Influence of Pore Networking and Electric Current Density on the Crack Pattern in Reinforced Concrete Test Due to Pressure Rust Layer at Early Ages of an Accelerated Corrosion Test
<p>Corrosion cracking process: The three-stage-model.</p> "> Figure 2
<p>Bars in the moulds before casting: (<b>a</b>) photo of the moulds, (<b>b</b>) sketch of the specimen with the bar. (Dimensions in mm). Adapted from [<a href="#B14-materials-12-02477" class="html-bibr">14</a>], with permission from © 2018 Elsevier.</p> "> Figure 3
<p>Bonding of the strain gauges before the accelerated corrosion testing.</p> "> Figure 4
<p>(<b>a</b>) Scheme of accelerated corrosion test. (<b>b</b>) Sketch of the cutting procedure of the specimen for SEM observation.</p> "> Figure 5
<p>Pore size distribution for each concrete (SFC, silica fume concrete and CC, conventional concrete).</p> "> Figure 6
<p>Circumferential strain around the rebar versus time for each concrete type and current density.</p> "> Figure 7
<p>BSE image at the steel/concrete interface (C, concrete; CL + CAR, Mill scale; S, Steel) and analytical lines across the interface of CC at (<b>a</b>) 8 days, (<b>b</b>) 14 days and (<b>c</b>) 35 days with a density current of 50 μA/cm<sup>2</sup>. Upper curves of each age: Fe and O; bottom curves of each age: Si and Ca. Adapted from [<a href="#B14-materials-12-02477" class="html-bibr">14</a>], with permission from © 2018 Elsevier</p> "> Figure 8
<p>BSE image at the steel (purple)/concrete (black) interface at 14 days for each concrete (SFC, silica fume concrete and CC, conventional concrete) at at 100 µA/cm<sup>2</sup> and 50 µA/cm<sup>2</sup>.</p> "> Figure 9
<p>Evolution of the circumferential strain as a function of the electric charge for each specimen at 50 and 100 μA/cm<sup>2</sup>.</p> "> Figure 10
<p>Evolution of the circumferential strain as a function of the electric charge measured by the four gauges for SFC 100.</p> "> Figure 11
<p>Evolution of the circumferential strain as a function of the rust layer thickness for both concretes at 50 and 100 μA/cm<sup>2</sup>.</p> "> Figure 12
<p>Geometrical considerations of the corrosion process in the reinforcement bar. Redrawn based on [<a href="#B14-materials-12-02477" class="html-bibr">14</a>], with permission from © 2018 Elsevier.</p> "> Figure 13
<p>Evolution of the crack width as a function of the electric charge for each specimen at 50 and 100 μA/cm<sup>2</sup>.</p> "> Figure A1
<p>Crack mapping of CC50, CC100, SFC50 and SFC 100 at 2, 5, 8, 14 26 and 35 days of testing age.</p> ">
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials, Mix Proportioning and Specimens
2.2. Mechanical Test
2.3. Accelerated Corrosion Tests and Test Program
2.4. Microscope Analysis
2.5. Pore Size
3. Results
3.1. Experimental Displacement Field Measurements at Steel/Concrete Interface with Strain Gauges
3.2. Microstructure Characteristics
4. Discussion
5. Analytical Verification
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Cady, P.; Weyers, R. Chloride Penetration and Deterioration of Concrete Bridge Decks. Cem. Concr. Aggreg. 1983, 5, 81–87. [Google Scholar]
- Tuutti, K. Corrosion of Steel in Concrete. Ph.D. Thesis, Swedish Cement and Concrete Research Institute, Stockholm, Sweden, 1982. [Google Scholar]
