A Microstructure Insight of MTA Repair HP of Rapid Setting Capacity and Bioactive Response
<p>Electron microscopy images of un-hydrated MTA Repair HP material: (<b>a</b>) field emission gun scanning electron microscopy (FEG-SEM) secondary electron micrograph; (<b>b</b>) TEM bright field image.</p> "> Figure 2
<p>Individual TEM micrographs of un-hydrated MTA Repair HP material taken from (I), (II), and (III) sub-areas of <a href="#materials-13-01641-f001" class="html-fig">Figure 1</a>b, and corresponding energy dispersive X-ray (EDX) analysis (left column). The y-axis values of EDX plots correspond to acquired energy counts.</p> "> Figure 3
<p>HRTEM images of un-hydrated MTA Repair HP material and d<sub>hkl</sub> measurements: (<b>a</b>) characteristic elongated nanoparticle, and (<b>b</b>) magnification of the (<b>a</b>) square inset; (<b>c</b>) elongated nanoparticle edge and measured nanodomain; (<b>d</b>) irregular polycrystalline particle showing different nanodomains.</p> "> Figure 4
<p>Electron microscopy study of hydrated MTA Repair HP material after 24 h setting: (<b>a</b>) TEM and, (<b>b</b>) FEG-SEM general view micrographs. White arrows indicate sub-micron needle-like particles; (<b>c</b>–<b>e</b>) high magnification images showing sample characteristic areas and corresponding EDX analysis (column at the right). The y-axis values of EDX plots correspond to acquired energy counts.</p> "> Figure 5
<p>FEG-SEM secondary electron micrographs of hydrated MTA Repair HP material after different setting time period: (<b>a</b>) 12 min; (<b>b</b>) 4 h; (<b>c</b>) 24 h; (<b>d</b>) 72 h. White arrows indicate plate-like features observations.</p> "> Figure 6
<p>XRD patters of the un-hydrated MTA Repair HP and set material after 12 min, 4 h, 24 h, and 72 h. Black arrows indicate significant variations of detected phases with increasing time of the setting process.</p> "> Figure 7
<p>FEG-SEM observations (left) and EDX analysis (right) of the MTA Repair HP set material after simulated body fluid (SBF) bioactivity assay: (<b>a</b>) un-treated; (<b>b</b>) after 24 h soaking; (<b>c</b>) after 72 h soaking. The y-axis values of EDX plots correspond to acquired energy counts.</p> "> Figure 8
<p>High magnification FEG-SEM secondary electron micrographs of the MTA Repair HP set material after 72 h SBF soaking.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
Materials Characterization
3. Results
3.1. Un-Hydrated MTA Repair HP Characterization
3.2. Hydrated MTA Repair HP Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate, a comprehensive literature review-Part I, chemical, physical, and antibacterial properties. J. Endod. 2010, 36, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Parirokh, M.; Torabinejad, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview-part I: Vital pulp therapy. Int. Endod. J. 2018, 51, 177–205. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L. Bioceramics—From concept to clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
- Romero-Sánchez, L.B.; Borrego-González, S.; Díaz-Cuenca, A. High surface area biopolymeric-ceramic scaffolds for hard tissue engineering. Biomed. Phys. Eng. Express 2017, 3, 035012. [Google Scholar] [CrossRef]
- Hench, L.L.; Polak, J.M. Third-generation biomedical materials. Science 2002, 295, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
- Gandolfi, M.G.; Taddei, P.; Tinti, A.; Prati, C. Apatite-forming ability (bioactivity) of ProRoot MTA. Int. Endod. J. 2010, 43, 917–929. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview-part II: Other clinical applications and complications. Int. Endod. J. 2018, 51, 284–317. [Google Scholar] [CrossRef]
- Reyes-Carmona, J.F.; Felippe, M.S.; Felippe, W.T. Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentine in phosphate—Containing fluid. J. Endod. 2009, 35, 731–736. [Google Scholar] [CrossRef]
- Torabinejad, M.; Chivian, N. Clinical applications of mineral trioxide aggregate. J. Endod. 1999, 25, 197–205. [Google Scholar] [CrossRef]
- Li, X.; Pedano, M.S.; Camargo, B.; Haubend, E.; De Vleeschauwere, S.; Chen, Z.; De Munck, J.; Vandamme, K.; Van Landuyt, K.; Van Meerbeek, B. Experimental tricalcium silicate cement induces reparative dentinogenesis. Dent. Mater. 2018, 34, 1410–1423. [Google Scholar] [CrossRef]
- Camilleri, J. Characterization of hydration products of mineral trioxide aggregate. Int. Endod. J. 2008, 41, 408–417. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, N.G.; de Souza Araújo, P.R.; da Silveira, M.T.; Veras Sobral, A.P.; Carvalho, M.D. Comparison of the biocompatibility of calcium silicate-based materials to mineral trioxide aggregate: Systematic review. Eur. J. Dent. 2018, 12, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Ha, W.N.; Bentz, D.P.; Kahler, B.; Walsh, L.J. D90: The strongest contributor to setting time in mineral trioxide aggregate and portland cement. J. Endod. 2015, 41, 1146–1150. [Google Scholar] [CrossRef] [PubMed]
