Diluting Ionic Liquids with Small Functional Molecules of Polypropylene Carbonate to Boost the Photovoltaic Performance of Perovskite Solar Cells
"> Figure 1
<p>(<b>a</b>) <sup>1</sup>H NMR spectra of PC, IL, and PC/IL, and enlarged views of the areas framed by dashes. The yellow boxes correspond to the hydrogen atoms in N–CH=N, and the blue boxes correspond to the hydrogen atoms in–CH=CH–. (<b>b</b>) <sup>13</sup>C NMR spectra of IL and PC/IL. The green boxes correspond to the carbon atoms in C=O. (<b>c</b>) XPS spectra of O 1s orbit of PC and PC/IL.</p> "> Figure 2
<p>(<b>a</b>) <sup>1</sup>H NMR spectra of PC/IL with/without PbI<sub>2</sub>. The peaks marked by the dashed circle were enlarged and shown on the right side. (<b>b</b>) <sup>1</sup>H NMR spectra of PC/IL with/without MAI and an enlarged image at 7.5 ppm. The peaks marked by the dashed circle were enlarged and shown on the right side. The arrow and blue box indicate that the width of the peak has turned broader. (<b>c</b>) FTIR spectra of PC/IL, MAPbI<sub>3</sub>, and MAPbI<sub>3</sub>-PC/IL films. (<b>d</b>) XPS spectra of the Pb 4f and I 3d core level lines from MAPbI<sub>3</sub>, MAPbI<sub>3</sub>-IL, and MAPbI<sub>3</sub>-PC/IL films.</p> "> Figure 3
<p>Possible interactions between PC/IL and perovskite precursors.</p> "> Figure 4
<p>(<b>a</b>) Statistical distribution of PCE of the pristine devices (purple) and PSCs based on PC(x%)/IL modification (x = 0% (yellow), 20% (red), 50% (blue), 70% (green), and 90% (orange)). (<b>b</b>) J–V curves of MAPbI<sub>3</sub>-based PSCs with PC(x%)/IL modification. (<b>c</b>) J–V curves of champion MAPbI<sub>3</sub>, MAPbI<sub>3</sub>-IL, and MAPbI<sub>3</sub>-PC/IL-based PSCs with reverse and forward scans. (<b>d</b>) EQE spectra and integrated current curves (marked by the red color circles) for MAPbI<sub>3</sub>, MAPbI<sub>3</sub>-IL, and MAPbI<sub>3</sub>-PC/IL PSCs.</p> "> Figure 5
<p>(<b>a</b>) Current/voltage (I-V) characteristics of devices (ITO/PC/IL/Ag with different molar fractions of PC: 0%, 50%, 70%, and 90%) under dark conditions. (<b>b</b>) Electrical conductivity of PC/IL via the molar fraction of PC at 24 °C. (<b>c</b>) The viscosity of PC/IL via the molar fraction of PC. Thermogravimetric analysis (TGA) curves of (<b>d</b>) IL, (<b>e</b>) PC, and (<b>f</b>) PC (70%)/IL in N<sub>2</sub> atmosphere.</p> "> Figure 6
<p>(<b>a</b>–<b>c</b>) SEM images and (<b>d</b>) XRD patterns of MAPbI<sub>3</sub>, MAPbI<sub>3</sub>-IL, and MAPbI<sub>3</sub>-PC/IL films deposited on ITO/SnO<sub>2</sub>. (<b>e</b>) UV–visible absorption spectra, (<b>f</b>) PL, and (<b>g</b>) TRPL spectra of corresponding films deposited on glass substrates. (<b>h</b>) Dark I–V curves for MAPbI<sub>3</sub>, MAPbI<sub>3</sub>-IL, and MAPbI<sub>3</sub>-PC/IL PSCs. (<b>i</b>) Trap density of corresponding films (1, MAPbI<sub>3</sub>; 2, MAPbI<sub>3</sub>-IL; and 3, MAPbI<sub>3</sub>-PC/IL) obtained from the SCLC method.</p> "> Figure 7
<p>Secondary electron cut-off region of UPS spectra of (<b>a</b>) MAPbI<sub>3</sub>, (<b>b</b>) MAPbI<sub>3</sub>-IL, and (<b>c</b>) MAPbI<sub>3</sub>-PC/IL films. Valence band region of the UPS spectra of (<b>d</b>) MAPbI<sub>3</sub>, (<b>e</b>) MAPbI<sub>3</sub>-IL, and (<b>f</b>) MAPbI<sub>3</sub>-PC/IL films. (<b>g</b>) Energy band diagram of MAPbI<sub>3</sub>, MAPbI<sub>3</sub>-IL, and MAPbI<sub>3</sub>-PC/IL-based PSCs.</p> "> Figure 8
