In Vitro Skin Penetration of 5α-Reductase Inhibitors from Tectona grandis L.f. Leaf Extracts
"> Figure 1
<p>Chemical structures of 5α-reductase inhibitors from <span class="html-italic">T. grandis</span> leaf extract.</p> "> Figure 2
<p>The correlation plotted the log P<sub>(o/w)</sub> of reference compounds against their average log <span class="html-italic">k</span> (<span class="html-italic">n</span> = 5). The log <span class="html-italic">k</span> and log P<sub>(o/w)</sub> values of (<b>a</b>) compound <b>1</b> were 1.015 ± 0.016 and 5.767 ± 0.07, respectively, and those of (<b>b</b>) compound <b>2</b> were 0.992 ± 0.005 and 5.661 ± 0.02, respectively.</p> "> Figure 3
<p>HPLC chromatograms of compounds <b>1</b> and <b>2</b> in samples: (<b>a</b>) ethanolic extract solution before being applied through the membrane, (<b>b</b>) ethanolic extract solution after penetration through the membrane at 24 h, (<b>c</b>) extract in PG before being applied through the membrane, and (<b>d</b>) extract in PG after penetration through the membrane at 24 h. The samples in (<b>b</b>,<b>d</b>) were collected from the receiver compartment.</p> "> Figure 4
<p>The skin penetration profiles of <b>1</b> and <b>2</b> after the application of (<b>a</b>) ethanolic extract solution and (<b>b</b>) extract in PG on the skin membranes for 24 h. Each point represents the cumulative percentage of <b>1</b> and <b>2</b> in the receptor medium at each time point as measured by the HPLC method. The values represent the means ± SD of triplicate experiments. (* <span class="html-italic">p</span> < 0.05, significantly different compared with <b>2</b> at 24 h).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Partition Coefficients
2.2. Solubility of 1 and 2 in T. grandis Ethanolic Extract
2.3. Skin Penetration of 1 and 2 from T. grandis Ethanolic Extract and Extract in PG
3. Materials and Methods
3.1. Chemicals
3.2. General Experimental Procedures
3.3. Plant Material
3.4. Preparation of T. grandis Leaf Extracts
3.5. Determination of Partition Coefficients of Compounds 1 and 2
3.6. Solubility Study of Compounds 1 and 2 in T. grandis Ethanolic Extract
3.7. In Vitro Skin Penetration Study
3.8. HPLC Analysis of Compounds 1 and 2 in T. grandis Extract
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palanisamy, K.; Hegde, M.; Yi, J.S. Teak (Tectona grandis Linn. f.): A renowned commercial timber species. J. For. Environ. Sci. 2009, 25, 1–24. [Google Scholar]
- Vyas, P.; Yadav, D.K.; Khandelwal, P. Tectona grandis (teak)—A review on its phytochemical and therapeutic potential. Nat. Prod. Res. 2018, 33, 2338–2354. [Google Scholar] [CrossRef]
- Khare, C.P. Indian Medicinal Plants: An Illustrated Dictionary; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2008; 649p. [Google Scholar]
- Bitchagno, G.T.M.; Sama Fonkeng, L.; Kopa, T.K.; Tala, M.F.; Kamdem Wabo, H.; Tume, C.B.; Tane, P.; Kuiate, J.R. Antibacterial activity of ethanolic extract and compounds from fruits of Tectona grandis (Verbenaceae). BMC Complement. Altern. Med. 2015, 15, 265. [Google Scholar] [CrossRef]
- Krishna, M.; Nair, J. Antibacterial, cytotoxic and antioxidant potential of different extracts from leaf, bark and wood of Tectona grandis. Int. J. Pharm. Sci. Drug Res. 2010, 2, 155–158. [Google Scholar] [CrossRef]
- Khan, R.M.; Mlungwana, S.M. 5-Hydroxylapachol: A cytotoxic agent from Tectona grandis. Phytochemistry 1999, 50, 439–442. [Google Scholar] [CrossRef]
- Ghareeb, M.A.; Hussein, A.H.; Hassan, M.; Laila, A.; Mona, A.; Amal, M. Antioxidant and cytotoxic activities of Tectona grandis Linn leaves. Int. J. Phytopharm. 2014, 5, 143–157. [Google Scholar]
- Pooja, V.S.; Samanta, K. Hypoglycemic activity of methanolic extract of Tectona grandis Linn. root in alloxan induced diabetic rats. J. Appl. Pharm. Sci. 2011, 1, 106–109. [Google Scholar]
