Seitz, H.; Yang, S. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 2012, 67, 1721–1754. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Si, J.F.; Wang, L.L. Current status of the three-dimensional printing technology. Manuf. Tech. Mach. Tool 2015, 12, 50–57. [Google Scholar]
- Ayres, T.J.; Sama, S.R.; Joshi, S.B.; Manogharan, G.P. Influence of resin infiltrants on mechanical and thermal performance in plaster binder jetting additive manufacturing. Addit. Manuf. 2019, 30, 100885. [Google Scholar]
- Plan B Open Source Information. Available online: http://ytec3d.com/plan-b-building/ (accessed on 24 October 2019).
- Guo, L.; Chen, X.; Zhang, H.; Zhou, J. Research on Additive Manufacturing Technology. In Proceedings of the Seventh Asia International Symposium on Mechatronics; Springer: Singapore, 2020; pp. 937–951. [Google Scholar]
- Buller, B.; Murphree, Z.R. Three-dimensional Printing Systems and Methods of Their Use. U.S. Patent 15,855,744, 12 June 2019. [Google Scholar]
- Zhang, H.-h.; Zhu, T.-z.; Cao, S.; Shu, X.-y.; Sun, B.; Hu, Y.J.M.D. 3DP System Development Based on Lnkjet Printer and its Experimental Research. Mach. Des. Manuf. 2012, 7, 45–52. [Google Scholar]
- Rahmati, S.; Shirazi, S.; Baghayeri, H. Piezo-electric head application in a new 3D printing design. Rapid Prototyp. J. 2009, 15, 187–191. [Google Scholar] [CrossRef]
- Du, W.; Ren, X.; Ma, C.; Pei, Z. Binder jetting additive manufacturing of ceramics: A literature review. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017. [Google Scholar]
- Cima, L.G.; Cima, M.J. Preparation of Medical Devices by Solid Free-Form Fabrication Methods. U.S. Patent 5,490,962, 13 February 1996. [Google Scholar]
- Shen, J. Material System for Use in Three Dimensional Printing. U.S. Patent 7,049,363, 23 May 2006. [Google Scholar]
- Kaye, R.; Goldstein, T.; Zeltsman, D.; Grande, D.A.; Smith, L.P. Three dimensional printing: A review on the utility within medicine and otolaryngology. Int. J. Pediatr. Otorhinolaryngol. 2016, 89, 145–148. [Google Scholar] [CrossRef]
- Wheat, E.; Vlasea, M.; Hinebaugh, J.; Metcalfe, C.J.M.; Design. Sinter structure analysis of titanium structures fabricated via binder jetting additive manufacturing. Mater. Des. 2018, 156, 167–183. [Google Scholar] [CrossRef]
- Lam, C.; Mo, X.; Teoh, S.; Hutmacher, D.W. Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C 2002, 20, 49–56. [Google Scholar] [CrossRef]
- Miyanaji, H.; Ma, D.; Atwater, M.A.; Darling, K.A.; Hammond, V.H.; Williams, C.B. Binder jetting additive manufacturing of copper foam structures. Addit. Manuf. 2020, 32, 100960. [Google Scholar] [CrossRef]
- Moreno, C.A.D.; Lin, Y.; Hurtado-Macías, A.; Espalin, D.; Terrazas, C.; Murr, L.; Wicker, R.B. Binder jetting additive manufacturing of aluminum nitride components. Ceram. Int. 2019, 45, 13620–13627. [Google Scholar] [CrossRef]
- Karlsson, D.; Lindwall, G.; Lundbäck, A.; Amnebrink, M.; Boström, M.; Riekehr, L.; Schuisky, M.; Sahlberg, M.; Jansson, U. Binder jetting of the AlCoCrFeNi alloy. Addit. Manuf. 2019, 27, 72–79. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, J.-W.; Bae, J.; Park, S.; Choi, J.; Lee, J.H.; Kim, E. Mechanical Analysis of Ceramic/Polymer Composite with Mesh-Type Lightweight Design Using Binder-Jet 3D Printing. Materials 2018, 11, 1941. [Google Scholar] [CrossRef] [Green Version]
- Ziaee, M.; Crane, N.B. Binder jetting: A review of process, materials, and methods. Addit. Manuf. 2019, 28, 781–801. [Google Scholar] [CrossRef]
- Inzana, J.; Olvera, D.; Fuller, S.M.; Kelly, J.P.; Graeve, O.A.; Schwarz, E.M.; Kates, S.L.; A Awad, H. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 2014, 35, 4026–4034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bredt, J.F.; Anderson, T. Method of Three Dimensional Printing. U.S. Patent 5,902,441, 11 May 1999. [Google Scholar]