- Bergold, S.T.; Goetz-Neunhoeffer, F.; Neubauer, J. Machanically activated alite: New insights into alite hydration. Cem. Concr. Res. 2015, 76, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Duque, J.A.; Fernandes, S.L.; Bubola, J.P.; Duarte, M.A.H.; Camilleri, J.; Marciano, M.A. The effect of mixing method on tricalcium silicate-based cement. Int. Endod. J. 2018, 51, 69–78. [Google Scholar] [CrossRef]
- Camilleri, J.; Sorrentino, F.; Damidot, D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent. Mater. 2013, 29, 580–593. [Google Scholar] [CrossRef]
- Borrego-González, S.; Romero-Sánchez, L.B.; Blázquez, J.; Díaz-Cuenca, A. Nanostructured hybrid device mimicking bone extracellular matrix as local and sustained antibiotic delivery system. Microporous Mesoporous Mater. 2018, 256, 165–176. [Google Scholar]
- Sanz, J.L.; Rodríguez-Lozano, F.J.; Llena, C.; Sauro, S.; Forner, T. Bioactivity of bioceramic materials used in the dentin-pulp complex therapy: A systematic review. Materials 2019, 12, 1015. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Sánchez, M.C.; Segura-Egea, J.J.; Díaz-Cuenca, A. MTA HP Repair stimulates in vitro an homogeneous calcium phosphate coating deposition. J. Clin. Exp. Dent. 2019, 11, e322-6. [Google Scholar] [CrossRef]
- Tomás-Catalá, C.J.; Collado-González, M.; García-Bernal, D.; Oñate-Sánchez, R.E.; Forner, L.; Llena, C.; Lozano, A.; Castelo-Baz, P.; Moraleda, J.M.; Rodriguez-Lozano, F.J. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int. Endod. J. 2017, 50, e63–e72. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Sánchez, M.C.; Segura-Egea, J.J.; Díaz-Cuenca, A. Higher hydration performance and bioactive response of the new endodontic bioactive cement MTA HP repair compared with ProRoot MTA white and NeoMTA Plus. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 2109–2120. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sánchez, M.C.; Segura-Egea, J.J.; Díaz-Cuenca, A. Physiocochemical parameters-hydration performance relationship of the new endodontic cement MTA Repair HP. J. Clin. Exp. Dent. 2019, 11, e739. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- De Noirfontaine, M.-N.; Dunstetter, F.; Courtial, M.; Signes-Frehel, M.; Wang, G.; Gorse-Pomonti, D. A transmission electron microscopy study of radiation damages to β-dicalcium (Ca2SiO4) and M3-tricalcium (Ca3SiO5) orthosilicates. J. Nucl. Mater. 2016, 468, 113–123. [Google Scholar] [CrossRef]
- Ylmén, R.; Jäglid, U.; Steenari, B.-M.; Panas, I. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cem. Concr. Res. 2009, 39, 433–439. [Google Scholar] [CrossRef]
- Liu, W. Physicochemical properties and biocompatibility of tricalcium and dicalcium silicate composite cements after hydration. Int. J. Appl. Ceram. Technol. 2011, 8, 560–565. [Google Scholar] [CrossRef]
- Choi, H.W.; Um, S.-H.; Rhee, S.-H. Synthesis of a Ca3SiO5-Ca2SiO4-Ca3Al2O6 cement system with rapid setting capacity by spray-pyrolysis coupled with sol-gel method. J. Biomed. Mater. Res. Part B 2019, 107, 1440–1451. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, A.; Zea-García, J.D.; Londoro-Zuloaga, D.; De la Torre, A.G.; Santacruz, I.; Vallcorba, O.; Dapiaggi, M.; Sanfélix, S.G.; Aranda, M.A.G. Multiscale understanding of tricalcium silicate hydration reactions. Sci. Rep. 2018, 8, 8544. [Google Scholar] [CrossRef] [Green Version]
- Daugaard Andersen, M.; Jakobsen, H.J.; Skibsted, J. Incorporation of aluminium in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: A high-field 27Al and 29Si MAS NMR investigation. Inorg. Chem. 2003, 42, 2280–2287. [Google Scholar] [CrossRef]
- Jennings, H.M. Refinements to colloid model of C-S-H in cement: CM-II. Cem. Concr. Res. 2008, 38, 275–289. [Google Scholar] [CrossRef]
- Pereira, M.M.; Hench, L.L. Mechanisms of hydroxyapatite formation on porous gel-silica substrates. J. Sol Gel Sci. Technol. 1996, 7, 59–68. [Google Scholar] [CrossRef]
- Díaz, A.; López, T.; Manjarrez, J.; Basaldella, E.; Martínez-Blanes, J.M.; Odriozola, J.A. Growth of hydroxyapatite in a biocompatible mesoporous ordered silica. Acta Biomater. 2006, 2, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Ramiro-Gutiérrez, M.L.; Will, J.; Boccaccini, A.R.; Díaz-Cuenca, A. Reticulated bioactive scaffolds with improved textural properties for bone tissue engineering: Nanostructured surfaces and porosity. J. Biomed. Mater. Res. Part A 2014, 102, 2982–2992. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Sánchez, M.C.; Segura-Egea, J.J.; Díaz-Cuenca, A. A Microstructure Insight of MTA Repair HP of Rapid Setting Capacity and Bioactive Response. Materials 2020, 13, 1641. https://doi.org/10.3390/ma13071641
Jiménez-Sánchez MC, Segura-Egea JJ, Díaz-Cuenca A. A Microstructure Insight of MTA Repair HP of Rapid Setting Capacity and Bioactive Response. Materials. 2020; 13(7):1641. https://doi.org/10.3390/ma13071641
Chicago/Turabian StyleJiménez-Sánchez, María Carmen, Juan José Segura-Egea, and Aránzazu Díaz-Cuenca. 2020. "A Microstructure Insight of MTA Repair HP of Rapid Setting Capacity and Bioactive Response" Materials 13, no. 7: 1641. https://doi.org/10.3390/ma13071641
APA StyleJiménez-Sánchez, M. C., Segura-Egea, J. J., & Díaz-Cuenca, A. (2020). A Microstructure Insight of MTA Repair HP of Rapid Setting Capacity and Bioactive Response. Materials, 13(7), 1641. https://doi.org/10.3390/ma13071641