- Ramachandran, S.; Rajini Kanth, B.; Rajasekaran, A.; Manisenthil Kumar, K.T. Evaluation of anti–inflammatory and analgesic potential of methanol extract of Tectona grandis flowers. Asian Pac. J. Trop. Biomed. 2011, 1 (Suppl. S2), S155–S158. [Google Scholar] [CrossRef]
- Giri, S.P.; Varma, S.B. Analgesic and anti-inflammatory activity of Tectona grandis Linn. stem extract. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 479–484. [Google Scholar] [CrossRef]
- Macias, F.A.; Lacret, R.; Varela, R.M.; Nogueiras, C.; Molinillo, J.M. Isolation and phytotoxicity of terpenes from Tectona grandis. J. Chem. Ecol. 2010, 36, 396–404. [Google Scholar] [CrossRef]
- Kopa, T.K.; Tchinda, A.T.; Tala, M.F.; Zofou, D.; Jumbam, R.; Wabo, H.K.; Titanji, V.P.; Frederich, M.; Tan, N.H.; Tane, P. Antiplasmodial anthraquinones and hemisynthetic derivatives from the leaves of Tectona grandis (Verbenaceae). Phytochem. Lett. 2014, 8, 41–45. [Google Scholar] [CrossRef]
- Sharma, P.; Pooja, V.S.; Samanta, K.; Rathore, K. Antipyretic activity of methanolic extract of root of Tectona grandis on albino rats. J. Pharmacol. Toxicol. 2011, 1, 28–33. [Google Scholar]
- Varma, S.B.; Giri, S.P. Study of wound healing activity of Tectona grandis Linn. leaf extract on rats. Anc. Sci. Life 2013, 32, 241–244. [Google Scholar] [PubMed]
- Jaybhaye, D.; Varma, S.; Gagne, N.; Bonde, V.; Gite, A.; Bhosle, D. Effect of Tectona grandis Linn. seeds on hair growth activity of albino mice. Int. J. Ayurveda Res. 2010, 1, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Fachrunniza, Y.; Srivilai, J.; Wisuitiprot, V.; Wisuitiprot, W.; Suphrom, N.; Temkitthawon, P.; Waranuch, N.; Ingkaninan, K. Tectona grandis, a potential active ingredient for hair growth promotion. Songklanakarin J. Sci. Technol. 2020, 42, 1352–1359. [Google Scholar]
- Insumrong, K.; Ingkaninan, K.; Waranuch, N.; Tanuphol, N.; Wisuitiprot, W.; Promgool, T.; Suphrom, N. Isolation and HPLC quantitative determination of 5alpha-reductase inhibitors from Tectona grandis L.f. leaf extract. Molecules 2022, 27, 2893. [Google Scholar] [CrossRef]
- Kao, T.T.; Wang, M.C.; Chen, Y.H.; Chung, Y.T.; Hwang, P.A. Propylene glycol improves stability of the anti-inflammatory compounds in Scutellaria baicalensis extract. Processes 2021, 9, 894. [Google Scholar] [CrossRef]
- Canton, M.; Poigny, S.; Roe, R.; Nuzillard, J.M.; Renault, J.H. Dereplication of natural extracts diluted in propylene glycol, 1,3-propanediol and glycerin. Comparison of Leontopodium alpinum Cass. (Edelweiss) extracts as a case study. Cosmetics 2021, 8, 10. [Google Scholar] [CrossRef]
- Zhu, H.; Jung, E.C.; Hui, X.; Maibach, H. Proposed human stratum corneum water domain in chemical absorption. J. Appl. Toxicol. 2016, 36, 991–996. [Google Scholar] [CrossRef]
- Hafeez, F.; Maibach, H. Occlusion effect on in vivo percutaneous penetration of chemicals in man and monkey: Partition coefficient effects. Skin Pharmacol. Physiol. 2013, 26, 85–91. [Google Scholar] [CrossRef]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012, 2012, 195727. [Google Scholar] [CrossRef] [PubMed]
- Stegemann, S.; Leveiller, F.; Franchi, D.; de Jong, H.; Lindén, H. When poor solubility becomes an issue: From early stage to proof of concept. Eur. J. Pharm. Sci. 2007, 31, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2012, 64, 128–137. [Google Scholar] [CrossRef]
- Haque, T.; Talukder, M.M.U. Chemical Enhancer: A simplistic way to modulate barrier function of the stratum corneum. Adv. Pharm. Bull. 2018, 8, 169–179. [Google Scholar] [CrossRef]
- Pham, Q.D.; Björklund, S.; Engblom, J.; Topgaard, D.; Sparr, E. Chemical penetration enhancers in stratum corneum—Relation between molecular effects and barrier function. J. Control. Release 2016, 232, 175–187. [Google Scholar] [CrossRef]
- Uchida, T.; Kadhum, W.R.; Kanai, S.; Todo, H.; Oshizaka, T.; Sugibayashi, K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. Eur. J. Pharm. Sci. 2015, 67, 113–118. [Google Scholar] [CrossRef]
