Electronic and Crystallographic Examinations of the Homoepitaxially Grown Rubrene Single Crystals
<p>(<b>a</b>) Molecular structure of rubrene. (<b>b</b>) Photograph of a homoepitaxial rubrene sample for photoelectron yield spectroscopy (PYS) measurements. (<b>c</b>,<b>d</b>) Optical micrographs of the sample shown in (<b>b</b>). (<b>e</b>,<b>f</b>) Crossed-nicols polarized micrographs at the same sample geometries as (<b>c</b>,<b>d</b>), respectively. The scale bars in (<b>c</b>–<b>f</b>) correspond to 0.5 mm. The edge of the rubrene single crystal is highlighted with dashed lines in (<b>c</b>,<b>e</b>).</p> "> Figure 2
<p>(<b>a–d</b>) Two-dimensional grazing incidence X-ray diffraction (2D-GIXD) images of rubrene single crystal samples (<b>a</b>) without and with the homoepitaxially grown rubrene overlayers of (<b>b</b>) 50 nm- and (<b>c</b>) 100 nm-thick. These images are integrated for the sample azimuthal angle over 180° (900 images taken for every 0.2°). Expected positions for the diffraction spots from the (100) surface of rubrene single crystal and Si (powder) are indicated with circle marks and a thick arc, respectively, on (<b>a</b>). (<b>d</b>) Full-width at half-maximum (FWHM) in 2θ direction of the {010} diffraction spots of rubrene [denoted as Rub{010}] collected by high-resolution grazing-incidence X-ray diffraction (HR-GIXD) measurements plotted as a function of the rubrene overlayer thickness. The corresponding crystallographic coherent length (up to 2 μm) estimated from the Scherrer equation is also indicated in the right axis for reference.</p> "> Figure 3
<p>(<b>a</b>) PYS spectra of 20-nm-thick homoepitaxial rubrene overlayers of various doping ratios grown on rubrene single crystal substrates. PYS spectra of a single crystal sample and an amorphous film of rubrene are also displayed as hatched areas. (<b>b</b>) PYS spectra plotted in the cube-root scale of the photoelectron yield. Ionization energy positions derived from least-squares fitting of these spectra are indicated with wedge marks, where thin lines show the fitting results. (Inset) Ionization energy of rubrene overlayers plotted as a function of the doping rate. The ionization energy values for the bare rubrene single crystal (SC) and the amorphous rubrene are also indicated with pink and brown lines, respectively, where light-colored bands indicate error ranges.</p> "> Figure 4
<p>(<b>a–c</b>) Magnified PYS spectra of the (<b>a</b>) bare rubrene single crystal, (<b>b</b>) non-doped homoepitaxial rubrene overlayer, and (<b>c</b>) 10-ppm-doped homoepitaxial rubrene. The vertical scales of each graph are normalized by the intensity factor “<span class="html-italic">A</span>” of the cube-root function. The fitting curves and estimated ionization energy positions for the respective spectra are displayed as thick gray curves and gray wedge marks, respectively. (<b>d</b>,<b>e</b>) Schematic drawings of the expected electronic states of the (<b>d</b>) non-doped and (<b>e</b>) 10-ppm-doped homoepitaxial rubrene samples.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Crystallographic Analyses
3.2. Electronic Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akamatu, H.; Inokuchi, H.; Matsunaga, Y. Electrical Conductivity of the Perylene–Bromine Complex. Nature 1954, 173, 168–169. [Google Scholar] [CrossRef]
- Inokuchi, H. The discovery of organic semiconductors. Its light and shadow. Org. Electron. 2006, 7, 62–76. [Google Scholar] [CrossRef]
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH) x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Ferraris, J.; Cowan, D.O.; Walatka, V.; Perlstein, J.H. Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc. 1973, 95, 948–949. [Google Scholar] [CrossRef]