<p>Water contact angles of (<b>a</b>) MAPbI<sub>3</sub>, (<b>b</b>) MAPbI<sub>3</sub>-IL, and (<b>c</b>) MAPbI<sub>3</sub>-PC/IL films. (<b>d</b>) PCE variation curves dependent on the storage time (25 °C, RH = 20–30%) of MAPbI<sub>3</sub>, MAPbI<sub>3</sub>-IL, and MAPbI<sub>3</sub>-PC/IL PSCs. The dashed line is used to point out the final normalized PCE value.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, K.; Li, S.; Liu, Z.; Ying, Y.; Dvorak, P.; Fei, L.; Sikola, T.; Huang, H.; Nordlander, P.; Jen, A.K.; et al. Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light Sci. Appl. 2021, 10, 219–230. [Google Scholar] [CrossRef]
- Chen, C.S.; Chen, J.X.; Han, H.C.; Chao, L.F.; Hu, J.F.; Niu, T.T.; Dong, H.; Yang, S.W.; Xia, Y.D.; Chen, Y.H.; et al. Perovskite solar cells based on screen-printed thin films. Nature 2022, 612, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Kirchartz, T.; Márquez, J.A.; Stolterfoht, M.; Unold, T. Photoluminescence-Based Characterization of Halide Perovskites for Photovoltaics. Adv. Energy Mater. 2020, 10, 1904134–1904155. [Google Scholar] [CrossRef]
- Hidalgo, J.; Castro-Méndez, A.F.; Correa-Baena, J.P. Imaging and Mapping Characterization Tools for Perovskite Solar Cells. Adv. Energy Mater. 2019, 9, 1900444–1900474. [Google Scholar] [CrossRef]
- Zhang, P.; Cheng, H.; Gu, F.; Hong, S.; Dong, H.; Li, C. Progress on iron-series metal-organic frameworks materials towards electrocatalytic hydrogen evolution reaction. Surf. Interfaces 2023, 42, 103368–103386. [Google Scholar] [CrossRef]
- Lu, Y.-N.; Zhong, J.-X.; Yu, Y.; Chen, X.; Yao, C.-Y.; Zhang, C.; Yang, M.; Feng, W.; Jiang, Y.; Tan, Y.; et al. Constructing an n/n+ homojunction in a monolithic perovskite film for boosting charge collection in inverted perovskite photovoltaics. Energy Environ. Sci. 2021, 14, 4048–4058. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Yun, H.S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S.I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, J.; Wang, C.; Cui, H.; Liu, Y.; Zhou, S.; Guan, H.; Ke, W.; Tao, C.; Fang, G. Antimony Potassium Tartrate Stabilizes Wide-Bandgap Perovskites for Inverted 4-T All-Perovskite Tandem Solar Cells with Efficiencies over 26. Nano-Micro Lett. 2023, 15, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Ran, C.; Gao, W.; Li, M.; Xia, Y.; Huang, W. Metal Halide Perovskite for next-generation optoelectronics: Progresses and prospects. eLight 2023, 3, 3. [Google Scholar] [CrossRef]
- Yang, C.; Hu, W.; Liu, J.; Han, C.; Gao, Q.; Mei, A.; Zhou, Y.; Guo, F.; Han, H. Achievements, challenges, and future prospects for industrialization of perovskite solar cells. Light Sci. Appl. 2024, 13, 227. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Gao, H.; Zhang, M.; Lin, R.; Wu, P.; Xiao, K.; Tan, H. Revealing the output power potential of bifacial monolithic all-perovskite tandem solar cells. eLight 2022, 2, 21. [Google Scholar] [CrossRef]
- Mahesh, S.; Chen, B.; Sargent, E.H. All-perovskite tandems go bifacial. Light Sci. Appl. 2023, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Laurita, G.; Seshadri, R. Chemistry, Structure, and Function of Lone Pairs in Extended Solids. Acc. Chem. Res. 2022, 55, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- DuBose, J.T.; Kamat, P.V. Energy Versus Electron Transfer: Managing Excited-State Interactions in Perovskite Nanocrystal-Molecular Hybrids. Chem. Rev. 2022, 122, 12475–12494. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, W.; Pullerits, T. Two-photon absorption in halide perovskites and their applications. Mater. Horiz. 2022, 9, 2255–2287. [Google Scholar] [CrossRef] [PubMed]
