Preparation of a Silicon/MXene Composite Electrode by a High-Pressure Forming Method and Its Application in Li+-Ion Storage
"> Figure 1
<p>MXene/<span class="html-italic">m</span>-Si/MXene composite electrode processing flow chart.</p> "> Figure 2
<p>XRD images of <span class="html-italic">m</span>-Si particles, Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> MXene thin films, and MXene/<span class="html-italic">m</span>-Si/MXene composites.</p> "> Figure 3
<p>TEM topographical images of <span class="html-italic">m</span>-Si (<b>a</b>) and few−layer Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> MXene (<b>b</b>), HRTEM of <span class="html-italic">m</span>-Si particles (<b>c</b>), enlarged areas in red and green boxes (<b>d</b>,<b>f</b>), and corresponding lattice spacing (<b>e</b>,<b>g</b>) in (<b>c</b>).</p> "> Figure 4
<p>(<b>a</b>) Sectional SEM images and (<b>b</b>–<b>d</b>) corresponding EDS images of MXene/<span class="html-italic">m</span>-Si/MXene composite electrode.</p> "> Figure 5
<p>XPS spectra of Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> MXene thin films and the MXene/<span class="html-italic">m</span>-Si/MXene composite electrode. (<b>a</b>) Total spectrum, (<b>b</b>) Ti 2p, (<b>c</b>) C 1s, (<b>d</b>) O 1s, (<b>e</b>) F1s, and (<b>f</b>) Si 2p.</p> "> Figure 6
<p>(<b>a</b>) Cyclic performance at a current density of 0.5 A g<sup>−1</sup> and (<b>b</b>) rate properties at different current densities of <span class="html-italic">m</span>-Si electrode and MXene/<span class="html-italic">m</span>-Si/MXene composite electrode.</p> "> Figure 7
<p>(<b>a</b>) Electrochemical impedance spectra (EIS), (<b>b</b>,<b>c</b>) CV curves at different scan rates, and (<b>d</b>) the relationship between peak current (peak I, <span class="html-italic">I</span><sub>p</sub>) and <span class="html-italic">v</span><sup>1/2</sup> of the MXene/<span class="html-italic">m</span>-Si/MXene composite electrode and <span class="html-italic">m</span>-Si electrode. Inset in (<b>a</b>) is the schematic diagram of the equivalent circuit; therein, <span class="html-italic">W</span><sub>o</sub> donates the Warburg coefficient.</p> "> Figure 8
<p>SEM images of (<b>a</b>) MXene/<span class="html-italic">m</span>-Si/MXene composite electrode and (<b>b</b>) <span class="html-italic">m</span>-Si electrode at 350× magnification after 100 charge–discharge cycles.</p> "> Figure 9
<p>(<b>a</b>) XRD patterns of the <span class="html-italic">m</span>-Si electrode and MXene/<span class="html-italic">m</span>-Si/MXene composite electrode after 100 charge–discharge cycles, (<b>b</b>,<b>c</b>) XPS spectra of the two electrodes before and after 100 charge–discharge cycles.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Phase Analyses
2.2. Microstructure and Morphology Analyses
2.3. XPS Analysis
2.4. Electrochemical Performance
2.5. Stability Analyses
3. Experimental Description
3.1. Preparation of the MXene/m-Si/MXene Composite Electrode and m-Si Electrode
3.2. Material Characterization
3.3. Cell Fabrication and Electrochemical Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, A.; Zhang, W.; Guo, H.; Dong, L.; Jin, T.; Shen, C.; Xie, K. A review on the features and progress of silicon anodes-based solid-state batteries. Adv. Energy Mater. 2023, 13, 2301464. [Google Scholar] [CrossRef]
- Lyubina, J. Phase transformations and hysteresis in Si-based anode materials. Appl. Phys. Lett. 2021, 118, 090501. [Google Scholar] [CrossRef]
- Dash, R.; Pannala, S. The potential of silicon anode based lithium ion batteries. Mater. Today 2016, 19, 483–484. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, S.; Li, K.; Yin, Z.-W.; Xiao, Y.; Lin, H.; Pan, F.; Yang, L. Quantitative analysis of the structural evolution in Si anode via multi-scale image reconstruction. Sci. Bull. 2023, 68, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, Y.; Shao, R.; Wu, J.; Jiang, R.; Jin, Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 2022, 46, 482–502. [Google Scholar] [CrossRef]