- Bechgaard, K.; Carneiro, K.; Rasmussen, F.B.; Olsen, M.; Rindorf, G.; Jacobsen, C.S.; Pedersen, H.J.; Scott, J.C. Superconductivity in an organic solid. Synthesis, structure, and conductivity of bis (tetramethyltetraselenafulvalenium) perchlorate, (TMTSF)2ClO4. J. Am. Chem. Soc. 1981, 103, 2440–2442. [Google Scholar] [CrossRef]
- Hebard, A.F.; Rosseinsky, M.J.; Haddon, R.C.; Murphy, D.W.; Glarum, S.H.; Palstra, T.T.M.; Ramirez, A.P.; Kortan, A.R. Superconductivity at 18 K in potassium-doped C60. Nature 1991, 350, 600–601. [Google Scholar] [CrossRef]
- Tanigaki, K.; Ebbesen, T.W.; Saito, S.; Mizuki, J.; Tsai, J.S.; Kubo, Y.; Kuroshima, S. Superconductivity at 33 K in CsxRbyC60. Nature 1991, 352, 222–223. [Google Scholar] [CrossRef]
- Mitsuhashi, R.; Suzuki, Y.; Yamanari, Y.; Mitamura, H.; Kambe, T.; Ikeda, N.; Okamoto, H.; Fujiwara, A.; Yamaji, M.; Kawasaki, N.; et al. Superconductivity in alkali-metal-doped picene. Nature 2010, 464, 76–79. [Google Scholar] [CrossRef]
- Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K. Highly Efficient Organic Devices Based on Electrically Doped Transport Layers. Chem. Rev. 2007, 107, 1233–1271. [Google Scholar] [CrossRef]
- Hiramoto, M.; Kubo, M.; Shinmura, Y.; Ishiyama, N.; Kaji, T.; Sakai, K.; Ohno, T.; Izaki, M. Bandgap Science for Organic Solar Cells. Electronics 2014, 3, 351–380. [Google Scholar] [CrossRef] [Green Version]
- Lüssem, B.; Keum, C.-M.; Kasemann, D.; Naab, B.; Bao, Z.; Leo, K. Doped Organic Transistors. Chem. Rev. 2016, 116, 13714–13751. [Google Scholar] [CrossRef] [PubMed]
- Salzmann, I.; Heimel, G.; Oehzelt, M.; Winkler, S.; Koch, N. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules. Acc. Chem. Res. 2016, 49, 370–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, I.E.; Moulé, A.J. Controlling Molecular Doping in Organic Semiconductors. Adv. Mater. 2017, 29, 1703063. [Google Scholar] [CrossRef] [PubMed]
- Hiramoto, M.; Kikuchi, M.; Izawa, S. Parts-per-Million-Level Doping Effects in Organic Semiconductor Films and Organic Single Crystals. Adv. Mater. 2019, 31, 1801236. [Google Scholar] [CrossRef]
- Ohashi, C.; Izawa, S.; Shinmura, Y.; Kikuchi, M.; Watase, S.; Izaki, M.; Naito, H.; Hiramoto, M. Hall Effect in Bulk-Doped Organic Single Crystals. Adv. Mater. 2017, 29, 1605619. [Google Scholar] [CrossRef]
- Campione, M.; Caprioli, S.; Moret, M.; Sassella, A. Homoepitaxial Growth of α-Hexathiophene. J. Phys. Chem. C 2007, 111, 12741–12746. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, L.; Duan, L.; Qiu, Y. Homoepitaxy Growth of Well-Ordered Rubrene Thin Films. Cryst. Growth Des. 2008, 8, 1617–1622. [Google Scholar] [CrossRef]
- Kikuchi, M.; Makmuang, S.; Izawa, S.; Wongravee, K.; Hiramoto, M. Doped organic single-crystal photovoltaic cells. Org. Electron. 2019, 64, 92–96. [Google Scholar] [CrossRef]
- Sundar, V.C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R.L.; Someya, T.; Gershenson, M.E.; Rogers, J.A. Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals. Science 2004, 303, 1644–1646. [Google Scholar] [CrossRef] [Green Version]
- Podzorov, V.; Menard, E.; Borissov, A.; Kiryukhin, V.; Rogers, J.A.; Gershenson, M.E. Intrinsic Charge Transport on the Surface of Organic Semiconductors. Phys. Rev. Lett. 2004, 93, 086602. [Google Scholar] [CrossRef] [Green Version]
- Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 2007, 90, 102120. [Google Scholar] [CrossRef]
- Podzorov, V.; Menard, E.; Rogers, J.A.; Gershenson, M.E. Hall Effect in the Accumulation Layers on the Surface of Organic Semiconductors. Phys. Rev. Lett. 2005, 95, 226601. [Google Scholar] [CrossRef]