- Zhao, Y.; Yu, J.; Hu, B.; Jin, W. Damage analysis and cracking model of reinforced concrete structures with rebar corrosion. Corros. Sci. 2011, 53, 3388–3397. [Google Scholar] [CrossRef]
- Michel, A.; Pease, B.J.; Peterová, A.; Geiker, M.R.; Stang, H.; Thybo, A.E.A. Penetration of corrosion products and corrosion-induced cracking in reinforced concrete materials: Experimental investigations and numerical simulations. Cem. Concr. Compos. 2014, 47, 75–86. [Google Scholar] [CrossRef]
- Liu, Y.; Weyers, R.E. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete. ACI Mater. J. 1998, 95, 675–681. [Google Scholar]
- Val, D.; Chernin, L.; Stewart, M. Experimental and Numerical Investigation of Corrosion-Induced Cover Cracking in Reinforced Structures. J. Struct. Eng. 2009, 135, 376–385. [Google Scholar] [CrossRef]
- Wong, H.S.; Zhao, Y.X.; Karimia, A.R.; Buenfeld, N.R.; Jin, W.L. On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion. Corros. Sci. 2010, 52, 2469–2480. [Google Scholar] [CrossRef] [Green Version]
- Michel, A.; Pease, B.J.; Geiker, M.R.; Stang, H.; Olesen, J.F. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive X-ray attenuation measurements. Cem. Concr. Res. 2011, 41, 1085–1094. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, H.; Dai, H.; Jin, W. Composition and expansion coefficient of rust based on X-ray diffraction and thermal analysis. Corros. Sci. 2011, 53, 1646–1658. [Google Scholar] [CrossRef]
- Su, R.K.L.; Zhang, Y. A double-cylinder model incorporating confinement effects for the analysis of corrosion-caused cover cracking in reinforced concrete structures. Corros. Sci. 2015, 99, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Batis, G.; Routoulas, T. Steel rebars corrosion investigation with strain gauges. Cem. Concr. Compos. 1999, 21, 163–171. [Google Scholar] [CrossRef]
- Pedrosa, F.; Andrade, C. Corrosion induced cracking: Effect of different corrosion rates on crack width evolution. Constr. Build. Mater. 2017, 133, 525–533. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, J.; Hu, B.; Jin, W. Crack shape and rust distribution in corrosion-induced cracking concrete. Corros. Sci. 2012, 55, 385–393. [Google Scholar] [CrossRef]
- Bazán, A.M.; Gálvez, J.C.; Reyes, E.; Galé-Lamuela, D. Study of the rust penetration and circumferential stresses in reinforced concrete at early stages of an accelerated corrosion test by means of combined SEM, EDS and strain gauge. Constr. Build. Mater. 2018, 184, 655–667. [Google Scholar] [CrossRef]
- Andrade, C.; Cesetti, A.; Mancini, G.; Tondolo, F. Estimating corrosion attack in reinforced concrete by means of crack opening. Struct. Concr. 2016, 17, 533–540. [Google Scholar] [CrossRef]
- Mak, M.W.T.; Desnerck, P.; Lees, J.M. Corrosion-induced cracking and bond strength in reinforced concrete. Constr. Build. Mater. 2019, 208, 228–241. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.; Luo, X. Effects of impressed current density on corrosion induced cracking of concrete cover. Constr. Build. Mater. 2019, 204, 213–223. [Google Scholar] [CrossRef]
- Caré, S.; Raharinaivo, A. Influence of impressed current on the initiation of damage in reinforced mortar due to corrosion of embedded steel. Cem. Concr. Res. 2007, 37, 1598–1612. [Google Scholar] [CrossRef]
