Surface Chemistry Aspects of Ion Exchange in Basic Copper Salts
<p>TGA curves of original brochantite (<b>A</b>) and paratacamite (<b>B</b>).</p> "> Figure 2
<p>SEM image of brochantite.</p> "> Figure 3
<p>SEM image of paratacamite.</p> "> Figure 4
<p>XRD pattern of brochantite. Line: experimental. Bars: from RRUFF repository.</p> "> Figure 5
<p>XRD pattern of paratacamite. Line: experimental. Bars: from RRUFF repository.</p> "> Figure 6
<p>Electrokinetic curves of the original brochantite.</p> "> Figure 7
<p>XRD patterns of B003, B005, B006 and B010. Lines: experimental. Bars: brochantite from RRUFF repository.</p> "> Figure 8
<p>XRD patterns of B001, B002, B007, and B008. Lines: experimental. Bars: brochantite from RRUFF repository.</p> "> Figure 9
<p>XRD patterns of B001, B008, and B012. Lines: experimental. Bars: atacamite (white) and paratacamite (black) from RRUFF repository.</p> "> Figure 10
<p>XRD patterns of B004, B014, and B015. Lines: experimental. Bars: brochantite from RRUFF repository.</p> "> Figure 11
<p>XRD patterns of B011, P017, and P018. Lines: experimental. Bars: brochantite (green) and paratacamite (black) from RRUFF repository.</p> "> Figure 12
<p>XRD patterns of P013 and P016. Lines: experimental. Bars: brochantite from RRUFF repository.</p> "> Figure 13
<p>Electrokinetic curves of B003, B005, B006, and B010.</p> "> Figure 14
<p>Electrokinetic curves of B001, B002, B007, B008, and B012.</p> "> Figure 15
<p>Electrokinetic curves of B004, B008, B014, and B015.</p> "> Figure 16
<p>Electrokinetic curves of B011, P017, and P018.</p> "> Figure 17
<p>Electrokinetic curves of P013 and P016.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Original Particles
2.3. Ion Exchange
2.4. Characterization of Particles
3. Results and Discussion
3.1. Initial Particles
3.2. Conversion of Brochantite by Ion Exchange
- Recover the final product (sparingly soluble copper salt);
- Remove the water soluble compounds from the sparingly soluble copper salt.
- Anion exchange with chloride, bromide, and phthalate was successful;
- Anion exchange with nitrate, iodide, acetate, and rhodanide was not successful.
- Longer exchange time (B008 vs. B007) leads to a higher degree of conversion;
- Higher temperature (B008 vs. B002) leads to a higher degree of conversion;
- Repetition of conversion (B001 vs. B002 and B014 vs. B004) leads to a higher degree of conversion.
3.3. Conversion of Paratacamite into Brochantite by Ion Exchange
3.4. Correlation Between the Exchanged Fraction and Specific Surface Area
3.5. ζ Potential and IEP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raghavan, S.; Adamec, E.; Lee, L. Sulfidization and Flotation of Chrysocolla and Brochantite. Int. J. Miner. Process. 1984, 12, 173–191. [Google Scholar] [CrossRef]
- Dekov, V.; Boycheva, T.; Hålenius, U.; Petersen, S.; Billström, K.; Stummeyer, J.; Kamenov, G.; Shanks, W. Atacamite and Paratacamite from the Ultramafic-Hosted Logatchev Seafloor Vent Field (14°45′ N, Mid-Atlantic Ridge). Chem. Geol. 2011, 286, 169–184. [Google Scholar] [CrossRef]