- Takeya, J.; Tsukagoshi, K.; Aoyagi, Y.; Takenobu, T.; Iwasa, Y. Hall Effect of Quasi-Hole Gas in Organic Single-Crystal Transistors. Jpn. J. Appl. Phys. 2005, 44, L1393–L1396. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, Y.; Machida, S.; Tsunami, D.; Kimura, Y.; Niwano, M.; Noguchi, Y.; Ishii, H. Photoemission measurement of extremely insulating materials: Capacitive photocurrent detection in photoelectron yield spectroscopy. Appl. Phys. Lett. 2008, 92, 153306. [Google Scholar] [CrossRef]
- Ishii, H.; Kinjo, H.; Sato, T.; Machida, S.; Nakayama, Y. Photoelectron Yield Spectroscopy for Organic Materials and Interfaces. In Electronic Processes in Organic Electronics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 131–155. [Google Scholar]
- Sai, N.; Tiago, M.L.; Chelikowsky, J.R.; Reboredo, F.A. Optical spectra and exchange-correlation effects in molecular crystals. Phys. Rev. B 2008, 77, 161306. [Google Scholar] [CrossRef] [Green Version]
- Kinjo, H.; Lim, H.; Sato, T.; Noguchi, Y.; Nakayama, Y.; Ishii, H. Significant relaxation of residual negative carrier in polar Alq3 film directly detected by high-sensitivity photoemission. Appl. Phys. Express 2016, 9, 021601. [Google Scholar] [CrossRef]
- Sato, T.; Koswattage, K.R.; Nakayama, Y.; Ishii, H. Density of states evaluation of an insulating polymer by high-sensitivity ultraviolet photoemission spectroscopy. Appl. Phys. Lett. 2017, 110, 111102. [Google Scholar] [CrossRef]
- Yamanaka, S.; Tonami, K.; Iwashita, M.; Yoshida, K.; Takeuchi, R.; Ideta, S.; Tanaka, K.; Mase, K.; Yamada, K.; Yoshida, H.; et al. High sensitivity detection of the frontier electronic states of CH3NH3PbI3 single crystals by low energy excitation. Appl. Phys. Express 2019, 12, 051009. [Google Scholar] [CrossRef]
- Nakayama, Y.; Mizuno, Y.; Hosokai, T.; Koganezawa, T.; Tsuruta, R.; Hinderhofer, A.; Gerlach, A.; Broch, K.; Belova, V.; Frank, H.; et al. Epitaxial Growth of an Organic p–n Heterojunction: C60 on Single-Crystal Pentacene. ACS Appl. Mater. Interfaces 2016, 8, 13499–13505. [Google Scholar] [CrossRef]
- Mitsuta, H.; Miyadera, T.; Ohashi, N.; Zhou, Y.; Taima, T.; Koganezawa, T.; Yoshida, Y.; Tamura, M. Epitaxial Growth of C60 on Rubrene Single Crystals for a Highly Ordered Organic Donor/Acceptor Interface. Cryst. Growth Des. 2017, 17, 4622–4627. [Google Scholar] [CrossRef]
- Nakayama, Y.; Tsuruta, R.; Moriya, N.; Hikasa, M.; Meissner, M.; Yamaguchi, T.; Mizuno, Y.; Suzuki, T.; Koganezawa, T.; Hosokai, T.; et al. Widely Dispersed Intermolecular Valence Bands of Epitaxially Grown Perfluoropentacene on Pentacene Single Crystals. J. Phys. Chem. Lett. 2019, 10, 1312–1318. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, R.; Mizuno, Y.; Hosokai, T.; Koganezawa, T.; Ishii, H.; Nakayama, Y. Crystallinity of the epitaxial heterojunction of C60 on single crystal pentacene. J. Cryst. Growth 2017, 468, 770–773. [Google Scholar] [CrossRef]
- Nakayama, Y.; Tsuruta, R.; Hinderhofer, A.; Mizuno, Y.; Broch, K.; Gerlach, A.; Koganezawa, T.; Hosokai, T.; Schreiber, F. Temperature Dependent Epitaxial Growth of C60 Overlayers on Single Crystal Pentacene. Adv. Mater. Interfaces 2018, 5, 1800084. [Google Scholar] [CrossRef]
- Tsuruta, R.; Hosokai, T.; Yamanaka, S.; Yoshida, K.; Mizuno, Y.; Koganezawa, T.; Nakayama, Y. Evolution of crystallinity at a well-defined molecular interface of epitaxial C60 on the single crystal rubrene. J. Phys. Condens. Matter 2019, 31, 154001. [Google Scholar] [CrossRef] [PubMed]
- Kloc, C.; Siegrist, T.; Pflaum, J. Growth of Single-Crystal Organic Semiconductors. In Springer Handbook of Crystal Growth; Springer: Berlin/Heidelberg, Germany, 2010; pp. 845–867. [Google Scholar]
