Residual Stress of a TC17 Titanium Alloy after Belt Grinding and Its Impact on the Fatigue Life
<p>Experimental device and experimental materials: (<b>a</b>) grinding device with titanium alloy rods; (<b>b</b>) belt grinding system; (<b>c</b>) distribution of the five test points.</p> "> Figure 2
<p>Stress load during single abrasive grinding.</p> "> Figure 3
<p>Residual stress simulation: (<b>a</b>) stress’s effect on the element; (<b>b</b>) deformation of the element; (<b>c</b>) model with normal stress on the middle surface.</p> "> Figure 4
<p>Layer depth of residual stress.</p> "> Figure 5
<p>Influence of contact force on residual stress.</p> "> Figure 6
<p>Effect of reciprocating frequency on residual stress.</p> "> Figure 7
<p>Effect of feed rate on residual stress.</p> "> Figure 8
<p>Element division.</p> "> Figure 9
<p>Stress distribution after normal stress is applied.</p> "> Figure 10
<p>Fatigue life curves: (<b>a</b>) under different forces on the surface; (<b>b</b>) under a different reciprocating frequency; (<b>c</b>) under different feed speed; (<b>d</b>) under different residual stress.</p> "> Figure 11
<p>Simulation data and experimental data error. (<b>a</b>) Comparison of simulation data and experimental data; (<b>b</b>) error between simulation data and experimental data.</p> "> Figure 12
<p>Final fracture area macro map: (<b>a</b>) radial microscopic observation; (<b>b</b>) microscopic size distribution around a plastic fracture; (<b>c</b>) macroscopic map of the final fault zone; (<b>d</b>) macroscopic fracture surface.</p> "> Figure 13
<p>Fatigue crack initiation under different residual stresses in a cross-section view: (<b>a</b>) under the residual stress of −550 MPa; (<b>b</b>) under the residual stress of −500 MPa.</p> "> Figure 14
<p>Fatigue crack growth.</p> "> Figure 15
<p>SEM fracture morphology: (<b>a</b>) under the residual stress of −150 MPa; (<b>b</b>) under the residual stress of −500 MPa.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Analysis of Surface Residual Stress Characteristics
3.1. Characterization of Surface Residual Stress Based on Titanium Alloy Belt Grinding
3.2. Influence of Grinding Parameters on Surface Residual Stress
4. Analysis of Surface Residual Stress Characteristics
4.1. Finite Element Analysis
4.2. Analysis of Fatigue Life
4.3. Fatigue Test Analysis
4.3.1. Fatigue Test
4.3.2. Simulation Experiment Data Analysis
4.3.3. Analysis of Fatigue Fractures
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brotzu, A.; Felli, F.; Marra, F.; Pilone, D.; Pulci, G. Mechanical properties of a TiAl-based alloy at room and high temperatures. Mater. Sci. Technol. 2018, 34, 1847–1853. [Google Scholar] [CrossRef]
- Zhu, S.P.; Yue, P.; Yu, Z.Y.; Wang, Q.Y. A combined high and low cycle fatigue model for life prediction of turbine blades. Materials 2017, 10, 698. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.W.; Wang, T. Reconstruction and repair method of aircraft engine damage blade. Acta Aeronaut. Astronaut. Sin. 2016, 37, 1036–1048. [Google Scholar]
- Bhaumik, S.K.; Sujata, M.; Venkataswamy, M.A. Fatigue failure of aircraft components. Eng. Fail. Anal. 2008, 15, 675–694. [Google Scholar] [CrossRef] [Green Version]
- Bigerelle, M.; Gautier, A.; Hagege, B.; Favergeon, J.; Bounichane, B. Roughness characteristic length scales of belt finished surface. J. Mater. Process. Technol. 2009, 209, 6103–6116. [Google Scholar] [CrossRef]