- El Maaddaway, T.; Soudki, K. Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete. J. Mater. Civ. Eng. 2003, 15, 41–47. [Google Scholar] [CrossRef]
- El-Hadi, Z.; Tantawi, N.; Selim, I. Influence of Silica Fume on Corrosion Behaviour of Reinforced Steel in Different Media. J. Mater. Sci. Technol. 2002, 18, 83–88. [Google Scholar]
- Bossio, A.; Lignola, G.P.; Fabbrocino, F.; Monetta, T.; Prota, A.; Bellucci, F.; Manfredi, G. Nondestructive assessment of corrosion of reinforcing bars through surface concrete cracks. Struct. Concr. 2017, 18, 104–117. [Google Scholar] [CrossRef]
- Babu, K.G.; Prakash, P.S. Efficiency of silica fume in concrete. Cem. Concr. Res. 1995, 25, 1273–1283. [Google Scholar] [CrossRef]
- Andrade, C.; Alonso, C.; Molina, F. Cover cracking as a function of bar corrosion: Part I-Experimental test. Mater. Struct. 1993, 26, 453–464. [Google Scholar] [CrossRef]
- Caré, S.; Nguyen, Q.T.; L’Hostis, V.; Berthaud, Y. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar. Cem. Concr. Res. 2008, 38, 1079–1091. [Google Scholar] [CrossRef]
- Yüzer, N.; Aköz, F.; Kabay, N. Prediction of time to crack initiation in reinforced concrete exposed to chloride. Constr. Build. Mater. 2008, 22, 1100–1107. [Google Scholar] [CrossRef]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.M.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Dong, J.F.; Wu, Y.Y.; Jin, W.L. Corrosion-induced concrete cracking model considering corrosion product-filled paste at the concrete/steel interface. Constr. Build. Mater. 2016, 116, 273–280. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Ding, H.J.; Jin, W.L. Development of the corrosion-filled paste and corrosion layer at the steel/concrete interface. Corros. Sci. 2014, 87, 199–210. [Google Scholar] [CrossRef]
- Timoshenko, S.; Goodier, J.N. Theory of Elasticity; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Den Uijl, J.A.; Bigaj, A.J. A bond model for ribbed bars based on concrete confinement. Heron 1996, 41, 201–226. [Google Scholar]
- Zhao, Y.; Wu, Y.; Jin, W. Distribution of millscale on corroded steel bars and penetration of steel corrosion products in concrete. Corros. Sci. 2013, 66, 160–168. [Google Scholar] [CrossRef]
Mix | Water/Binder Ratio | Binder (kg/m3) | Aggregate (kg/m3) | Admixture (% Binder Weight) | ||||
---|---|---|---|---|---|---|---|---|
Cement | Silica fume | Gravel | Grit | Sand | Superplasticizer | CaCl2 | ||
CC | 0.45 | 350 | - | 552.2 | 225.4 | 907.8 | 0.9 | 3 |
SFC | 0.45 | 280 | 35 * | 552.2 | 225.4 | 907.8 | 1 | 3 |
Type HBM | Operating Temperature Range Compensated (°C) | Resistance (Ω) | Gauge Factor | Dimensions (mm) | |
---|---|---|---|---|---|
K-CLY4-0100-1-120-O | −10/+45 | 120 ± 0.35% | 2.07 ± 1.0% | Measuring grid | Measuring grid carrier |
10 × 5 | 8 × 18 |
Compressive Strength fc (MPa) | Elasticity Modulus E (GPa) | Tensile Strength fct (MPa) | Fracture Energy G (N/m) | |
---|---|---|---|---|
SFC | 62.38 | 31.89 | 4.03 | 179.6 |
CC | 65.91 | 33.97 | 4.98 | 172.7 |
Number of Specimens | Surface Rebar (cm2) | Current Density (μA/cm2) | Total Current/Circuit (mA) |
---|---|---|---|
8 | 37.7 | 50 | 1.9 |
100 | 3.8 |
Days | Element Map | Analytical Line | ||||
---|---|---|---|---|---|---|
Size (Pixels) | Size Pixel (µm) | Dual Time (ms) | Accelerating Voltage (kV) | Length (µm) | Interval (µm) | |