- Nakayama, Y.; Kera, S.; Ueno, N. Photoelectron spectroscopy on single crystals of organic semiconductors: Experimental electronic band structure for optoelectronic properties. J. Mater. Chem. C 2020. [Google Scholar] [CrossRef]
- Jurchescu, O.D.; Meetsma, A.; Palstra, T.T.M. Low-temperature structure of rubrene single crystals grown by vapor transport. Acta Crystallogr. Sect. B Struct. Sci. 2006, 62, 330–334. [Google Scholar] [CrossRef] [Green Version]
- Hom, T.; Kiszenik, W.; Post, B. Accurate lattice constants from multiple reflection measurements. II. Lattice constants of germanium silicon, and diamond. J. Appl. Crystallogr. 1975, 8, 457–458. [Google Scholar] [CrossRef]
- Matsukawa, T.; Yoshimura, M.; Sasai, K.; Uchiyama, M.; Yamagishi, M.; Tominari, Y.; Takahashi, Y.; Takeya, J.; Kitaoka, Y.; Mori, Y.; et al. Growth of thin rubrene single crystals from 1-propanol solvent. J. Cryst. Growth 2010, 312, 310–313. [Google Scholar] [CrossRef]
- Huang, L.; Liao, Q.; Shi, Q.; Fu, H.; Ma, J.; Yao, J. Rubrene micro-crystals from solution routes: Their crystallography, morphology and optical properties. J. Mater. Chem. 2010, 20, 159–166. [Google Scholar] [CrossRef]
- Obata, S.; Miura, T.; Shimoi, Y. Theoretical prediction of crystal structures of rubrene. Jpn. J. Appl. Phys. 2014, 53, 01AD02. [Google Scholar] [CrossRef]
- Tsuruta, R.; Mizuno, Y.; HosokaiI, T.; Koganezawa, T.; Ishii, H.; Nakayama, Y. Structural Determination of the Epitaxial C60 Overlayer on the Pentacene Single Crystal by Grazing Incidence X-ray Diffraction. Hyomen Kagaku (J. Surf. Sci. Soc. Jpn.) 2016, 37, 429–434. [Google Scholar] [CrossRef]
- Kochi, M.; Harada, Y.; Hirooka, T.; Inokuchi, H. Photoemission from Organic Crystal in Vacuum Ultraviolet Region. IV. Bull. Chem. Soc. Jpn. 1970, 43, 2690–2702. [Google Scholar] [CrossRef]
- Nakayama, Y.; Machida, S.; Minari, T.; Tsukagishi, K.; Noguchi, Y.; Ishii, H. Direct observation of the electronic states of single crystalline rubrene under ambient condition by photoelectron yield spectroscopy. Appl. Phys. Lett. 2008, 93, 173305. [Google Scholar] [CrossRef]
- Nakayama, Y.; Uragami, Y.; Yamamoto, M.; Machida, S.; Kinjo, H.; Mase, K.; Koswattage, K.R.; Ishii, H. Determination of the highest occupied molecular orbital energy of pentacene single crystals by ultraviolet photoelectron and photoelectron yield spectroscopies. Jpn. J. Appl. Phys. 2014, 53, 01AD03. [Google Scholar] [CrossRef]
- Sato, N.; Seki, K.; Inokuchi, H. Polarization energies of organic solids determined by ultraviolet photoelectron spectroscopy. J. Chem. Soc. Faraday Trans. 2 1981, 77, 1621. [Google Scholar] [CrossRef]
- Machida, S.; Nakayama, Y.; Duhm, S.; Xin, Q.; Funakoshi, A.; Ogawa, N.; Kera, S.; Ueno, N.; Ishii, H. Highest-Occupied-Molecular-Orbital Band Dispersion of Rubrene Single Crystals as Observed by Angle-Resolved Ultraviolet Photoelectron Spectroscopy. Phys. Rev. Lett. 2010, 104, 156401. [Google Scholar] [CrossRef]
- Nakayama, Y.; Uragami, Y.; Machida, S.; Koswattage, K.R.; Yoshimura, D.; Setoyama, H.; Okajima, T.; Mase, K.; Ishii, H. Full Picture of Valence Band Structure of Rubrene Single Crystals Probed by Angle-Resolved and Excitation-Energy-Dependent Photoelectron Spectroscopy. Appl. Phys. Express 2012, 5, 111601. [Google Scholar] [CrossRef]
- Duhm, S.; Xin, Q.; Hosoumi, S.; Fukagawa, H.; Sato, K.; Ueno, N.; Kera, S. Charge Reorganization Energy and Small Polaron Binding Energy of Rubrene Thin Films by Ultraviolet Photoelectron Spectroscopy. Adv. Mater. 2012, 24, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Niederhausen, J.; Machida, S.; Uragami, Y.; Kinjo, H.; Vollmer, A.; Rabe, J.P.; Koch, N.; Ishii, H. Valence band structure of rubrene single crystals in contact with an organic gate dielectric. Org. Electron. 2013, 14, 1825–1832. [Google Scholar] [CrossRef]