- Gravier, J.; Vignal, V.; Bissey-Breton, S. Influence of Residual Stress, Surface Roughness and Crystallographic Texture Induced by Machining on the Corrosion Behaviour of Copper in Salt-Fog Atmosphere. Corros. Sci. 2012, 61, 162–170. [Google Scholar] [CrossRef]
- Li, S.; Teague, M.T.; Doll, G.L.; Schindelholz, E.J.; Cong, H. Interfacial Corrosion of Copper in Concentrated Chloride Solution and the Formation of Copper Hydroxychloride. Corros. Sci. 2018, 141, 243–254. [Google Scholar] [CrossRef]
- Kosmulski, M. Electrokinetic Potential of Precipitates Obtained from CuSO4, Alkali Halides, and NaOH. Mater. Chem. Phys. 2024, 319, 129385. [Google Scholar] [CrossRef]
- Jiménez-López, A.; Rodríguez-Castellón, E.; Olivera-Pastor, P.; Maireles-Torres, P.; Tomlinson, A.A.G.; Jones, D.J.; Rozière, J. Layered Basic Copper Anion Exchangers: Chemical Characterisation and X-Ray Absorption Study. J. Mater. Chem. 1993, 3, 303–307. [Google Scholar] [CrossRef]
- Stanimirova, T.; Dencheva, S.; Kirov, G. Structural Interpretation of Anion Exchange in Divalent Copper Hydroxysalt Minerals. Clay Miner. 2013, 48, 21–36. [Google Scholar] [CrossRef]
- Yamanaka, S.; Sako, T.; Hattori, M. Anion-Exchange in Basic Copper Acetate. Anion-Exch. Basic Copp. Acetate 1989, 18, 1869–1872. [Google Scholar] [CrossRef]
- Krätschmer, A.; Odnevall Wallinder, I.; Leygraf, C. The Evolution of Outdoor Copper Patina. Corros. Sci. 2002, 44, 425–450. [Google Scholar] [CrossRef]
- Kratohvil, S.; Matijević, E. Preparation of Copper Compounds of Different Compositions and Particle Morphologies. J. Mater. Res. 1991, 6, 766–777. [Google Scholar] [CrossRef]
- Tanaka, H.; Kawano, M.; Koga, N. Thermogravimetry of Basic Copper (II) Sulphates Obtained by Titrating NaOH Solution with CuSO4 Solution. Thermochim. Acta 1991, 182, 281–292. [Google Scholar] [CrossRef]
- De Micco, G.; Bohé, A.E.; Pasquevich, D.M. A Thermogravimetric Study of Copper Chlorination. J. Alloys Compd. 2007, 437, 351–359. [Google Scholar] [CrossRef]
- García-Martínez, O.; Millán, P.; Rojas, R.M. γ-Cu2(OH)3Cl as Precursor in the Preparation of Copper (I) and (II) Oxides and Copper Powder. J. Mater. Sci. 1986, 21, 4411–4418. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Yin, H.; Wu, Y. Synthesis of Cu2(OH)3Cl as Facile and Effective Fenton Catalysts for Mineralizing Aromatic Contaminants: Combination of σ-Cu-Ligand and Self-Redox Property. Appl. Catal. Gen. 2021, 614, 118055. [Google Scholar] [CrossRef]
- Haq, I.U.; Akhtar, K.; Malook, K. Synthesis and Characterization of Monodispersed Copper Oxide and Their Precursor Powder. Mater. Res. Bull. 2014, 57, 121–126. [Google Scholar] [CrossRef]
- Kosmulski, M. Isoelectric Points and Points of Zero Charge of Metal (Hydr)Oxides: 50 Years after Parks’ Review. Adv. Colloid Interface Sci. 2016, 238, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.C.; de Faria, D.L.A.; Constantino, V.R.L. CuII Hydroxy Salts: Characterization of Layered Compounds by Vibrational Spectroscopy. J. Braz. Chem. Soc. 2006, 17, 1651–1657. [Google Scholar] [CrossRef]