- You, P.; Tang, G.; Cao, J.; Shen, D.; Ng, T.W.; Hawash, Z.; Wang, N.; Liu, C.K.; Lu, W.; Tai, Q.; et al. 2D materials for conducting holes from grain boundaries in perovskite solar cells. Light Sci. Appl. 2021, 10, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Qiao, L.; Meng, K.; Long, R.; Chen, G.; Gao, P. Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem. Soc. Rev. 2023, 52, 163–195. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, L.; Hou, Y.; Nozariasbmarz, A.; Poudel, B.; Yoon, J.; Ye, T.; Yang, D.; Pogrebnyakov, A.V.; Gopalan, V.; et al. Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 2022, 6, 756–771. [Google Scholar] [CrossRef]
- Zhuang, X.; Sun, R.; Zhou, D.; Liu, S.; Wu, Y.; Shi, Z.; Zhang, Y.; Liu, B.; Chen, C.; Liu, D.; et al. Synergistic Effects of Multifunctional Lanthanides Doped CsPbBrCl2 Quantum Dots for Efficient and Stable MAPbI3 Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2110346–2110360. [Google Scholar] [CrossRef]
- Wang, R.; Xue, J.; Wang, K.; Wang, Z.-K.; Luo, Y.; Fenning, D.; Xu, G.; Nuryyeva, S.; Huang, T.; Zhao, Y.; et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 2019, 366, 1509–1513. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Yavuz, I.; De Marco, N.; Huang, T.; Lee, S.J.; Choi, C.S.; Wang, M.; Nuryyeva, S.; Wang, R.; Zhao, Y.; et al. Steric Impediment of Ion Migration Contributes to Improved Operational Stability of Perovskite Solar Cells. Adv. Mater. 2020, 32, 1906995–1907006. [Google Scholar] [CrossRef]
- Li, C.; Zhu, D.; Cheng, S.; Zuo, Y.; Wang, Y.; Ma, C.; Dong, H. Recent research progress of bimetallic phosphides-based nanomaterials as cocatalyst for photocatalytic hydrogen evolution. Chin. Chem. Lett. 2022, 33, 1141–1153. [Google Scholar] [CrossRef]
- Li, C.; Wu, H.; Zhu, D.; Zhou, T.; Yan, M.; Chen, G.; Sun, J.; Dai, G.; Ge, F.; Dong, H. High-efficient charge separation driven directionally by pyridine rings grafted on carbon nitride edge for boosting photocatalytic hydrogen evolution. Appl. Catal. B 2021, 297, 120433–120443. [Google Scholar] [CrossRef]
- Chueh, C.C.; Li, C.Z.; Jen, A.K.Y. Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 2015, 8, 1160–1189. [Google Scholar] [CrossRef]
- Kang, Y.F.; Li, R.; Wang, A.R.; Kang, J.Y.; Wang, Z.S.; Bi, W.H.; Yang, Y.; Song, Y.L.; Dong, Q.F. Ionogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy Environ. Sci. 2022, 15, 3439–3448. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.M.; Liu, J.; Lin, Y.X.; Hu, J.F.; Cao, C.S.; Xia, Y.D.; Chen, Y.H. A universal ionic liquid solvent for non-halide lead sources in perovskite solar cells. J. Energy Chem. 2022, 71, 445–451. [Google Scholar] [CrossRef]
- Ramadan, A.J.; Oliver, R.D.J.; Johnston, M.B.; Snaith, H.J. Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat. Rev. Mater. 2023, 8, 822–838. [Google Scholar] [CrossRef]
- Luo, J.S.; Lin, F.Y.; Yuan, J.Y.; Wan, Z.Q.; Jia, C.Y. Application of Ionic Liquids and Derived Materials to High-Efficiency and Stable Perovskite Solar Cells. ACS Mater. Lett. 2022, 4, 1684–1715. [Google Scholar] [CrossRef]
