A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete
<p>Compressive strength development of 16 mm × 16 mm × 160 mm alkali-activated slag (AAS) mortar samples activated using water glass compared to potassium hydroxide [<a href="#B3-materials-12-01198" class="html-bibr">3</a>].</p> "> Figure 2
<p>Compressive strength after 7 and 28 days of curing, and total porosity of 100 mm × 100 mm × 100 mm cubes of OPC concrete (OPCC), alkali-activated slag (AAS) activated using water glass (AAS-WG), AAS activated using NaOH (AAS-N) [<a href="#B25-materials-12-01198" class="html-bibr">25</a>].</p> "> Figure 3
<p>Slump of AAS with different dosages of Na<sub>2</sub>O and silicate moduli [<a href="#B24-materials-12-01198" class="html-bibr">24</a>].</p> "> Figure 4
<p>Effect of elevated temperature and sodium oxide concentration on residual compressive strength [<a href="#B37-materials-12-01198" class="html-bibr">37</a>].</p> "> Figure 5
<p>Effect of Na<sub>2</sub>O dosage (%) on compressive strength at (<b>a</b>) 25 °C, (<b>b</b>) 400 °C [<a href="#B23-materials-12-01198" class="html-bibr">23</a>].</p> "> Figure 6
<p>Expansion due to alkali–silica reaction of 25 mm × 25 mm × 230 mortar samples. Expansion AAS + NaOH = AAS mortars stored in 1 N NaOH solution; AAS + H<sub>2</sub>O = mortars stored in de-ionized water; OPC + NaOH = OPC mortars stored in 1 N NaOH solution; OPC + H<sub>2</sub>O = OPC mortars stored in deionized water [<a href="#B48-materials-12-01198" class="html-bibr">48</a>].</p> "> Figure 7
<p>Shrinkage of 75 × 75 × 285 mm AAS samples compared to OPC samples [<a href="#B50-materials-12-01198" class="html-bibr">50</a>].</p> "> Figure 8
<p>Drying shrinkage of 25 × 25 × 285 mm<sup>3</sup> AAS concrete samples compared to OPC. Shrinkage of AAS samples where GGBS (ground granulated blast furnace slag) is partially replaced with various percentages of silica fume (SF) and fly ash (FA) [<a href="#B28-materials-12-01198" class="html-bibr">28</a>].</p> "> Figure 9
<p>Effect of alkali dosage (6 and 8 wt% Na<sub>2</sub>O) and silicate modulus (Ms from 0 to 2) of alkali activators on carbonation depths measured after 7 days of CO<sub>2</sub> exposure [<a href="#B62-materials-12-01198" class="html-bibr">62</a>].</p> "> Figure 10
<p>Effect of silicate modulus on compressive strength of the AAS mortars with different alkali dosages before carbonation (after steam curing) and after 56 days of carbonation [<a href="#B56-materials-12-01198" class="html-bibr">56</a>,<a href="#B62-materials-12-01198" class="html-bibr">62</a>].</p> "> Figure 11
<p>Effect of Ca(OH)<sub>2</sub> dosage on carbonation depth of 100 × 100 × 100/300 mm<sup>3</sup> AAS paste compared to reference AAS sample without Ca(OH)<sub>2</sub> [<a href="#B61-materials-12-01198" class="html-bibr">61</a>].</p> ">
Abstract
:1. Introduction
2. Alkali-Activators and Hydration Products of AAS
2.1. Alkali Activators
2.2. Hydration Products of Alkali-Activated Slag
2.3. Reactivity and Hydration Products of Un-Activated GGBS
3. Mechanical Properties of Alkali-Activated Slag Concrete and Mortar
4. Effect of Rheology, Workability, Flowability, and Mixing Time on Mechanical Properties of AAS Concrete and Mortar
5. Effect of Curing Methods, and Exposure to Elevated Temperature on Mechanical Properties
6. Durability—Alkali–Silica Reaction
7. Durability—Shrinkage, Weight Loss, and Pore Size Distribution in AAS
8. Durability—Sulfate, Acid, and Chloride Attack
9. Durability—Carbonation of Alkali-Activated Slag Concrete
10. Durability—Freezing and Thawing
11. Conclusions
- The main hydration product of alkali-activated slag is C-S-H in addition to (1) the hydrotalcite-like phase that produces less porous structure and higher compressive strength, and (2) the aluminate-ferrite-mono (sulphate) (AFm) hydrate phase. The high pH of the alkaline activator promotes dissolution of GGBS which drives chemical reaction and strength development.