- Cui, X.; Song, B.; Ouyang, H.; Cheng, S.; Fan, C.; Shao, Y.; Sun, Y.; Wang, Y. Stepwise Growth of CuO via Transformation of Cu2(OH)3Br Intermediate in Aqueous Solution of Long-Alkyl-Chain Copper Salt. Cryst. Growth Des. 2020, 20, 3044–3052. [Google Scholar] [CrossRef]
- Meng, C.; Fang, M.; Chen, J.; Hu, P.; Wang, P.; Yuan, A. Interplanar Spacing Engineering on Copper-Benzenedicarboxylate Toward Stabilized Lithium Storage. Energy Technol. 2023, 11, 2300029. [Google Scholar] [CrossRef]
- Kosmulski, M. Surface Charging and Points of Zero Charge; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-0-429-09339-5. [Google Scholar]
Code | Brochantite [g] | Salt | Salt Mass [g] | Remarks | SSA [m2/g] |
---|---|---|---|---|---|
B000 | None | original brochantite | 16.26 | ||
P000 | none | original paratacamite | 8.70 | ||
B001 | 0.4999 | NaCl | 1.0001 | then 1.0019 g of NaCl | 2.52 |
B002 | 0.5036 | NaCl | 1.0011 | 5.31 | |
B003 | 0.5026 | KI | 2.0012 | 17.18 | |
B004 | 0.5002 | NaBr | 1.2047 | 7.44 | |
B005 | 0.4999 | NaCH3COO | 1.2006 | 16.95 | |
B006 | 0.5028 | NaNO3 | 1.2014 | 17.07 | |
B007 | 0.5091 | NaCl | 1.0057 | 1 day, 50 °C | 4.17 |
B008 | 0.5060 | NaCl | 1.0007 | 50 °C | 1.26 |
B009 | 0.5072 | KHC8H4O4 | 2.0375 | 0.92 | |
B010 | 0.5057 | KSCN | 2.0402 | 15.33 | |
B011 | 0.5018 | KHC8H4O4 | 2.0624 | 1.73 | |
B012 | 0.5046 | NaCl | 1.0028 | 50 °C | 1.91 |
P013 | 0.5013 | Na2SO4·10H2O | 2.0598 | 8.25 | |
B014 | 0.5070 | NaBr | 1.2364 | then 1.2469 g of NaBr, then 1.2092 g of NaBr | 1.02 |
B015 | 0.5030 | NaBr | 3.1348 | 3 weeks | 8.16 |
P016 | 0.5059 | Na2SO4·10H2O | 2.0029 | then 2.0253 g of Na2SO4·10H2O, then 2.0074 g of Na2SO4·10H2O | 1.55 |
P017 | 0.5011 | KHC8H4O4 | 2.0032 | 1.23 | |
P018 | 0.5033 | KHC8H4O4 | 2.5135 | 1.15 |
Code | Anion | Fraction of Exchanged Sulfate |
---|---|---|
B001 | Cl− | 1.02 |
B002 | Cl− | 0.98 |
B003 | I− | 0.02 |
B004 | Br− | 0.52 |
B005 | CH3COO− | 0.05 |
B006 | NO3− | 0.09 |
B007 | Cl− | 0.91 |
B008 | Cl− | 1.19 |
B009 | HC8H4O4− | 1.24 |
B010 | SCN− | 0.19 |
B011 | HC8H4O4− | 1.33 |
B012 | Cl− | 1.12 |
B014 | Br− | 0.94 |
B015 | Br− | 1.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skupiński, S.; Kalbarczyk, M.; Kamiński, D.; Kosmulski, M. Surface Chemistry Aspects of Ion Exchange in Basic Copper Salts. Molecules 2025, 30, 21. https://doi.org/10.3390/molecules30010021
Skupiński S, Kalbarczyk M, Kamiński D, Kosmulski M. Surface Chemistry Aspects of Ion Exchange in Basic Copper Salts. Molecules. 2025; 30(1):21. https://doi.org/10.3390/molecules30010021
Chicago/Turabian StyleSkupiński, Sebastian, Marta Kalbarczyk, Daniel Kamiński, and Marek Kosmulski. 2025. "Surface Chemistry Aspects of Ion Exchange in Basic Copper Salts" Molecules 30, no. 1: 21. https://doi.org/10.3390/molecules30010021
APA StyleSkupiński, S., Kalbarczyk, M., Kamiński, D., & Kosmulski, M. (2025). Surface Chemistry Aspects of Ion Exchange in Basic Copper Salts. Molecules, 30(1), 21. https://doi.org/10.3390/molecules30010021