Optical Properties of ZnO Nanoparticles Capped with Polymers
<p>XRD pattern of the synthesized nanoparticles.</p> "> Figure 2
<p>TEM image of the ZnO nanoparticles: (<b>a</b>) ZnO nanoparticles without PEG (PEG/Zn<sup>2+</sup> = 0.0[mol/mol]); (<b>b</b>) ZnO nanoparticles with PEG (PEG/Zn<sup>2+</sup> = 1.2[mol/mol]).</p> "> Figure 3
<p>Absorption spectra of the ZnO nanoparticle solution. (<b>a</b>) PEG was added to the solution; (<b>b</b>) PVP was added to the solution. Black dotted line: polymer was not added to the solution. Red solid line: polymer was added before the synthesis of ZnO nanoparticles. Blue solid line: polymer was added after synthesis. Brown solid line: data of only polymer solution.</p> "> Figure 4
<p>PL spectra of the ZnO nanoparticle solution with an excitation wavelength of 300 nm: (<b>a</b>) PEG was added to the solution; (<b>b</b>) PVP was added to the solution. Black dotted line: polymer was not added to the solution. Red solid line: polymer was added before the synthesis of ZnO nanoparticles. Blue solid line: polymer was added after the synthesis. Brown solid line: data of only the polymer solution.</p> "> Figure 5
<p>PLE spectra of ZnO nanoparticle solution with an emission wavelength of 500 nm: (<b>a</b>) PEG was added to the solution; (<b>b</b>) PVP was added to the solution. Black dotted line: polymer was not added to the solution. Red solid line: polymer was added before the synthesis of ZnO nanoparticles. Blue solid line: polymer was added after the synthesis of ZnO nanoparticles.</p> "> Figure 6
<p>Schematic of ZnO nanoparticles capped by polymer molecules: (<b>a</b>) PEG was added to the ZnO solution before synthesis; (<b>b</b>) PEG was added to the ZnO solution after synthesis; (<b>c</b>) PVP was added to the ZnO solution before synthesis; (<b>d</b>) PVP was added to the ZnO solution after synthesis.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
Δ particle size of ZnO (%) | Δ total particle size of ZnO and polymer (%) | Δ PL intensity (%) | ||
---|---|---|---|---|
PEG | before synthesis | −3 | +15 | +25 |
after synthesis | ±0 | ±0 | ±0 | |
PVP | before synthesis | −5 | +175 | −36 |
after synthesis | ±0 | +26 | +27 |
3. Experimental Section
4. Conclusions
Acknowledgements
References
- Nirmal, M.; Brus, L. Luminescence photophysics in semiconductor nanocrystals. Accounts Chem. Res. 1999, 32, 407–414. [Google Scholar] [CrossRef]
- Weller, H. Colloidal semiconductor Q-particles: Chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Edit. 1993, 32, 41–53. [Google Scholar] [CrossRef]
- Hines, M.A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471. [Google Scholar] [CrossRef]
- Dabbousi, B.O.; Rodriguez-Viejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475. [Google Scholar] [CrossRef]
- Efros, A.L.; Efros, A.L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 1982, 16, 772–775. [Google Scholar]
- Bawendi, M.G.; Steigerwald, M.L.; Brus, L.E. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 1990, 41, 477–496. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef]
- Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.C.W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018. [Google Scholar] [CrossRef] [PubMed]
- Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762. [Google Scholar] [CrossRef] [PubMed]
- Derfus, A.M.; Chan, W.C.W.; Bhatia, S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11–18. [Google Scholar] [CrossRef]
- Vanheusden, K.; Seager, C.H.; Warren, W.L.; Tallant, D.R.; Voigt, J.A. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 1996, 68, 403–405. [Google Scholar] [CrossRef]
- Dayan, N.J.; Sainkar, S.R.; Karekar, R.N.; Aiyer, R.C. Formulation and characterization of ZnO: Sb thick-film gas sensors. Thin Solid Films 1998, 325, 254–258. [Google Scholar] [CrossRef]
- Chen, C.S.; Kuo, C.T.; Wu, T.B.; Lin, I.N. Microstructures and electrical properties of V2O5-based multicomponent ZnO varistors prepared by microwave sintering process. Jpn. J. Appl. Phys. Part 1 1997, 36, 1169–1175. [Google Scholar] [CrossRef]
- Gorla, C.R.; Emanetoglu, N.W.; Liang, S.; Mayo, W.E.; Lu, Y.; Wraback, M.; Shen, H. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition. J. Appl. Phys. 1999, 85, 2595–2602. [Google Scholar] [CrossRef]
- Tang, Z.K.; Wong, G.K.L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 1998, 72, 3270–3272. [Google Scholar] [CrossRef]
- Reynolds, D.C.; Look, D.C.; Jogai, B. Optically pumped ultraviolet lasing from ZnO. Solid State Commun. 1996, 99, 873–875. [Google Scholar] [CrossRef]
- Liu, M.; Kitai, A.H.; Mascher, P. Point-defects and luminescence-centers in zinc-oxide and zinc-oxide doped with manganese. J. Lumin. 1992, 54, 35–42. [Google Scholar] [CrossRef]