- Bigerelle, M.; Gautier, A.; Hagege, B. Mechanical modelling of micro-scale abrasion in superfinish belt grinding. Tribol. Int. 2008, 41, 992–1001. [Google Scholar] [CrossRef]
- Jourani, A.; Dursapt, M.; Hamdi, H.; Rech, J.; Zahouani, H. Effect of the belt grinding on the surface texture: modeling of the contact and abrasive wear. Wear 2005, 259, 1137–1143. [Google Scholar] [CrossRef]
- Segreto, T.; Karam, S.; Teti, R. Signal processing and pattern recognition for surface roughness assessment in multiple sensor monitoring of robot-assisted polishing. Int. J. Adv. Manuf. Technol. 2017, 90, 1023–1033. [Google Scholar] [CrossRef]
- Eriksen, R.S.; Arentoft, M.; Gronbak, J.; Bay, N. Manufacture of functional surfaces through combined application of tool manufacturing processes and robot assisted polishing. CIRP Ann. Manuf. Technol. 2012, 61, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Xiao, G.J.; Huang, Y. Constant-load adaptive belt polishing of the weak-rigidity blisk blade. Int. J. Adv. Manuf. Technol. 2015, 78, 1473–1484. [Google Scholar] [CrossRef]
- Zhao, T.; Shi, Y.Y.; Lin, X.J.; Duan, J.H.; Sun, P.C.; Zhang, J. Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine. Int. J. Adv. Manuf. Technol. 2014, 74, 653–663. [Google Scholar] [CrossRef]
- Xiao, G.J.; Huang, Y. Adaptive belt precision grinding for the weak rigidity deformation of blisk leading and trailing edge. Adv. Mech. Eng. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, G.J.; Zhao, H.Q.; Zou, L.; Zhao, L.; Liu, Y.; Dai, W.T. Residual stress of belt polishing for the micro-stiffener surface on the titanium alloys. Procedia CIRP 2018, 71, 11–15. [Google Scholar] [CrossRef]
- Dong, Z.G.; Cao, K.; Kang, R.K.; Hao, B.J.; Zhen, F.F. Experimental research on grinding titanium alloy TC17 with microcrystalline corundum grinding wheel. Diam. Abrasives Eng. 2015, 35, 14–20. [Google Scholar]
- Jeelani, S.; Ramakrishnan, K. Subsurface plastic deformation in machining 6A1-2Sn-4Zr-2Mo titanium alloy. Wear 1983, 85, 121–130. [Google Scholar] [CrossRef]
- Mantle, A.L.; Aspinwall, D.K. Surface integrity of a high speed milled gamma titanium aluminide. J. Mater. Process Technol. 2001, 118, 143–150. [Google Scholar] [CrossRef]
- Lee, S.; Kim, T.; Chou, Y. The effect of surface roughness on contact fatigue behavior using mesoscopic approach. Tribol. Lett. 2009, 36, 269–276. [Google Scholar] [CrossRef]
- Bhaumil, S.K.; Bhaskaran, T.A.; Rangaraju, R.; Venkataswamy, M.A.; Parameswara, M.A.; Krishnan, R.V. Failure of turbine rotor blisk of an aircraft engine. Eng. Fail. Anal. 2002, 9, 287–301. [Google Scholar] [CrossRef]
- James, M.N.; Newby, M.; Hattingh, G.; Steuwer, A. Shot-Peening of steam turbine blades residual stresses and their modification by fatigue cycling. Procedia Eng. 2010, 2, 441–451. [Google Scholar] [CrossRef]
- Huang, J.; Ren, J.X.; Zhang, J.C. Effect of surface integrity on high and low cycle fatigue life of GH33A. Acta Aeronaut. Astronaut. Sin. 1991, 10, 528–531. [Google Scholar]
- Sun, C.; Huang, Z.W. Effects of varied surface conditions on the fatigue behavior of a high-strength gamma-based titanium aluminide alloy. Rare Mental Mater. Eng. 2014, 43, 589–594. [Google Scholar]
- Li, K.; Fu, X.S.; Li, Z.G.; Zhou, W.L.; Chen, G.Q. Fatigue fracture mechanism of Ti-6Al-4V alloy strengthened by wet peening treatment. Rare Mental Mater. Eng. 2017, 375, 3068–3072. [Google Scholar]