- Bredt, J.F.; Anderson, T.C.; Russell, D.B. Three Dimensional Printing Materials System. U.S. Patent 6,416,850, 9 July 2002. [Google Scholar]
- Sachs, E.M.; Cima, M.J.; Caradonna, M.A.; Grau, J.; Serdy, J.G.; Saxton, P.C.; Uhland, S.A.; Moon, J. Jetting Layers of Powder and the Formation of Fine Powder Beds Thereby. U.S. Patent 6,596,224, 22 July 2003. [Google Scholar]
- Miyanaji, H.; Momenzadeh, N.; Yang, L. Effect of powder characteristics on parts fabricated via binder jetting process. Rapid Prototyp. J. 2019, 25, 332–342. [Google Scholar] [CrossRef]
- Cima, M.; Sachs, E.; Fan, T.; Bredt, J.F.; Michaels, S.P.; Khanuja, S.; Lauder, A.; Lee, S.-J.J.; Brancazio, D.; Curodeau, A. Three-Dimensional Printing Techniques. U.S. Patent 5,387,380, 7 February 1995. [Google Scholar]
- Asadi-Eydivand, M.; Hashjin, M.S.; Farzad, A.; Abu Osman, N.A. Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes. Robot. Comput. Manuf. 2016, 37, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Vaezi, M.; Chua, C.K. Effects of layer thickness and binder saturation level parameters on 3D printing process. Int. J. Adv. Manuf. Technol. 2010, 53, 275–284. [Google Scholar] [CrossRef]
- Miyanaji, H.; Yang, L. Equilibrium Saturation in Binder Jetting Additive Manufacturing Processes: Theoretical Model Vs. Experimental Observeations. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 17–19 August 2020; pp. 7–10. [Google Scholar]
- Chumnanklang, R.; Panyathanmaporn, T.; Sitthiseripratip, K.; Suwanprateeb, J. 3D printing of hydroxyapatite: Effect of binder concentration in pre-coated particle on part strength. Mater. Sci. Eng. C 2007, 27, 914–921. [Google Scholar] [CrossRef]
- Miyanaji, H.; Zhang, S.; Yang, L. A new physics-based model for equilibrium saturation determination in binder jetting additive manufacturing process. Int. J. Mach. Tools Manuf. 2018, 124, 1–11. [Google Scholar] [CrossRef]
- Enneti, R.K.; Prough, K.C. Effect of binder saturation and powder layer thickness on the green strength of the binder jet 3D printing (BJ3DP) WC-12%Co powders. Int. J. Refract. Met. Hard Mater. 2019, 84, 104991. [Google Scholar] [CrossRef]
- Pfister, A.; Walz, U.; Laib, A.; Mülhaupt, R. Polymer Ionomers for Rapid Prototyping and Rapid Manufacturing by Means of 3D Printing. Macromol. Mater. Eng. 2005, 290, 99–113. [Google Scholar] [CrossRef]
- Sachs, E.M.; Hadjiloucas, C.; Allen, S.; Yoo, H.J. Metal and Ceramic Containing Parts Produced from Powder Using Binders Derived from Salt. U.S. Patent 6,508,980, 21 January 2003. [Google Scholar]
- Huang, S.-J.; Ye, C.-S.; Zhao, H.-P.; Fan, Z.-T. Parameters optimization of binder jetting process using modified silicate as a binder. Mater. Manuf. Process. 2019, 35, 214–220. [Google Scholar] [CrossRef]
- Weidong, Y.; Pengfei, J.; Yuanyuan, M.; Zijia, N.; Yuanyuan, W.; Xiaodong, H.J.N.; Engineering, P. Modeling and Simulation of Binder Droplet Infiltration in 3D Printing Technology. Nanotechnol. Precis. Eng. 2017, 15, 246–253. [Google Scholar]
- Garzón, E.O.; Alves, J.L.; Neto, R.J. Post-process influence of infiltration on binder jetting technology. In Materials Design and Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 233–255. [Google Scholar]
- Kumbhar, N.N.; Mulay, A.V. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review. J. Inst. Eng. Ser. C 2016, 99, 481–487. [Google Scholar] [CrossRef]
- Miyanaji, H.; Momenzadeh, N.; Yang, L.; Miyanaj, H. Effect of printing speed on quality of printed parts in Binder Jetting Process. Addit. Manuf. 2018, 20, 1–10. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y.F. Process parameters optimization for improving surface quality and manufacturing accuracy of binder jetting additive manufacturing process. Rapid Prototyp. J. 2016, 22, 527–538. [Google Scholar] [CrossRef]