- Karadzovska, D.; Riviere, J.E. Assessing vehicle effects on skin absorption using artificial membrane assays. Eur. J. Pharm. Sci. 2013, 50, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, C.; Xu, W.; Quan, P.; Luo, Z.; Yang, D.; Fang, L. An investigation on percutaneous permeation of flurbiprofen enantiomers: The role of molecular interaction between drug and skin components. Int. J. Pharm. 2021, 601, 120503. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.; Herman, A.P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: A review. J. Pharm. Pharmacol. 2015, 67, 473–485. [Google Scholar] [CrossRef]
- Srivilai, J.; Waranuch, N.; Tangsumranjit, A.; Khorana, N.; Ingkaninan, K. Germacrone and sesquiterpene-enriched extracts from Curcuma aeruginosa Roxb. increase skin penetration of minoxidil, a hair growth promoter. Drug Deliv. Transl. Res. 2018, 8, 140–149. [Google Scholar] [CrossRef]
- Rizwan, M.; Aqil, M.; Ahad, A.; Sultana, Y.; Ali, M.M. Transdermal delivery of valsartan: I. Effect of various terpenes. Drug Dev. Ind. Pharm. 2008, 34, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Imura, T.; Morita, T.; Fukuoka, T.; Ryu, M.; Igarashi, K.; Hirata, Y.; Hirata, Y.; Kitamoto, D. Spontaneous vesicle formation from sodium salt of acidic sophorolipid and its application as a skin penetration enhancer. J. Oleo Sci. 2014, 63, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Co-Operation and Development (OECD). OECD Guidelines for the Testing of Chemicals No. 117: “Partition Coefficient (n-Octanol/Water), HPLC Method”; OECD: Paris, France, 2004. [Google Scholar]
- Organization for Economic Co-Operation and Development (OECD). OECD Guidelines for the Testing of Chemicals No. 105: “Water Solubility”; OECD: Paris, France, 1995. [Google Scholar]
- Organization for Economic Co-operation and Development (OECD). OECD Guidelines for the Testing of Chemicals No. 428: “Skin Absorption: In Vitro Method”; OECD: Paris, France, 2004. [Google Scholar]
Solvents | Amounts (µg/mL) | Solubility Definition | |
---|---|---|---|
1 | 2 | ||
Distilled water | 6.32 ± 0.42 | 7.79 ± 0.05 | practically insoluble |
HEPES buffer with 2% w/v of Tween 20 | 1051 ± 44 * | 1080 ± 24 * | slightly soluble |
Samples | Compounds | Donor (%) | Membrane (%) | Receiver (%) | Recovery (%) |
---|---|---|---|---|---|
Ethanolic extract solution | 1 | 76.16 ± 0.99 | 4.47 ± 0.14 | 12.20 ± 0.19 * | 92.63 ± 0.84 |
2 | 77.20 ± 0.77 | 5.70 ± 0.37 | 10.96 ± 0.51 | 93.86 ± 0.91 | |
Extract in PG | 1 | 82.00 ± 0.63 | 4.11 ± 0.05 | 12.72 ± 0.24 * | 98.84 ± 0.91 |
2 | 78.47 ± 0.55 | 5.03 ± 0.01 | 11.30 ± 0.35 | 94.80 ± 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Insumrong, K.; Waranuch, N.; Ingkaninan, K.; Tanuphol, N.; Mishra, A.P.; Wisuitiprot, W.; Wongwad, E.; Ngamdokmai, N.; Suphrom, N. In Vitro Skin Penetration of 5α-Reductase Inhibitors from Tectona grandis L.f. Leaf Extracts. Molecules 2025, 30, 1151. https://doi.org/10.3390/molecules30051151
Insumrong K, Waranuch N, Ingkaninan K, Tanuphol N, Mishra AP, Wisuitiprot W, Wongwad E, Ngamdokmai N, Suphrom N. In Vitro Skin Penetration of 5α-Reductase Inhibitors from Tectona grandis L.f. Leaf Extracts. Molecules. 2025; 30(5):1151. https://doi.org/10.3390/molecules30051151
Chicago/Turabian StyleInsumrong, Kamonlak, Neti Waranuch, Kornkanok Ingkaninan, Nutchaninad Tanuphol, Abhay Prakash Mishra, Wudtichai Wisuitiprot, Eakkaluk Wongwad, Ngamrayu Ngamdokmai, and Nungruthai Suphrom. 2025. "In Vitro Skin Penetration of 5α-Reductase Inhibitors from Tectona grandis L.f. Leaf Extracts" Molecules 30, no. 5: 1151. https://doi.org/10.3390/molecules30051151
APA StyleInsumrong, K., Waranuch, N., Ingkaninan, K., Tanuphol, N., Mishra, A. P., Wisuitiprot, W., Wongwad, E., Ngamdokmai, N., & Suphrom, N. (2025). In Vitro Skin Penetration of 5α-Reductase Inhibitors from Tectona grandis L.f. Leaf Extracts. Molecules, 30(5), 1151. https://doi.org/10.3390/molecules30051151