Role of Transverse Shear Modulus in the Performance of Corrugated Materials
<p>(<b>a</b>) Scheme of the static plate torsion test; (<b>b</b>) visualization of the sample in the machine during test.</p> "> Figure 2
<p>Examples of significant influence of transverse shear on sample compliance for selected values of G<sub>12</sub>, G<sub>13</sub>, G<sub>23</sub>, and t with respect to changing values of G<sub>12</sub> (<b>a</b>), G<sub>13</sub> (<b>b</b>), and t (<b>c</b>).</p> "> Figure 3
<p>Example of a negligible influence of transverse shear on sample compliance for selected values of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <msub> <mi>G</mi> <mrow> <mn>23</mn> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mi mathvariant="normal">t</mi> </semantics></math> with respect to the change in <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mn>13</mn> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 4
<p>Influence of <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> </semantics></math> (<b>a</b>) and effective thickness <math display="inline"><semantics> <mi mathvariant="normal">t</mi> </semantics></math> (<b>b</b>) on the value of the <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </semantics></math> parameter.</p> "> Figure 5
<p>Influence of the relation <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>b</mi> </mrow> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mn>13</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>G</mi> <mrow> <mn>23</mn> </mrow> </msub> </mrow> </semantics></math> for a sample of 25 × 150 mm (<b>b</b>), and a sample of 75 × 75 mm (<b>c</b>), on the value of the <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </semantics></math> parameter.</p> "> Figure 6
<p>Solution error for <math display="inline"><semantics> <mi>P</mi> </semantics></math> from the modified analytical approach, and <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> </mrow> </semantics></math>, the reference values derived from the FEM: (<b>a</b>) logarithmic regression plot of raw data and (<b>b</b>) cumulative distribution function plot of the data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modified Analytical Approach
- —bending stiffness in the MD,
- —bending stiffness in the CD,
- —twisting bending stiffness,
- —compression stiffness in the MD,
- —compression stiffness in the CD,
- —compression stiffness in the z direction (out of plane),
- —transverse shear stiffness in the 1–3 (x–z) plane,
- —transverse shear stiffness in the 2–3 (y–z) plane.
- —effective cardboard thickness,
- —effective stiffness modulus in the MD,
- —effective stiffness modulus in the CD,
- —effective Poisson’s ratio in the 1–2 (x–y) plane [29],
- —effective Poisson’s ratio in the 1–2 (x–y) plane,
- —effective shear modulus in 1–2 (x–y) plane,
- —effective transverse shear modulus in the 1–3 (x–z) plane,
- —effective transverse shear modulus in the 2–3 (y–z) plane.
2.2. Computational Model
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Górecki, M.; Śledziewski, K. Experimental investigation of impact concrete slab on the bending behavior of composite bridge girders with sinusoidal steel web. Materials 2020, 13, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Feng, Y.; Wang, M.; Hu, Y. Mechanical behavior of natural fiber-based bi-directional corrugated lattice sandwich structure. Materials 2018, 11, 2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKee, R.C.; Gander, J.W.; Wachuta, J.R. Compression strength formula for orrugated boxes. Paperboard Packag. 1963, 48, 149–159. [Google Scholar]
- Urbanik, T.J.; Frank, B. Box compression analysis of world-wide data spanning 46 years. Wood Fiber Sci. 2006, 38, 399–416. [Google Scholar]
- Coffin, C.W. Some observations towards improved predictive models for box compression strength. TAPPI J. 2015, 14, 537–545. [Google Scholar] [CrossRef]
- Schaffrath, H.J.; Reichenbach, F.; Schabel, S. Prediction of box failure from paper data for asymmetric corrugated board. TAPPI J. 2018, 17, 429–434. [Google Scholar] [CrossRef]
- FEMat Systems. Available online: http://www.fematsystems.pl/en/systems/sst/ (accessed on 20 July 2020).