- Machida, S.; Ozawa, Y.; Takahashi, J.; Tokairin, H.; Nakayama, Y.; Ishii, H. Low-Energy Photoemission Study of C60/Rubrene/Au Interfaces in Practical Device Thickness. Appl. Phys. Express 2013, 6, 025801. [Google Scholar] [CrossRef]
- Fukagawa, H.; Yamane, H.; Kataoka, T.; Kera, S.; Nakamura, M.; Kudo, K.; Ueno, N. Origin of the highest occupied band position in pentacene films from ultraviolet photoelectron spectroscopy: Hole stabilization versus band dispersion. Phys. Rev. B 2006, 73, 245310. [Google Scholar] [CrossRef]
- Bussolotti, F.; Yang, J.; Yamaguchi, T.; Yonezawa, K.; Sato, K.; Matsunami, M.; Tanaka, K.; Nakayama, Y.; Ishii, H.; Ueno, N.; et al. Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors. Nat. Commun. 2017, 8, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueba, T.; Park, J.; Terawaki, R.; Watanabe, Y.; Yamada, T.; Munakata, T. Unoccupied electronic structure and molecular orientation of rubrene; from evaporated films to single crystals. Surf. Sci. 2016, 649, 7–13. [Google Scholar] [CrossRef]
- Mitrofanov, O.; Lang, D.V.; Kloc, C.; Wikberg, J.M.; Siegrist, T.; So, W.-Y.; Sergent, M.A.; Ramirez, A.P. Oxygen-Related Band Gap State in Single Crystal Rubrene. Phys. Rev. Lett. 2006, 97, 166601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szuber, J. New procedure for determination of the interface Fermi level position for atomic hydrogen cleaned GaAs(100) surface using photoemission. Vacuum 2000, 57, 209–217. [Google Scholar] [CrossRef]
- Ohta, A.; Truyen, N.X.; Fujimura, N.; Ikeda, M.; Makihara, K.; Miyazaki, S. Total photoelectron yield spectroscopy of energy distribution of electronic states density at GaN surface and SiO2/GaN interface. Jpn. J. Appl. Phys. 2018, 57, 06KA08. [Google Scholar] [CrossRef] [Green Version]
- Tadano, S.; Nakayama, Y.; Kinjo, H.; Ishii, H.; Krüger, P. Obtaining the Highest Occupied Molecular Orbital Peak of Organic Matter from Photoelectron Yield Spectra. Phys. Rev. Appl. 2019, 11, 054081. [Google Scholar] [CrossRef]
- Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92, 1324. [Google Scholar] [CrossRef]
- Kikuchi, M.; Izawa, S.; Rai, N.; Hiramoto, M. Very low activation energy for carrier generation of surface doped organic single crystals observed by Hall effects. Appl. Phys. Lett. 2019, 115, 113301. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakayama, Y.; Iwashita, M.; Kikuchi, M.; Tsuruta, R.; Yoshida, K.; Gunjo, Y.; Yabara, Y.; Hosokai, T.; Koganezawa, T.; Izawa, S.; et al. Electronic and Crystallographic Examinations of the Homoepitaxially Grown Rubrene Single Crystals. Materials 2020, 13, 1978. https://doi.org/10.3390/ma13081978
Nakayama Y, Iwashita M, Kikuchi M, Tsuruta R, Yoshida K, Gunjo Y, Yabara Y, Hosokai T, Koganezawa T, Izawa S, et al. Electronic and Crystallographic Examinations of the Homoepitaxially Grown Rubrene Single Crystals. Materials. 2020; 13(8):1978. https://doi.org/10.3390/ma13081978
Chicago/Turabian StyleNakayama, Yasuo, Masaki Iwashita, Mitsuru Kikuchi, Ryohei Tsuruta, Koki Yoshida, Yuki Gunjo, Yusuke Yabara, Takuya Hosokai, Tomoyuki Koganezawa, Seiichiro Izawa, and et al. 2020. "Electronic and Crystallographic Examinations of the Homoepitaxially Grown Rubrene Single Crystals" Materials 13, no. 8: 1978. https://doi.org/10.3390/ma13081978
APA StyleNakayama, Y., Iwashita, M., Kikuchi, M., Tsuruta, R., Yoshida, K., Gunjo, Y., Yabara, Y., Hosokai, T., Koganezawa, T., Izawa, S., & Hiramoto, M. (2020). Electronic and Crystallographic Examinations of the Homoepitaxially Grown Rubrene Single Crystals. Materials, 13(8), 1978. https://doi.org/10.3390/ma13081978