- Podapangi, S.K.; Jafarzadeh, F.; Mattiello, S.; Korukonda, T.B.; Singh, A.; Beverina, L.; Brown, T.M. Green solvents, materials, and lead-free semiconductors for sustainable fabrication of perovskite solar cells. RSC Adv. 2023, 13, 18165–18206. [Google Scholar] [CrossRef]
- Shahiduzzaman, M.; Muslih, E.Y.; Mahmud Hasan, A.K.; Wang, L.L.; Fukaya, S.; Nakano, M.; Karakawa, M.; Takahashi, K.; Akhtaruzzaman, M.; Nunzi, J.M.; et al. The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics. Chem. Eng. J. 2022, 411, 128461. [Google Scholar] [CrossRef]
- Wang, F.; Ge, C.Y.; Duan, D.W.; Lin, H.R.; Li, L.; Naumov, P.; Hu, H.L. Recent Progress in Ionic Liquids for Stability Engineering of Perovskite Solar Cells. Small Struct. 2022, 3, 2200048. [Google Scholar] [CrossRef]
- Yang, J.; H, J.; Zhang, W.; Han, H.; Chen, Y.; Hu, Y. The opportunities and challenges of ionic liquids in perovskite solar cells. J. Energy Chem. 2023, 77, 157–171. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; He, B.; Gong, Z.; Zhu, J.; Ding, Y.; Tang, Q. Interface engineering of imidazolium ionic liquids toward efficient and stable CsPbBr3 perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 4540–4548. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, X.F.; Brooks, K.G.; Ding, B.; Kinge, S.; Ding, Y.; Dai, S.Y.; Nazeeruddin, M.K. Role of Ionic Liquids in Perovskite Solar Cells. Sol. RRL 2023, 7, 2300115. [Google Scholar] [CrossRef]
- Farinha, A.; Santos, L.; Costa, J. Addressing the Stability Challenge of Perovskite Solar Cells: The Potential of Ionic Liquid Incorporation for Improved Device Durability. U. Porto J. Eng. 2023, 9, 167–183. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, T.; Fadaei, T.F.; Rosario, S.; Mohammad, K.N.; Zhu, D.R.; Paul, J.D.; Fei, Z.F. The chemistry of the passivation mechanism of perovskite films with ionic liquids. Inorg. Chem. 2022, 61, 5010–5016. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Da, P.; Li, C.; Wang, Z.; Yuan, Z.; Fu, F.; Kawecki, M.; Liu, X.; Sakai, N.; Wang, J.T.; et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Tian, Q.; Chang, X.; Fang, J.; Gu, X.; He, X.; Ren, X.; Zhao, K.; Liu, S. Ionic Liquid Treatment for Highest-Efficiency Ambient Printed Stable All-Inorganic CsPbI3 Perovskite Solar Cells. Adv. Mater. 2022, 10, 202106750–202106760. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.J.; Wang, C.Y.; Zhang, C.; Wang, Z.Y.; Feng, J.S.; Liu, S.Z.; Yang, D. Imidazolium-based ionic liquid for stable and highly efficient black-phase formamidinium-based perovskite solar cell. Chem. Eng. J. 2022, 434, 134759–134765. [Google Scholar] [CrossRef]
- Luo, Y.; Kong, L.M.; Wang, L.; Shi, X.Y.; Yuan, H.; Li, W.Q.; Wang, S.; Zhang, Z.J.; Zhu, W.Q.; Yang, X.Y. A Multifunctional Ionic Liquid Additive Enabling Stable and Efficient Perovskite Light-Emitting Diodes. Small 2022, 18, 2200498–2200506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fei, Z.; Gao, P.; Lee, Y.; Tirani, F.F.; Scopelliti, R.; Feng, Y.; Dyson, P.J.; Nazeeruddin, M.K. A Strategy to Produce High Efficiency, High Stability Perovskite Solar Cells Using Functionalized Ionic Liquid-Dopants. Adv. Mater. 2017, 29, 1702157–1702175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yu, W.; Guo, J.; Xu, C.; Ren, Z.; Liu, K.; Yang, G.; Qin, M.; Huang, J.; Chen, Z.; et al. Excess PbI2 Management via Multimode Supramolecular Complex Engineering Enables High-Performance Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2201663. [Google Scholar] [CrossRef]