- Garbowski, T.; Garbowska, L. Computer aided estimation of corrugated board box compression strength. Part 3. Laboratory-numerical procedure for an identification of elastic properties of corrugated board. Pol. Pap. Rev. 2018, 74, 577–585. (In Polish) [Google Scholar]
- Garbowski, T.; Czelusta, I.; Graczyk, Ł. Computer aided estimation of corrugated board box compression strength. Part 1. The influence of flute crash on basic properties of corrugated board. Pol. Pap. Rev. 2018, 74, 381–388. (In Polish) [Google Scholar]
- Cohen, G.A. Transverse shear stiffness of laminated anisotropic shells. Comput. Method Appl. Mech. Eng. 1978, 13, 205–220. [Google Scholar] [CrossRef]
- Nordstrand, T.; Carlsson, L.A.; Allen, H.G. Transverse shear stiffness of structural core sandwich. Comp. Struct. 1994, 27, 317–329. [Google Scholar] [CrossRef]
- Nordstrand, T.M. Parametric study of the post-buckling strength of structural core sandwich panels. Comp. Struct. 1995, 30, 441–451. [Google Scholar] [CrossRef]
- Shi, G.; Tong, P. Equivalent transverse shear stiffness of honeycomb cores. Int. J. Solids Struct. 1995, 32, 1383–1393. [Google Scholar] [CrossRef]
- Altenbach, H. An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. Int. J. Solids Struct. 2000, 37, 3503–3520. [Google Scholar] [CrossRef]
- Carlsson, L.A. On the elastic stiffnesses of corrugated core sandwich. J. Sandw. Struct. Mater. 2001, 3, 253–267. [Google Scholar] [CrossRef]
- Nordstrand, T. On buckling loads for edge-loaded orthotropic plates including transverse shear. Comp. Struct. 2004, 65, 1–6. [Google Scholar] [CrossRef]
- Reissner, E. On torsion and transverse flexure of orthotropic elastic plates. J. Appl. Mech. 1980, 47, 855–860. [Google Scholar] [CrossRef]
- Whitney, J.M. Structural Analysis of Laminated Anisotropic Plates; CRC Press: Lancaster, PA, USA, 1987. [Google Scholar]
- Popil, R.E.; Coffin, D.W.; Habeger, C.C. Transverse shear measurement for corrugated board and its significance. Appita J. 2008, 61, 307–312. [Google Scholar]
- Avilés, F.; Carlsson, L.A.; Browning, G.; Millay, K. Investigation of the sandwich plate twist test. Exp. Mech. 2009, 49, 813–822. [Google Scholar] [CrossRef]
- Avilés, F.; Couoh-Solis, F.; Carlsson, L.A.; Hernández-Pérez, A.; May-Pat, A. Experimental determination of torsion and shear properties of sandwich panels and laminated composites by the plate twist test. Comp. Struct. 2011, 93, 1923–1928. [Google Scholar] [CrossRef]
- Avilés, F.; Carlsson, L.A.; May-Pat, A. A shear-corrected formulation of the sandwich twist specimen. Exp. Mech. 2012, 52, 17–23. [Google Scholar] [CrossRef]
- Hernandez-Perez, A.; Aviles, F.; Carlsson, L.A. First-order shear deformation analysis of the sandwich plate twist specimen. J. Sandw. Struct. Mater. 2012, 14, 229–245. [Google Scholar] [CrossRef]
- Hernández-Pérez, A.; Hägglund, R.; Carlsson, L.A.; Avilés, F. Analysis of twist stiffness of single and double-wall corrugated boards. Comp. Struct. 2014, 110, 7–15. [Google Scholar] [CrossRef]
- Garbowski, T.; Jarmuszczak, M. Numerical strength estimate of corrugated board packages. Part 1. Theoretical assumptions in numerical modeling of paperboard packages. Pol. Pap. Rev. 2014, 70, 219–222. (In Polish) [Google Scholar]
- Garbowski, T.; Jarmuszczak, M. Numerical Strength Estimate of Corrugated Board Packages. Part 2. Experimental tests and numerical analysis of paperboard packages. Pol. Pap. Rev. 2014, 70, 277–281. (In Polish) [Google Scholar]
- Nguyen, H.N.; Hong, T.T.; Vinh, P.V.; Quang, N.D.; Thom, D.V. A refined simple first-order shear deformation theory for static bending and free vibration analysis of advanced composite plates. Materials 2019, 12, 2385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anish; Chaubey, A.; Kumar, A.; Kwiatkowski, B.; Barnat-Hunek, D.; Widomski, M.K. Bi-axial buckling of laminated composite plates including cutout and additional mass. Materials 2019, 12, 1750. [Google Scholar] [CrossRef] [Green Version]
- Baum, G.A.; Brennan, D.C.; Habeger, C.C. Orthotropic elastic constants of paper. TAPPI J. 1981, 64, 97–101. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbowski, T.; Gajewski, T.; Grabski, J.K. Role of Transverse Shear Modulus in the Performance of Corrugated Materials. Materials 2020, 13, 3791. https://doi.org/10.3390/ma13173791
Garbowski T, Gajewski T, Grabski JK. Role of Transverse Shear Modulus in the Performance of Corrugated Materials. Materials. 2020; 13(17):3791. https://doi.org/10.3390/ma13173791
Chicago/Turabian StyleGarbowski, Tomasz, Tomasz Gajewski, and Jakub Krzysztof Grabski. 2020. "Role of Transverse Shear Modulus in the Performance of Corrugated Materials" Materials 13, no. 17: 3791. https://doi.org/10.3390/ma13173791
APA StyleGarbowski, T., Gajewski, T., & Grabski, J. K. (2020). Role of Transverse Shear Modulus in the Performance of Corrugated Materials. Materials, 13(17), 3791. https://doi.org/10.3390/ma13173791