- Bai, Y.; Wall, C.; Pham, H.; Esker, A.R.; Williams, C.B. Characterizing Binder–Powder Interaction in Binder Jetting Additive Manufacturing Via Sessile Drop Goniometry. J. Manuf. Sci. Eng. 2018, 141, 011005. [Google Scholar] [CrossRef]
- Goodridge, R.; Tuck, C.; Hague, R. Laser sintering of polyamides and other polymers. Prog. Mater. Sci. 2012, 57, 229–267. [Google Scholar] [CrossRef]
- Ho, H.; Gibson, I.; Cheung, W. Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J. Mater. Process. Technol. 1999, 89, 204–210. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2014; Volume 17. [Google Scholar]
- Bakshi, K. A Review on Selective Laser Sintering: A Rapid Prototyping Technology. IOSR J. Mech. Civ. Eng. 2016, 4, 53–57. [Google Scholar] [CrossRef]
- Beaman, J.J.; Deckard, C.R. Selective Laser Sintering with Assisted Powder Handling. U.S. Patent 4,938,816, 3 July 1990. [Google Scholar]
- Mazzoli, A. Selective laser sintering in biomedical engineering. Med Boil. Eng. 2012, 51, 245–256. [Google Scholar] [CrossRef]
- Gong, Y.-x.; Wang, Q.-s.; Zhu, L.-j.; Yang, J.J.F. Review on the Progress of Forming Equipment and Materials for SLS. Foundry 2017, 3, 15. [Google Scholar]
- Hashmi, S. Comprehensive Materials Processing; Elsevier Science: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Nelson, J.C. Selective Laser Sintering: A Definition of the Process and an Empirical Sintering Model; University of Texas at Austin: Austin, TX, USA, 1993. [Google Scholar]
- Lee, H.; Lim, C.H.J.; Low, M.J.; Tham, N.; Murukeshan, V.M.; Kim, Y. Lasers in additive manufacturing: A review. Int. J. Precis. Eng. Manuf. Technol. 2017, 4, 307–322. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, V.S.; Sachdeva, A. Application of response surface methodology to analyze the effect of selective laser sintering parameters on dimensional accuracy. Prog. Addit. Manuf. 2018, 4, 3–12. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, B.; Song, J.; Bi, G.; Wang, P.; Wei, J. The effect of processing conditions on the mechanical properties of polyethylene produced by selective laser sintering. Polym. Test. 2016, 52, 89–93. [Google Scholar] [CrossRef]
- Xiaocheng, L. Research on process parameters optimization of polymer powder of Nylon. J. Xinxiang Univ. 2015, 32, 50–53. [Google Scholar]
- Mokrane, A.; Boutaous, M.; Xin, S. Process of selective laser sintering of polymer powders: Modeling, simulation, and validation. Comptes Rendus Mécanique 2018, 346, 1087–1103. [Google Scholar] [CrossRef]
- Dastjerdi, A.A.; Movahhedy, M.R.; Akbari, J. Optimization of process parameters for reducing warpage in selected laser sintering of polymer parts. Addit. Manuf. 2017, 18, 285–294. [Google Scholar] [CrossRef]
- Bai, J.; Goodridge, R.; Hague, R.J.; Okamoto, M. Processing and characterization of a polylactic acid/nanoclay composite for laser sintering. Polym. Compos. 2015, 38, 2570–2576. [Google Scholar] [CrossRef]
- Bai, J.; Goodridge, R.D.; Hague, R.J.; Song, M.; Murakami, H. Nanostructural characterization of carbon nanotubes in laser-sintered polyamide 12 by 3D-TEM. J. Mater. Res. 2014, 29, 1817–1823. [Google Scholar] [CrossRef]
- Bai, J.; Goodridge, R.; Hague, R.J.; Song, M. Improving the mechanical properties of laser-sintered polyamide 12 through incorporation of carbon nanotubes. Polym. Eng. Sci. 2013, 53, 1937–1946. [Google Scholar] [CrossRef]
- Salmoria, G.; Lauth, V.; Cardenuto, M.; Magnago, R.J.O.; Technology, L. Characterization of PA12/PBT specimens prepared by selective laser sintering. Opt. Laser Technol. 2018, 98, 92–96. [Google Scholar] [CrossRef]