- Compressive strength of concrete/mortar prepared using alkali-activated slag increases with increase in molarity of the alkaline activator solution. Similarly, compressive strength increases with increase in the content of sodium oxide (Na2O) as a percentage of the weight of GGBS up to an optimum value that depends on curing temperature, then decreases with further increase in the percentage of Na2O. The most commonly studied sodium oxide contents include 4%, 6%, 8%, 10%, and 12%.
- The effect of Na2O on compressive strength also depends on the silicate modulus of the activator solution SiO2/Na2O.
- The higher the degree of fineness of GGBS used in alkali-activated slag concrete/mortar, the higher the 28-day compressive strength. However, high degree of fineness decreases the flowability of fresh concrete.
- The lower the curing temperature, the lower the compressive strength in the short term. However, the long-term compressive is not adversely affected by low curing temperature. Similarly, water curing of alkali-activated slag concrete produces higher compressive strength compared to curing under plastic cover.
- Compared to OPC concrete, alkali-activated slag concrete demonstrates generally better resistance to chloride penetration, sulfate attack, freeze–thaw cycles, and alkali–aggregate reaction.
- Autogenous shrinkage is higher in alkali-activated slag concrete compared to OPC concrete, and continues for a longer time. Replacement up to 15% of GGBS in alkali-activated slag with silica fume decreases autogenous shrinkage. Some studies reported that drying shrinkage is also higher in alkali-activated slag concrete compared to OPC concrete, largely due to the higher percentage of mesopores in alkali-activated concrete.
- Carbonation of alkali-activated concrete/mortar is typically higher than OPC-based concrete/mortar and may lead to decalcification of C-S-H and subsequent loss in compressive strength. Carbonation in alkali-activated concrete is also affected by temperature and type of alkaline activator used.
Funding
Conflicts of Interest
Abbreviations
AAS | Alkali-activated slag |
AFm | Aluminate-Ferrite-mono-sulfate |
ASR | Alkali-silica reaction |
ASTM | American Society for Testing and Material |
C-A-S-H | Calcium aluminate silicate hydrate |
C-S-H | Calcium silicate hydrate |
GGBS | Ground granulated blast furnace slag |
HRWR | High-range water reducing admixture |
IUPAC | International Union of Pure and Applied Chemistry |
OPC | Ordinary Portland cement |
RH | Relative humidity |
SCC | Self-consolidating concrete |
SEM | Scanning electron microscope |
SRA | Shrinkage reducing admixture |
XRD | X-ray diffractometers |
WG | water glass (Na2O·nSiO2·mH2O) |
References
- Yang, K.H.; Song, J.K. Workability Loss and Compressive Strength Development of Cementless Mortars Activated by Combination of Sodium Silicate and Sodium Hydroxide. J. Mater. Civ. Eng. 2009, 21, 119–127. [Google Scholar] [CrossRef]
- Jiapei, D.; Yuhuan, B.; Xuechao, C.; Zhonghou, S.; Baojiang, S. Utilization of alkali-activated slag based composite in deepwater oil well Cementing. Constr. Build. Mater. 2018, 186, 114–122. [Google Scholar] [CrossRef]
- Brough, A.R.; Atkinson, A. Sodium silicate-based, alkali-activated slag mortars Part I. Strength, hydration and microstructure. Cem. Concr. Res. 2002, 32, 865–879. [Google Scholar] [CrossRef]
- Junaid, M.T.; Kayali, O.; Khennane, A.; Black, J. A mix design procedure for low calcium alkali activated fly ash-based concretes. Constr. Build. Mater. 2015, 79, 301–310. [Google Scholar] [CrossRef]
- Palomo, A.; Grutzeck, M.; Blanco, M. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Wang, S.D.; Scrivener, K.L. Hydration products of Alkali Activated slag cement. Cem. Concr. Res. 1995, 25, 561–571. [Google Scholar] [CrossRef]
- Gifford, P.; Gillott, J. Alkali-Silica Reaction (ASR) and Alkali-Sarbonate Reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete. Cem. Concr. Res. 1996, 26, 21–26. [Google Scholar] [CrossRef]