- Escamilla-Pérez, A.M.; Roland, A.; Giraud, S.; Guiraud, C.; Virieux, H.; Demoulin, K.; Oudart, Y.; Louvain, N.; Monconduit, L. Pitch-based carbon/nano-silicon composite, an efficient anode for Li-ion batteries. RSC Adv. 2019, 9, 10546–10553. [Google Scholar] [CrossRef]
- Feng, Z.Y.; Peng, W.J.; Wang, Z.X.; Guo, H.J.; Li, X.H.; Yan, G.C.; Wang, J.X. Review of silicon-based alloys for lithium-ion battery anodes. Int. J. Miner. Metall. Mater. 2021, 28, 1549–1564. [Google Scholar] [CrossRef]
- Yan, L.; Liu, J.; Wang, Q.; Sun, M.; Jiang, Z.; Liang, C.; Pan, F.; Lin, Z. In situ wrapping Si nanoparticles with 2D carbon nanosheets as high-areal-capacity anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 38159–38164. [Google Scholar] [CrossRef] [PubMed]
- Habib, T.; Zhao, X.; Shah, S.A.; Chen, Y.; Sun, W.; An, H.; Lutkenhaus, J.L.; Radovic, M.; Green, M.J. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2d Mater. Appl. 2019, 3, 8. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of twodimensional carbides and nitrides (MXenes). Science 2021, 372, 1165. [Google Scholar] [CrossRef]
- Jin, X.; Yang, L.; Wang, X.-F. Efficient two-dimensional perovskite solar cells realized by incorporation of Ti3C2Tx MXene as nano-dopants. Nano-Micro Lett. 2021, 13, 68. [Google Scholar] [CrossRef]
- Sun, C.; Wu, C.; Gu, X.; Wang, C.; Wang, Q. Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 2021, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Man, H.; Yang, J.; Zang, J.; Che, R.; Wang, F.; Sun, D.; Fang, F. Self-Adapting Electrochemical Grinding Strategy for Stable Silicon Anode. Adv. Funct. Mater. 2022, 32, 2109887. [Google Scholar] [CrossRef]
- Xia, M.; Chen, B.; Gu, F.; Zu, L.; Xu, M.; Feng, Y.; Wang, Z.; Zhang, H.; Zhang, C.; Yang, J. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance. ACS Nano 2020, 14, 5111–5120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ying, H.; Huang, P.; Zhang, S.; Yang, T.; Han, W.-Q. Porous Si decorated on MXene as free-standing anodes for lithium-ion batteries with enhanced diffusion properties and mechanical stability. Chem. Eng. J. 2023, 451, 138785. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Z.; Xu, Y.; Liang, J.; Li, J.; Zhu, X. fvs-Si48: A direct bandgap silicon allotrope. Phys. Chem. Chem. Phys. 2018, 20, 26091–26097. [Google Scholar] [CrossRef]
- Neethiulagarajan, A.; Vijayakumar, V. Equation of state of primitive-hexagonal silicon and the effect of pressure on some electronic properties of three high-pressure phases of silicon. Phys. Rev. B 1993, 47, 487–489. [Google Scholar] [CrossRef]
- Ovsyannikov, S.V.; Shchennikov, V.V.; Misiuk, A.; Shchennikov, V.V. Pressure-induced phase transitions in Si observed by thermoelectric power measurements. Solid State Commun. 2004, 132, 545–549. [Google Scholar] [CrossRef]
- Wei, Q.; Tong, W.; Wei, B.; Zhang, M.; Peng, X. Six new silicon phases with direct band gaps. Phys. Chem. Chem. Phys. 2019, 21, 19963–19968. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.-J.; Han, W.H.; Lee, I.-H.; Chang, K.J. Superconducting open-framework allotrope of silicon at ambient pressure. Phys. Rev. Lett. 2018, 120, 157001. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Yang, K.; He, D. Phase-pure bulk BC8 silicon prepared through secondary phase transition method under high pressure. Mater. Lett. 2020, 262, 127195. [Google Scholar] [CrossRef]
- Ganguly, S.; Kazem, N.; Carter, D.; Kauzlarich, S.M. Colloidal synthesis of an exotic phase of silicon: The BC8 structure. J. Am. Chem. Soc. 2014, 136, 1296–1299. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Haberl, B.; Johnson, B.C.; Mujica, A.; Guthrie, M.; McCallum, J.C.; Williams, J.S.; Bradby, J.E. Formation of an r8-dominant Si material. Phys. Rev. Lett. 2019, 122, 105701. [Google Scholar] [CrossRef] [PubMed]