- Yan, M.; Tian, X.; Peng, G.; Li, D.; Zhang, X. High temperature rheological behavior and sintering kinetics of CF/PEEK composites during selective laser sintering. Compos. Sci. Technol. 2018, 165, 140–147. [Google Scholar] [CrossRef]
- Yuan, S.; Shen, F.; Chua, C.K.; Zhou, K. Polymeric composites for powder-based additive manufacturing: Materials and applications. Prog. Polym. Sci. 2019, 91, 141–168. [Google Scholar] [CrossRef]
- Min, H.; Lee, B.; Jeong, S.; Lee, M. Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink. Opt. Laser Technol. 2017, 88, 128–133. [Google Scholar] [CrossRef]
- Eosoly, S.; Brabazon, D.; Lohfeld, S.; Looney, L. Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds. Acta Biomater. 2010, 6, 2511–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkinson, N.; Erasenthiran, P. High speed sintering-Early research into a new rapid manufacturing process. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA, 2–4 August 2004; p. 312. [Google Scholar]
- Lavecchia, F. Additive Manufacturing: New Trends in the 4th Industrial Revolution. In Proceedings of the 4th International Conference on the Industry 4.0 Model for Advanced Manufacturing: AMP 2019, Belgrade, Serbia, 3–6 June 2019; p. 153. [Google Scholar]
- Ltd., H.C. HP Multi Jet Fusion 3D Printing Solutions. 2017. Available online: https://www8.hp.com/h20195/v2/GetPDF.aspx/4AA7-1532ENE.pdf (accessed on 25 August 2019).
- Wittkopf, J.A.; Erickson, K.; Olumbummo, P.; Hartman, A.; Tom, H.; Zhao, L. 3D Printed Electronics with Multi Jet Fusion. In NIP & Digital Fabrication Conference; Society for Imaging Science and Technology: Springfield, MO, USA, 2019; pp. 29–33. [Google Scholar]
- Thomas, H.R.; Hopkinson, N.; Erasenthiran, P. High speed sintering–continuing research into a new rapid manufacturing process. In Proceedings of the 17th SFF Symposium, Austin, TX, USA, 7–9 August 2017; pp. 682–691. [Google Scholar]
- Majewski, C.; Hobbs, B.S.; Hopkinson, N. Effect of bed temperature and infra-red lamp power on the mechanical properties of parts produced using high-speed sintering. Virtual Phys. Prototyp. 2007, 2, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Majewski, C.; Oduye, D.; Thomas, H.; Hopkinson, N. Effect of infra-red power level on the sintering behaviour in the high speed sintering process. Rapid Prototyp. J. 2008, 14, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Ellis, A.; Noble, C.; Hopkinson, N. High Speed Sintering: Assessing the influence of print density on microstructure and mechanical properties of nylon parts. Addit. Manuf. 2014, 1, 48–51. [Google Scholar] [CrossRef]
- Craft, G.; Nussbaum, J.; Crane, N.B.; Harmon, J. Impact of extended sintering times on mechanical properties in PA-12 parts produced by powderbed fusion processes. Addit. Manuf. 2018, 22, 800–806. [Google Scholar] [CrossRef]
- Ellis, A.; Noble, C.; Hartley, L.; LeStrange, C.; Hopkinson, N.; Majewski, C. Materials for high speed sintering. J. Mater. Res. 2014, 29, 2080–2085. [Google Scholar] [CrossRef]
- 3D Systems Corporation. ProJet Series Brochures. Available online: http://www.3dsystems-china.com/professionalprinter/1048 (accessed on 25 August 2019).
- Farsoon Technology Corporation. HT1001P Official Brochures. Available online: http://www.farsoon.com/solution_list01_detail/productId=83.html (accessed on 25 August 2019).
- EOS Corporation. EOS Official Brochures. Available online: http://www.3dsystems-china.com/productionprinters (accessed on 25 August 2019).
- 3D Systems Corporation. sPro Series Brochures. Available online: https://www.voxeljet.com/3d-printing-systems/vx200/ (accessed on 25 August 2019).