- Chi, S.H.; Yang, S.; Wang, Y.J.; Li, D.; Zhang, L.; Fan, L.; Wang, F.Y.; Liu, X.Y.; Liu, H.L.; Wei, M.B.; et al. Break through the Steric Hindrance of Ionic Liquids with Carbon Quantum Dots to Achieve Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 48304–48315. [Google Scholar] [CrossRef] [PubMed]
- Balischewski, C.; Choi, H.S.; Behrens, K.; Beqiraj, A.; Korzdorfer, T.; Gessner, A.; Wedel, A.; Taubert, A. Metal Sulfide Nanoparticle Synthesis with Ionic Liquids—State of the Art and Future Perspectives. ChemistryOpen 2021, 10, 272–295. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, M.; Xu, W.; Angell, C.A. Ionic liquids by proton transfer: Vapor pressure, conductivity, and the relevance of Delta pK(a) from aqueous solutions. J. Am. Chem. Soc. 2003, 125, 15411–15419. [Google Scholar] [CrossRef] [PubMed]
- Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagacé, M.; Vijh, A.; Zaghib, K. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. J. Power Sources 2010, 195, 845–852. [Google Scholar] [CrossRef]
- Lalia, B.S.; Yoshimoto, N.; Egashira, M.; Morita, M. A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries. J. Power Sources 2010, 195, 7426–7431. [Google Scholar] [CrossRef]
- Mynam, M.; Ravikumar, B.; Rai, B. Molecular dynamics study of propylene carbonate based concentrated electrolyte solutions for lithium ion batteries. J. Mol. Liq. 2019, 278, 97–104. [Google Scholar] [CrossRef]
- Maki, H.; Takemoto, M.; Sogawa, R.; Mizuhata, M. Solvent molecule mobilities in propylene carbonate-based electrolyte solutions coexisting with fumed oxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2019, 562, 270–279. [Google Scholar] [CrossRef]
- Kuhnel, R.S.; Bockenfeld, N.; Passerini, S.; Winter, M.; Balducci, A. Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochim. Acta 2011, 56, 4092–4099. [Google Scholar] [CrossRef]
- Han, T.H.; Lee, J.W.; Choi, C.; Tan, S.; Lee, C.; Zhao, Y.; Dai, Z.; De Marco, N.; Lee, S.J.; Bae, S.H.; et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 2019, 10, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Alsalloum, A.Y.; Turedi, B.; Zheng, X.; Mitra, S.; Zhumekenov, A.A.; Lee, K.J.; Maity, P.; Gereige, I.; AlSaggaf, A.; Roqan, I.S.; et al. Low-Temperature Crystallization Enables 21.9% Efficient Single-Crystal MAPbI3 Inverted Perovskite Solar Cells. ACS Energy Lett. 2020, 5, 657–662. [Google Scholar] [CrossRef]
- Yang, M.; Tian, T.; Feng, W.; Wang, L.; Wu, W.-Q. Custom Molecular Design of Ligands for Perovskite Photovoltaics. Acc. Mater. Res. 2021, 2, 1141–1155. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, H.; Huang, T.; Song, Y.; Wang, Y.; Wang, F.; Fan, L.; Liu, X.; Yang, L.; Liu, H. Ag-LSPR and Molecular Additive: A Collaborative Approach to Improve the Photovoltaic Performance of Perovskite Solar Cells. Chem. Eng. J. 2024, 481, 148572. [Google Scholar] [CrossRef]
- Ramming, P.; Leupold, N.; Schötz, K.; Köhler, A.; Moos, R.; Grüninger, H.; Panzer, F. Suppressed ion migration in powder-based perovskite thick films using an ionic liquid. J. Mater. Chem. C 2021, 9, 11827–11837. [Google Scholar] [CrossRef]
- Maibach, J.; Xu, C.; Eriksson, S.K.; Ahlund, J.; Gustafsson, T.; Siegbahn, H.; Rensmo, H.; Edstrom, K.; Hahlin, M. A high pressure X-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system. Rev. Sci. Instrum. 2015, 86, 044101. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Park, N.G. Future Research Directions in Perovskite Solar Cells: Exquisite Photon Management and Thermodynamic Phase Stability. Adv. Mater. 2023, 35, 2204807–2204818. [Google Scholar] [CrossRef]