- Ikoma, Y.; Yamasaki, T.; Shimizu, T.; Takaira, M.; Kohno, M.; Guo, Q.; McCartney, M.R.; Smith, D.J.; Arai, Y.; Horita, Z. Formation of metastable BC8 phase from crystalline Si0.5Ge0.5 by high-pressure torsion. Mater. Charact. 2020, 169, 110590. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, J.; Huang, H.; Zhou, L.; Wang, B.L.; Wu, Y.Q. Formation mechanism of nanocrystalline high-pressure phases in silicon during nanogrinding. Nanotechnology 2007, 18, 465705. [Google Scholar] [CrossRef] [PubMed]
- Natu, V.; Benchakar, M.; Canaff, C.; Habrioux, A.; Célérier, S.; Barsoum, M.W. A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 2021, 4, 1224–1251. [Google Scholar] [CrossRef]
- Schultz, T.; Frey, N.C.; Hantanasirisakul, K.; Park, S.; May, S.J.; Shenoy, V.B.; Gogotsi, Y.; Koch, N. Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem. Mater. 2019, 31, 6590–6597. [Google Scholar] [CrossRef]
- Halim, J.; Cook, K.M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M.W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417. [Google Scholar] [CrossRef]
- Näslund, L.; Persson, I. XPS spectra curve fittings of Ti3C2Tx based on first principles thinking. Appl. Surf. Sci. 2022, 593, 153442. [Google Scholar] [CrossRef]
- Graf, M.; Berg, C.; Bernhard, R.; Haufe, S.; Pfeiffer, J.; Gasteiger, H.A. Effect and progress of the amorphization process for microscale silicon particles under partial lithiation as active material in lithium-ion batteries. Electrochem. Soc. 2022, 169, 020536. [Google Scholar] [CrossRef]
- Dawei, L.; Yanan, P.; Xilu, Y.; Xin, G.; Guixia, L.; Peijie, Z.; Yuanyu, T. Facile conversion of micron/submicron Si particles into Si/C composites with excellent cycle performance. J. Energy Storage 2023, 73, 109142. [Google Scholar] [CrossRef]
- Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429. [Google Scholar] [CrossRef]
- Das, S.R.; Majumder, S.B.; Katiyar, R.S. Kinetic analysis of the Li+ ion intercalation behavior of solution derived nano-crystalline lithium manganate thin films. J. Power Sources 2005, 139, 261–268. [Google Scholar] [CrossRef]
- Li, H.; Lu, M.; Han, W.; Li, H.; Wu, Y.; Zhang, W.; Wang, J.; Zhang, B. Employing MXene as a matrix for loading amorphous Si generated upon lithiation towards enhanced lithium-ion storage. J. Energy Chem. 2019, 38, 50–54. [Google Scholar] [CrossRef]
- Cao, D.; Sun, X.; Li, Y.; Anderson, A.; Lu, W.; Zhu, H. Long-Cycling Sulfide-Based All-Solid-State Batteries Enabled by Electrochemo-Mechanically Stable Electrodes. Adv. Mater. 2023, 34, 2200401. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, D.; Cong, L.; Han, Y.; Fu, M.; Wu, X.; Zhang, J. Preparation of a Silicon/MXene Composite Electrode by a High-Pressure Forming Method and Its Application in Li+-Ion Storage. Molecules 2025, 30, 297. https://doi.org/10.3390/molecules30020297
Liu Y, Zhao D, Cong L, Han Y, Fu M, Wu X, Zhang J. Preparation of a Silicon/MXene Composite Electrode by a High-Pressure Forming Method and Its Application in Li+-Ion Storage. Molecules. 2025; 30(2):297. https://doi.org/10.3390/molecules30020297
Chicago/Turabian StyleLiu, Yonghao, Dawei Zhao, Lujia Cong, Yanfeng Han, Mingdi Fu, Xiaoxin Wu, and Junkai Zhang. 2025. "Preparation of a Silicon/MXene Composite Electrode by a High-Pressure Forming Method and Its Application in Li+-Ion Storage" Molecules 30, no. 2: 297. https://doi.org/10.3390/molecules30020297
APA StyleLiu, Y., Zhao, D., Cong, L., Han, Y., Fu, M., Wu, X., & Zhang, J. (2025). Preparation of a Silicon/MXene Composite Electrode by a High-Pressure Forming Method and Its Application in Li+-Ion Storage. Molecules, 30(2), 297. https://doi.org/10.3390/molecules30020297