- Li, N.; Shi, C.; Zhang, Z.; Zhu, D.; Hwang, H.-J.; Zhu, H.Y.; Sun, T. A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete. Cem. Concr. Compos. 2018, 93, 163–174. [Google Scholar] [CrossRef]
- Bernal, S.A.; Nicolas, R.S.; Deventer, J.S.J.V.; Provis, J.L. Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator. Adv. Cem. Res. 2016, 28, 262–273. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Najm, O.F. Compressive strength and stability of sustainable self-consolidating concrete containing fly ash, silica fume, and GGBS. Front. Struct. Civ. Eng. 2017, 11, 406–411. [Google Scholar] [CrossRef]
- Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.J.; Rangan, B.V. On the development of fly ash-based geopolymer concrete. ACI Mater. J. 2004, 101, 467–472. [Google Scholar]
- Kovalchuk, G.; Fernandez-Jimenez, A.; Palomo, A. Alkaliactivated fly ash: Effect of thermal curing conditions on mechanical and microstructural development Part II. Fuel 2007, 86, 315–322. [Google Scholar] [CrossRef]
- Jin, F.; Gu, K.; Abdollahzadeh, A.; Al-Tabbaa, A. Effects of Different Reactive MgOs on the Hydration of MgO-Activated GGBS Paste. J. Mater. Civ. Eng. 2015, 27, B4014001. [Google Scholar] [CrossRef]
- Criado, M.; Walkley, B.; Ke, X.; Provis, J.L.; Bernal, S.A. Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cements. Sustainability 2018, 10, 4709. [Google Scholar] [CrossRef]
- Wang, S.D.; Scrivener, K.L.; Pratt, P.L. Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 1994, 24, 1033–1043. [Google Scholar] [CrossRef]
- Shi, C.; Krivenko, D.; Roy, P. Alkali Activated Cements and Concretes; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Gruskovnjak, A.; Lothenbach, B.; Holzer, L.; Figi, R.; Winnefeld, F. Hydration of alkali-activated slag: Comparison with ordinary Portland cement. Adv. Cem. Res. 2006, 18, 119–128. [Google Scholar] [CrossRef]
- Guoqing, G.; Myers, R.J.; Qomi, M.J.A.; Monteiro, P.J.M. Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate. Nature 2017, 7, 10986. [Google Scholar]
- Park, H.; Jeong, Y.; Jeong, J.-H.; Oh, J.E. Strength Development and Hydration Behavior of Self-Activation of Commercial Ground Granulated Blast-Furnace Slag Mixed with Purified Water. Materials 2016, 9, 185. [Google Scholar] [CrossRef]
- Shi, Z.; Shi, C.; Wan, S.; Ou, Z. Effect of alkali dosage on alkali-silica reaction in sodium hydroxide activated slag mortars. Constr. Build. Mater. 2017, 143, 16–23. [Google Scholar] [CrossRef]
- Aliabdo, A.; Elmoaty, A.M.; Emam, M.A. Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Constr. Build. Mater. 2019, 197, 339–355. [Google Scholar] [CrossRef]
- Gu, Y.-M.; Fang, Y.-H.; You, D.; Gong, Y.-F.; Zhu, C.-H. Properties and microstructure of Alkali-Activated slag cement cured at below- and about-normal temperature. Constr. Build. Mater. 2015, 79, 1–8. [Google Scholar] [CrossRef]
- Nasr, D.; Pakshir, A.H.; Ghayour, H. The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali activated slag (AAS) mortars. Constr. Build. Mater. 2018, 190, 108–119. [Google Scholar] [CrossRef]
- Bondar, D.; Marios, Q.; Soutsos, M.; Basheer, M.; Provis, J.L.; Nanukuttan, S. Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity. Constr. Build. Mater. 2018, 190, 191–199. [Google Scholar] [CrossRef]
- Puertas, F.; Gonzalez-Fonteboa, B.; Gonzalez-Taboada, I.; Alonzo, M.M.; Torres-Carrasco, M.; Rojo, G.; Martínez-Abella, F. Alkali-activated slag concrete: Fresh and hardened behavior. Cem. Concr. Compos. 2018, 85, 22–31. [Google Scholar] [CrossRef]
- Manjunath, R.; Narasimhan, M.C. An experimental investigation on self-compacting alkali activated slag concrete mixes. J. Build. Eng. 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Kwon, Y.-H.; Kang, S.-H.; Hong, S.-G.; Moon, J. Enhancement of Material Properties of Lime-Activated Slag Mortar from Intensified Pozzolanic Reaction and Pore Filling Effect. Sustainability 2018, 10, 4290. [Google Scholar] [CrossRef]
- Aydın, S. A ternary optimisation of mineral additives of alkali activated cement mortars. Constr. Build. Mater. 2013, 43, 131–138. [Google Scholar] [CrossRef]