1–14 | 400 × 400 | 0.5 | 15 | 20 | 200–250 | 15 |
26 | 600 × 600 | 0.5 | 15 | 20 | 250–300 | 15 |
35 | 600 × 600 | 0.5 | 15 | 20 | 300–600 | 15 |
Parameter | CC | SFC |
---|---|---|
Porosity (%) | 7.39 | 7.55 |
Average pore diameter (µm) | 0.036 | 0.029 |
Median pore diameter (µm) | 0.12 | 0.06 |
Time (days) | ΔR (µm) | |||
---|---|---|---|---|
SFC50 | SFC100 | CC50 | CC100 | |
1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 20 |
5 | 5 | 18 | 4 | 35 |
8 | 7 | 42 | 18 | 65 |
14 | 22 | 85 | 43 | 130 |
26 | 72 | 215 | 125 | 180 |
35 | 115 | 255 | 170 | 225 |
Days | CC50 | CC100 | ||||
---|---|---|---|---|---|---|
σ∗ (MPa) | CL + CAR (μm) | f (*10−2) | σ∗ (MPa) | CL + CAR (μm) | f (*10−2) | |
2 | 0.00 | 0 | 0 | 0.00 | 20 | 0 |
5 | 0.12 | 4 | 0.2 | 0.00 | 35 | 0 |
8 | 0.54 | 18 | 0.6 | 0.80 | 65 | 0.5 |
14 | 1.24 | 43 | 0.6 | 1.19 | 130 | 0.4 |
26 | 4.61 | 125 | 0.6 | 2.85 | 180 | 0.5 |
35 | 5.48 | 170 | 0.7 | 3.85 | 225 | 0.5 |
Average | 0.5 | 0.5 |
Days | SFC50 | SFC100 | ||||
---|---|---|---|---|---|---|
σ∗ (MPa) | CL+CAR (μm) | f (*10−2) | σ∗ (MPa) | CL+CAR (μm) | f (*10−2) | |
2 | 0.00 | 0 | 0 | 0.00 | 0 | 0 |
5 | 0.00 | 5 | 0 | 0.67 | 18 | 0.8 |
8 | 0.25 | 7 | 0.6 | 1.18 | 42 | 0.6 |
14 | 0.90 | 22 | 0.6 | 2.01 | 85 | 0.5 |
26 | 2.58 | 72 | 0.6 | 4.46 | 215 | 0.5 |
35 | 3.91 | 115 | 0.7 | 4.81 | 255 | 0.4 |
Average | 0.6 | 0.6 |
Age (Days) | CC50 (f = 0.114) | CC100 (f = 0.119) | SFC50 (f = 0.087) | SFC100 (f = 0.109) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | σ∗ (MPa) | w (μm) | n | σ∗ (MPa) | w (μm) | n | σ∗ (MPa) | w (μm) | n | σ∗ (MPa) | w (μm) | |
02 | 0 | 0.00 | - | 0 | 0.00 | 0.010 | - | 0.00 | - | 0 | 0.00 | - |
05 | 0 | 0.12 | - | 1 | 0.80 | 0.016 | - | 0.00 | - | 1 | 0.67 | - |
08 | 1 | 0.54 | - | 2 | 1.19 | 0.054 | - | 0.25 | - | 1 | 1.18 | - |
14 | 1 | 1.24 | - | 2 | 2.85 | 0.144 | - | 0.90 | - | 2 | 2.01 | - |
26 | 3 | 4.78 | - | 2 | 4.98 | 0.174 | 1.48 | 2.58 | - | 2 | 4.46 | 0.8 |
35 | 3 | 5.48 | 2.47 | 3 | 5.51 | 0.310 | 2.36 | 4.04 | 1.59 | 3 | 4.81 | 1.32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazán, Á.M.; Reyes, E.; Gálvez, J.C. Influence of Pore Networking and Electric Current Density on the Crack Pattern in Reinforced Concrete Test Due to Pressure Rust Layer at Early Ages of an Accelerated Corrosion Test. Materials 2019, 12, 2477. https://doi.org/10.3390/ma12152477
Bazán ÁM, Reyes E, Gálvez JC. Influence of Pore Networking and Electric Current Density on the Crack Pattern in Reinforced Concrete Test Due to Pressure Rust Layer at Early Ages of an Accelerated Corrosion Test. Materials. 2019; 12(15):2477. https://doi.org/10.3390/ma12152477
Chicago/Turabian StyleBazán, Ángela M., Encarnación Reyes, and Jaime C. Gálvez. 2019. "Influence of Pore Networking and Electric Current Density on the Crack Pattern in Reinforced Concrete Test Due to Pressure Rust Layer at Early Ages of an Accelerated Corrosion Test" Materials 12, no. 15: 2477. https://doi.org/10.3390/ma12152477
APA StyleBazán, Á. M., Reyes, E., & Gálvez, J. C. (2019). Influence of Pore Networking and Electric Current Density on the Crack Pattern in Reinforced Concrete Test Due to Pressure Rust Layer at Early Ages of an Accelerated Corrosion Test. Materials, 12(15), 2477. https://doi.org/10.3390/ma12152477