- Voxeljet Corporation. VX200 Official Brochures. Available online: https://www.voxeljet (accessed on 25 August 2019).
- Xu, Z.; Wang, Y.; Wu, D.; Ananth, K.P.; Bai, J. The process and performance comparison of polyamide 12 manufactured by multi jet fusion and selective laser sintering. J. Manuf. Process. 2019, 47, 419–426. [Google Scholar] [CrossRef]
- Sillani, F.; Kleijnen, R.; Vetterli, M.; Schmid, M.; Wegener, K. Selective laser sintering and multi jet fusion: Process-induced modification of the raw materials and analyses of parts performance. Addit. Manuf. 2019, 27, 32–41. [Google Scholar] [CrossRef]
Technology | Machine * | Build Space * (L × W × H) (mm3) | Layer Thickness * (mm) | Build Rate * | Materials * | Properties * | Others * |
---|---|---|---|---|---|---|---|
Binder Jetting | ProJet CJP 860pro (3D Systems) | 508 × 381 × 229 | 0.1 | 5–15 mm/h | VisiJet PXL | Dimensional accuracy: 0.15 mm; Tensile strength: 10–30 MPa | Full color |
ProJet 360 (3D Systems) | 203 × 254 × 203 | 0.1 | 20 mm/h | VisiJet PXL | White (single color) | ||
Selective Laser Sintering | HT1001P (Farsoon) | 1000 × 500 × 450 | 0.06–0.3 | 15 L/h | PA6 PA12 | Density (sintered part): 0.9–0.95 g/cm3; Tensile modulus(x,y)/(z): 1.7/1.65 Gpa; Tensile strength(x,y)/(z): 48/47 MPa; Elongation at break(x,y)/(z): 20/10% | 2*CO2 Laser (100 W) |
P760 (EOS) | 700 × 380 × 580 | 0.06/0.1 /0.12/0.15/0.18 | 32 mm/h | PA12, PA12 composite (aluminite powder/carbon fiber/fiberglass PA11/ Polystyrene | 2*CO2 Laser (50 W) | ||
P110 (EOS) | 200 × 250 × 330 | 0.06/0.1 /0.12 | 20 mm/h | CO2 Laser (30 W) | |||
sPro230 (3D Systems) | 550 × 550 × 750 | 0.08–0.15 | 3 L/h | DuraForm PA/GF/EX/HST/Flex/PS | CO2 Laser (70 W) | ||
High Speed Sintering | MJF3D4200 (HP) | 380 × 284 × 380 | 0.07–0.1 | 4.115 L/h | PA12/PA11 | Dimensional accuracy: ±0.3% | Infrared energy as heat source |
VX200 (Voxeljet) | 300 × 200 × 150 | 0.08–0.1 | No specific data | PA12/TPU | No specific data |
Items | SLS | MJF |
---|---|---|
Surface roughness (bottom) (μm) | 14.40 ± 1.06 | 6.31 ± 0.43 |
Printing speed (mm2/s) | 1250 | 10792 |
Crystallinity (%) | 24.37 | 30 |
Dimensional accuracy (vertical) (mm) | ±0.25 | ±0.1 |
Density (g/cm3) | 0.99 ± 0.04 | 0.93 ± 0.08 |
Tensile strength (MPa) | 43.61 ± 0.46 | 40.10 ± 1.49 |
Elongation at Break (%) | 31.55 ± 2.93 | 17.45 ± 3.87 |
Young’s Modulus (GPa) | 1.76 ± 0.02 | 1.42 ± 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, Z.; Wu, D.; Bai, J. Current Status and Prospects of Polymer Powder 3D Printing Technologies. Materials 2020, 13, 2406. https://doi.org/10.3390/ma13102406
Wang Y, Xu Z, Wu D, Bai J. Current Status and Prospects of Polymer Powder 3D Printing Technologies. Materials. 2020; 13(10):2406. https://doi.org/10.3390/ma13102406
Chicago/Turabian StyleWang, Yue, Zhiyao Xu, Dingdi Wu, and Jiaming Bai. 2020. "Current Status and Prospects of Polymer Powder 3D Printing Technologies" Materials 13, no. 10: 2406. https://doi.org/10.3390/ma13102406
APA StyleWang, Y., Xu, Z., Wu, D., & Bai, J. (2020). Current Status and Prospects of Polymer Powder 3D Printing Technologies. Materials, 13(10), 2406. https://doi.org/10.3390/ma13102406