- Rostami, M.; Behfarnia, K. The effect of silica fume on durability of alkali activated slag concrete. Constr. Build. Mater. 2017, 134, 262–268. [Google Scholar] [CrossRef]
- Palacios, M.; Banfill, P.; Puertas, F. Rheology and setting of alkali-activated slag pastes and mortars: Effect of organic admixture. ACI Mater. J. 2008, 105, 140–148. [Google Scholar]
- Nedeljkovic, M.; Li, Z.; Ye, G. Setting, Strength, and Autogenous Shrinkage of Alkali-Activated Fly Ash and Slag Pastes: Effect of Slag Content. Materials 2018, 11, 2121. [Google Scholar] [CrossRef]
- Thomas, J.J.; Allen, A.J.; Jennings, H.M. Density and water content of nanoscale solid C–S–H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage. Cem. Concr. Res. 2012, 42, 377–383. [Google Scholar] [CrossRef]
- Amin, M.N.; Khan, K.; Saleem, M.U.; Khurram, N.; Niazi, M.U.K. Influence of Mechanically Activated Electric Arc Furnace Slag on Compressive Strength of Mortars Incorporating Curing Moisture and Temperature Effects. Sustainability 2017, 9, 1178. [Google Scholar] [CrossRef]
- Al-Otaibi, S. Durability of concrete incorporating GGBS activated by water-glass. Constr. Build. Mater. 2008, 22, 2059–2067. [Google Scholar] [CrossRef]
- Valizadeh, A.; Aslani, F.; Asif, Z.; Roso, M. Development of Heavyweight Self-Compacting Concrete and Ambient-Cured Heavyweight Geopolymer Concrete Using Magnetite Aggregates. Materials 2019, 12, 1035. [Google Scholar] [CrossRef]
- El-Hassan, H.; ASCE, M.; Shehab, E.; Al-Sallamin, A. Influence of Different Curing Regimes on the Performance and Microstructure of Alkali-Activated Slag Concrete. J. Mater. Civ. Eng. 2018. [Google Scholar] [CrossRef]
- Tran, T.T.; Kwon, H.-M. Influence of Activator Na2O Concentration on Residual Strengths of Alkali-Activated Slag Mortar upon Exposure to Elevated Temperatures. Materials 2018, 11, 1296. [Google Scholar] [CrossRef]
- Guerrieri, M.; Sanjayan, J. Investigation of the Cause of Disintegration of Alkali-Activated Slag at Temperature Exposure of 50 °C. J. Mater. Civ. Eng. 2011, 23, 1589–1595. [Google Scholar] [CrossRef]
- Barnett, S.J.; Soutsos, M.N.; Millard, S.G.; Bungey, J.H. Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies. Cem. Concr. Res. 2006, 36, 434–440. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Rens, K.L.; Stalnaker, J.J. Time effect of Alkali-Aggregate reaction on performance of concrete. J. Mater. Civ. Eng. 2001, 143–151. [Google Scholar] [CrossRef]
- Mohamed, O.; Najm, O. Effect of Curing Methods on Compressive Strength of Sustainable Self-Consolidated Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 032059. [Google Scholar] [CrossRef]
- Behfarnia, K.; Shahbaz, M. The effect of elevated temperature on the residual tensile strength and physical properties of the alkali-activated slag concrete. J. Build. Eng. 2018, 20, 442–454. [Google Scholar] [CrossRef]
- Pan, Z.; Tao, Z.; Cao, Y.F.; Wuhrer, R.; Murphy, T. Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cem. Concr. Compos. 2018, 86, 9–18. [Google Scholar] [CrossRef]
- Aslani, F.; Asif, Z. Properties of Ambient-Cured Normal and Heavyweight Geopolymer Concrete Exposed to High Temperatures. Materials 2019, 12, 740. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Resistance of alkali-activated slag concrete to alkali-aggregate reaction. Cem. Concr. Res. 2001, 31, 331–334. [Google Scholar] [CrossRef]
- Plum, D.W.; Poulsen, E. Preliminary survey of alkali reaction in concrete. Ingeniorum Int. Ed. Den. 1958, 2, 26–32. [Google Scholar]
- ASTM C1260-14. Standard Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method); ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Fernandez-Jimenez, A.; Puertas, F. The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem. Concr. Res. 2002, 32, 1019–1024. [Google Scholar] [CrossRef]