- Li, Y.M.; Wu, H.X.; Qi, W.J.; Zhou, X.; Li, J.L.; Cheng, J.; Zhao, Y.; Li, Y.L.; Zhang, X.D. Passivation of defects in perovskite solar cell: From a chemistry point of view. Nano Energy 2020, 77, 105237. [Google Scholar] [CrossRef]
- Zhong, J.X.; Wu, W.Q.; Zhou, Y.; Dong, Q.; Wang, P.; Ma, H.; Wang, Z.; Yao, C.Y.; Chen, X.; Liu, G.; et al. Room Temperature Fabrication of SnO2 Electrodes Enabling Barrier-Free Electron Extraction for Efficient Flexible Perovskite Photovoltaics. Adv. Funct. Mater. 2022, 32, 2200817–2200825. [Google Scholar] [CrossRef]
- Chaban, V.V.; Voroshyloya, I.V.; Kalugin, O.N.; Prezhdo, O.V. Acetonitrile Boosts Conductivity of Imidazolium Ionic Liquids. J. Phys. Chem. B 2012, 116, 7719–7727. [Google Scholar] [CrossRef]
- Zhang, Q.-G.; Sun, S.-S.; Pitula, S.; Liu, Q.-S.; Welz-Biermann, U.; Zhang, J.-J. Electrical Conductivity of Solutions of Ionic Liquids with Methanol, Ethanol, Acetonitrile, and Propylene Carbonate. J. Chem. Eng. Data 2011, 56, 4659–4664. [Google Scholar] [CrossRef]
- Yu, L.; Clifford, J.; Pham, T.T.; Almaraz, E.; Perry, F., 3rd; Caputo, G.A.; Vaden, T.D. Conductivity, spectroscopic, and computational investigation of H3O+ solvation in ionic liquid BMIBF4. J. Phys. Chem. B 2013, 117, 7057–7064. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chao, L.; Niu, T.; Li, D.; Wei, Q.; Wu, H.; Qiu, J.; Lu, H.; Ran, C.; Zhong, Q.; et al. Efficient and Stable Perovskite Solar Cells by Fluorinated Ionic Liquid–Induced Component Interaction. Sol. RRL 2020, 5, 2000582–2000603. [Google Scholar] [CrossRef]
- Lin, Z.; Su, Y.; Dai, R.; Liu, G.; Yang, J.; Sheng, W.; Zhong, Y.; Tan, L.; Chen, Y. Ionic Liquid-Induced Ostwald Ripening Effect for Efficient and Stable Tin-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 15420–15428. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhong, Y.; Feng, W.; Yang, M.; Yang, G.; Zhong, J.X.; Tian, T.; Luo, J.B.; Tao, J.; Yang, S.; et al. Multidentate Chelation Heals Structural Imperfections for Minimized Recombination Loss in Lead-Free Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202209464–e202209474. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hu, L.; Zhang, C.; Wu, Y.; Liu, Y.; Sun, Q.; Cui, Y.; Hao, Y.; Wu, Y. In situ growth of a 2D/3D mixed perovskite interface layer by seed-mediated and solvent-assisted Ostwald ripening for stable and efficient photovoltaics. J. Mater. Chem. C 2020, 8, 2425–2435. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, X.; Zhang, H.; Zhang, J.; Li, S.; Wang, R.; Pan, B.; Xie, Y. Intralayered Ostwald Ripening to Ultrathin Nanomesh Catalyst with Robust Oxygen-Evolving Performance. Adv. Mater. 2017, 29, 1604765–1604774. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, R.; Liu, J.X.; Li, W.X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 2013, 135, 1760–1771. [Google Scholar] [CrossRef]
- Fajardy, M.; Chiquier, S.; Mac Dowell, N. Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 2018, 11, 3408–3430. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Zhang, Y.; Liu, X.; Han, J.; Li, X.; Liu, Z.; Liu, S.; Choy, W.C.H. Water-Soluble Triazolium Ionic-Liquid-Induced Surface Self-Assembly to Enhance the Stability and Efficiency of Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1900417–1900427. [Google Scholar] [CrossRef]