- Vanheusden, K.; Warren, W.L.; Seager, C.H.; Tallant, D.R.; Voigt, J.A.; Gnade, B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996, 79, 7983–7990. [Google Scholar] [CrossRef]
- Li, D.; Leung, Y.H.; Djurisic, A.B.; Liu, Z.T.; Xie, M.H.; Shi, S.L.; Xu, S.J.; Chan, W.K. Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl. Phys. Lett. 2004, 85, 1601–1603. [Google Scholar] [CrossRef] [Green Version]
- Djurisic, A.B.; Choy, W.C.H.; Roy, V.A.L.; Leung, Y.H.; Kwong, C.Y.; Cheah, K.W.; Rao, T.K.G.; Chan, W.K.; Lui, H.T.; Surya, C. Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structure. Adv. Funct. Mater. 2004, 14, 856–864. [Google Scholar] [CrossRef]
- Garces, N.Y.; Giles, N.C.; Halliburton, L.E.; Cantwell, G.; Eason, D.B.; Reynolds, D.C.; Look, D.C. Production of nitrogen acceptors in ZnO by thermal annealing. Appl. Phys. Lett. 2002, 80, 1334–1336. [Google Scholar] [CrossRef]
- Xu, P.S.; Sun, Y.M.; Shi, C.S.; Xu, F.Q.; Pan, H.B. The electronic structure and spectral properties of ZnO and its defects. Nucl. Instrum. Methods Phys. Res. 2003, 199, 286–290. [Google Scholar] [CrossRef]
- Guo, L.; Yang, S.H.; Yang, C.L.; Yu, P.; Wang, J.N.; Ge, W.K.; Wong, G.K.L. Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties. Appl. Phys. Lett. 2000, 76, 2901–2903. [Google Scholar] [CrossRef]
- Guo, L.; Yang, S.H.; Yang, C.L.; Yu, P.; Wang, J.N.; Ge, W.K.; Wong, G.K.L. Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles. Chem. Mater. 2000, 12, 2268–2274. [Google Scholar] [CrossRef]
- Tachikawa, S.; Noguchi, A.; Hara, M.; Odawara, O.; Wada, H. Structures and optical properties of ZnO nanoparticles capped with polyethylene glycol. J. Ceram. Process. Res. 2011. in submit. [Google Scholar]
- Pankove, J.I. Optical Processes in Semiconductors; Dover Publications: New York, NY, USA, 1971. [Google Scholar]
- Micic, O.I.; Sprague, J.R.; Lu, Z.; Nozik, A. Highly efficient band-edge emission from InP quantum dots. Appl. Phys. Lett. 1996, 68, 3150–3152. [Google Scholar] [CrossRef]
- Kuno, M.; Lee, J.K.; Dabbousi, B.O.; Mikulec, F.V.; Bawendi, M.G. The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state. J. Chem. Phys. 1997, 106, 9869–9882. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-ray Diffraction; Addison-Wesley: Boston, MA, USA, 1978; Chapter 3. [Google Scholar]
- Pesika, N.S.; Stebe, K.J.; Searson, P.C. Determination of the particle size distribution of quantum nanocrystals from absorbance spectra. Adv. Mater. 2003, 15, 1289–1291. [Google Scholar] [CrossRef]
- Hu, Z.; Oskam, G.; Searson, P.C. Influence of solvent on the growth of ZnO nanoparticles. J. Collo. Inter. Sci. 2003, 263, 454–460. [Google Scholar] [CrossRef]
- Brus, L.E. Electronic wave-functions in semiconductor clusters—Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560. [Google Scholar] [CrossRef]
- Koch, U.; Fojtik, A.; Weller, H.; Henglein, A. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem. Phys. Lett. 1985, 122, 507–510. [Google Scholar] [CrossRef]
- Bahnemann, D.W.; Kormann, C.; Hoffmann, M.R. Preparation and characterization of quantum size zinc-oxide—a detailed spectroscopic study. J. Phys. Chem. 1987, 91, 3789–3798. [Google Scholar] [CrossRef]
- Haase, M.; Weller, H.; Henglein, A. Electron storage on ZnO particles and size quantization. J. Phys. Chem. 1988, 92, 482–487. [Google Scholar] [CrossRef]
- Spanhel, L.; Anderson, M.A. Semiconductor clusters in the sol-gel process—Quantized aggregation, gelation, and crystal-growth in concentrated ZnO colloids. J. Am. Chem. Soc. 1991, 113, 2826–2833. [Google Scholar] [CrossRef]
- Meulenkamp, E.A. Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B 1998, 102, 5566–5572. [Google Scholar] [CrossRef]
- Spanhel, L. Colloidal ZnO nanostructures and functional coatings: A survey. J. Sol-Gel Sci. Technol. 2006, 39, 7–24. [Google Scholar] [CrossRef]
© 2011 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tachikawa, S.; Noguchi, A.; Tsuge, T.; Hara, M.; Odawara, O.; Wada, H. Optical Properties of ZnO Nanoparticles Capped with Polymers. Materials 2011, 4, 1132-1143. https://doi.org/10.3390/ma4061132
Tachikawa S, Noguchi A, Tsuge T, Hara M, Odawara O, Wada H. Optical Properties of ZnO Nanoparticles Capped with Polymers. Materials. 2011; 4(6):1132-1143. https://doi.org/10.3390/ma4061132
Chicago/Turabian StyleTachikawa, Shingo, Atsushi Noguchi, Takeharu Tsuge, Masahiko Hara, Osamu Odawara, and Hiroyuki Wada. 2011. "Optical Properties of ZnO Nanoparticles Capped with Polymers" Materials 4, no. 6: 1132-1143. https://doi.org/10.3390/ma4061132
APA StyleTachikawa, S., Noguchi, A., Tsuge, T., Hara, M., Odawara, O., & Wada, H. (2011). Optical Properties of ZnO Nanoparticles Capped with Polymers. Materials, 4(6), 1132-1143. https://doi.org/10.3390/ma4061132