- Wang, P.M.; Liu, X.P. Effect of temperature on the hydration process and strength development in blends of Portland cement and activated coal gangue or fly ash. J. Zhejiang Univ. Sci. A 2011, 12, 162–170. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J.G. Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete. Cem. Concr. Res. 2000, 30, 1401–1406. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, D.; Yang, K.; Zhang, Z.; Li, Q.; Pan, Q.; Yang, C. Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete. Constr. Build. Mater. 2018, 17, 467–482. [Google Scholar] [CrossRef]
- Shimomura, T.; Maekawa, K. Analysis of the drying shrinkage behavior of concrete based on the micropore structure of concrete using a micromechanical model. Mag. Concr. Res. 1997, 49, 303–322. [Google Scholar] [CrossRef]
- Ye, H.; Radlinska, A. Shrinkage mechanisms of alkali-activated slag. Cem. Concr. Res. 2016, 88, 126–135. [Google Scholar] [CrossRef]
- Ye, H.; Radlinska, A. Carbonation-induced volume change in alkali-activated slag. Constr. Build. Mater. 2017, 144, 635–644. [Google Scholar] [CrossRef]
- Bilek, V.; Kalina, L.; Novotny, R.; Tkacz, J.; Parizek, L. Some Issues of Shrinkage-Reducing Admixtures Application in Alkali-Activated Slag Systems. Materials 2016, 9, 462. [Google Scholar] [CrossRef]
- Mohamed, O. Durability and Compressive Strength of High Cement Replacement Ratio Self-Consolidating Concrete. Buildings 2018, 8, 153. [Google Scholar] [CrossRef]
- Komljenovic, M.; Bascarevic, Z.; Marjanovic, N.; Nikolic, V. External sulfate attack on alkali-activated slag. Constr. Build. Mater. 2013, 49, 31–39. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.-B. Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 2003, 33, 1607–1611. [Google Scholar] [CrossRef]
- Li, N.; Farzadnia, N.; Shi, C. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cem. Concr. Res. 2017, 100, 214–226. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, P.; Yu, Z. Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength. Materials 2018, 11, 2167. [Google Scholar] [CrossRef]
- He, J.; Gao, Q.; Wu, Y.; He, J.; Pu, X. Study on improvement of carbonation resistance of alkali-activated slag concrete. Constr. Build. Mater. 2018, 176, 60–67. [Google Scholar] [CrossRef]
- Shi, Z.; Shi, C.; Wan, S.; Ning, W.; Zhang, L. Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars. Cem. Concr. Res. 2018, 113, 55–64. [Google Scholar] [CrossRef]
- Provis, J.L.; Palomo, A.; Shi, C. Advances in understanding alkali-activated materials. Cem. Concr. Res. 2015, 78, 110–125. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, O.A.; Rens, L.; Stalnaker, J. Factors affecting resistance of concrete to freezing and thawing damage. J. Mater. Civ. Eng. 2000, 12. [Google Scholar] [CrossRef]
- Shahrajabian, F.; Behfarnia, K. The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete. Constr. Build. Mater. 2018, 176, 172–178. [Google Scholar] [CrossRef]
- Fu, Y.; Cai, L.; Wu, Y. Freeze–thaw cycle test and damage mechanics models of alkali-activated slag concrete. Constr. Build. Mater. 2011, 25, 3144–3148. [Google Scholar] [CrossRef]
Pore Description | Radius (nm) |
---|---|
Micropores | <1.25 |
Mesopores | 1.25–25 |
Macropores | 25–5000 |
Entrained air voids, entrapped air voids, preexisting microcracks | 5000–50,000 |
% Mesopores | % Macropores | |||
---|---|---|---|---|
Age | AAS | OPC | AAS | OPC |
3 | 74.0 | 36.4 | 16.6 | 56.7 |
7 | 76.0 | 35.2 | 14.9 | 59.6 |
28 | 82.0 | 32.7 | 10.4 | 62.2 |
56 | 81.3 | 24.7 | 12.5 | 69 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, O.A. A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete. Materials 2019, 12, 1198. https://doi.org/10.3390/ma12081198
Mohamed OA. A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete. Materials. 2019; 12(8):1198. https://doi.org/10.3390/ma12081198
Chicago/Turabian StyleMohamed, Osama Ahmed. 2019. "A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete" Materials 12, no. 8: 1198. https://doi.org/10.3390/ma12081198
APA StyleMohamed, O. A. (2019). A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete. Materials, 12(8), 1198. https://doi.org/10.3390/ma12081198