- Wang, X.; Hu, Y.H.; Wang, X.; Tang, Z.; Zou, J. Effect of shot peening on fatigue performance stress-concentration sensitivity of FGH96 powder metallurgy superalloy. Aeronaut. Manuf. Technol. 2017, 532, 48–53. [Google Scholar]
- Zhou, L.C. The mechanism of laser shock composite reinforcement and its application in aero-engine turbine blades. J. Mech. Eng. 2016, 52, 201. [Google Scholar]
- Wang, B.L. Study on Mechanical Properties and Machining Characteristics of Titanium Alloy TC17. Ph.D. Thesis, Shandong University, Jinan, China, 2013. [Google Scholar]
- Yao, C.F.; Tan, L.; Yang, P.; Zhang, D.H. Effects of tool orientation and surface curvature on surface integrity in ball end milling of TC17. Int. J. Adv. Manuf. Technol. 2018, 94, 1699–1710. [Google Scholar] [CrossRef]
- Moussaoui, K.; Segonds, S.; Rubio, W.; Mousseigne, M. Studying the measurement by X-ray diffraction of residual stresses in Ti6Al4V titanium alloy. Mater. Sci. Eng. A 2016, 667, 340–348. [Google Scholar] [CrossRef]
- Friák, M.; Counts, W.A.; Ma, D.C.; Sander, B.; Holec, D.; Rabbe, D.; Neugebauer, J. Theory-guided materials design of multi-phase Ti-Nb alloys with bone-matching elastic properties. Materials 2012, 5, 1853–1872. [Google Scholar] [CrossRef]
- Palkowski, H.; Brück, S.; Pirling, T.; Carradò, A. Investigation on the residual stress state of drawn tubes by numerical simulation and neutron diffraction analysis. Materials 2013, 6, 5118–5130. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.Q.; Cao, W.L.; Jing, H.Y.; Xu, L.Y.; Zhao, L.; Han, Y.D. Analytical and numerical investigations of creep crack initiation considering the load-independent constraint parameter Q. Arch. Appl. Mech. 2018, 88, 2031–2050. [Google Scholar] [CrossRef]
- Du, D.X.; Liu, D.X.; Zhang, X.H.; Tang, J.G.; Meng, B.L. Effect of WC-17Co coating combined with shot peening treatment on fatigue behaviors of TC21 titanium alloy. Materials 2016, 9, 865. [Google Scholar] [CrossRef] [PubMed]
Component | Al | Sn | Zr | Mo | Gr | Ti |
Content (%) | 5% | 2% | 2% | 4% | 4% | balance |
Elastic Modulus (GPa) | Elongation (%) | Shrinkage (%) | Density (kg/m3) | Yield Strength (MPa) | Tensile Strength (MPa) |
---|---|---|---|---|---|
111.5 | 10 | 17.5 | 4640 | 1110 | 1180 |
Sample | Residual Stress (MPa) | Working Stress (MPa) | Fatigue Life (Cycle) | Logarithmic Life (lg N) |
---|---|---|---|---|
1 | −284 | 450 | 11,324,681 | 7.05402 |
2 | −250 | 450 | 11,223,465 | 7.05012 |
3 | −214 | 475 | 9,876,522 | 6.99460 |
4 | −202 | 475 | 9,798,325 | 6.99115 |
5 | −287 | 500 | 9,628,951 | 6.98357 |
6 | −298 | 500 | 9,668,362 | 6.98535 |
7 | −147 | 525 | 542,957 | 5.80818 |
8 | −150 | 525 | 547,132 | 5.73809 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Xiao, G.; Li, W.; Huang, Y. Residual Stress of a TC17 Titanium Alloy after Belt Grinding and Its Impact on the Fatigue Life. Materials 2018, 11, 2218. https://doi.org/10.3390/ma11112218
He Y, Xiao G, Li W, Huang Y. Residual Stress of a TC17 Titanium Alloy after Belt Grinding and Its Impact on the Fatigue Life. Materials. 2018; 11(11):2218. https://doi.org/10.3390/ma11112218
Chicago/Turabian StyleHe, Yi, Guijian Xiao, Wei Li, and Yun Huang. 2018. "Residual Stress of a TC17 Titanium Alloy after Belt Grinding and Its Impact on the Fatigue Life" Materials 11, no. 11: 2218. https://doi.org/10.3390/ma11112218
APA StyleHe, Y., Xiao, G., Li, W., & Huang, Y. (2018). Residual Stress of a TC17 Titanium Alloy after Belt Grinding and Its Impact on the Fatigue Life. Materials, 11(11), 2218. https://doi.org/10.3390/ma11112218