- Xiong, S.; Hou, Z.; Zou, S.; Lu, X.; Yang, J.; Hao, T.; Zhou, Z.; Xu, J.; Zeng, Y.; Xiao, W.; et al. Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency. Joule 2021, 5, 467–480. [Google Scholar] [CrossRef]
- Ma, J.; Qin, M.; Li, Y.; Wu, X.; Qin, Z.; Wu, Y.; Fang, G.; Lu, X. Unraveling the Impact of Halide Mixing on Crystallization and Phase Evolution in CsPbX3 Perovskite Solar Cells. Matter 2021, 4, 313–327. [Google Scholar] [CrossRef]
- Zhou, Z.; Lian, H.J.; Xie, J.; Qiao, W.C.; Wu, X.F.; Shi, Y.; Wang, X.L.; Dai, S.; Yuan, H.; Hou, Y.; et al. Non-selective adsorption of organic cations enables conformal surface capping of perovskite grains for stabilized photovoltaic operation. Cell Rep. Phys. Sci. 2022, 3, 100760–100774. [Google Scholar] [CrossRef]
- Zhu, H.; Ren, Y.; Pan, L.; Ouellette, O.; Eickemeyer, F.T.; Wu, Y.; Li, X.; Wang, S.; Liu, H.; Dong, X.; et al. Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24. J. Am. Chem. Soc. 2021, 143, 3231–3237. [Google Scholar] [CrossRef] [PubMed]
- Kahn, A. Fermi level, work function and vacuum level. Mater. Horiz. 2016, 3, 7–10. [Google Scholar] [CrossRef]
- Canil, L.; Cramer, T.; Fraboni, B.; Ricciarelli, D.; Meggiolaro, D.; Singh, A.; Liu, M.; Rusu, M.; Wolff, C.M.; Phung, N.; et al. Tuning halide perovskite energy levels. Energy Environ. Sci. 2021, 14, 1429–1438. [Google Scholar] [CrossRef]
- Suo, J.; Yang, B.; Mosconi, E.; Choi, H.S.; Kim, Y.; Zakeeruddin, S.M.; De Angelis, F.; Grätzel, M.; Kim, H.S.; Hagfeldt, A. Surface Reconstruction Engineering with Synergistic Effect of Mixed-Salt Passivation Treatment toward Efficient and Stable Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2102902–21029010. [Google Scholar] [CrossRef]
- Duan, C.; Cao, J.; Liang, Z.; Ming, Y.; Li, J.; Zhao, L.; Dong, B.; Li, J.; Wu, C.; Wang, S. Ionic Liquid Additive-Assisted Highly Efficient Electron Transport Layer-Free Perovskite Solar Cells. Sol. RRL 2021, 5, 2100648–2100655. [Google Scholar] [CrossRef]
- Lee, S.J.; Cheng, H.C.; Wang, Y.; Zhou, B.; Li, D.; Wang, G.; Liu, Y.; Guo, J.; Kang, D.J.; Huang, Y.; et al. Lead halide perovskite sensitized WSe2 photodiodes with ultrahigh open circuit voltages. eLight 2023, 3, 8. [Google Scholar] [CrossRef]
- Li, D.; Pan, A. Perovskite sensitized 2D photodiodes. Light Sci. Appl. 2023, 12, 139. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, W.; Zhu, F.; Liu, X.; Jin, C.; Guo, C.; An, Y.; Kivshar, Y.; Qiu, C.-W.; Li, W. Dispersion-assisted high-dimensional photodetector. Nature 2024, 630, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wu, Y.K.; Duan, R.; Wang, J.; Chen, W.; Qin, J.; Liu, Z.; Guo, G.-C.; Ren, X.-F.; Qiu, C.-W. Polarization-entangled photon-pair source with van der Waals 3R-WS2 crystal. eLight 2024, 4, 16. [Google Scholar] [CrossRef]
Perovskite | Scan Direction | VOC (V) | JSC (mA cm−2) | FF (%) | PCE (%) | HI |
---|---|---|---|---|---|---|
MAPbI3 | Forward | 1.09 | 21.48 | 70.03 | 16.42 | 0.09 |
Backward | 1.12 | 22.42 | 71.74 | 17.98 | ||
MAPbI3-IL | Forward | 1.11 | 21.98 | 73.22 | 17.80 | 0.05 |
Backward | 1.14 | 22.14 | 74.15 | 18.80 | ||
MAPbI3-PC/IL | Forward | 1.15 | 23.42 | 74.65 | 20.11 | 0.04 |
Backward | 1.16 | 23.90 | 75.21 | 20.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Chi, S.; Qi, Y.; Li, K.; Zhang, X.; Gao, X.; Yang, L.; Yang, J. Diluting Ionic Liquids with Small Functional Molecules of Polypropylene Carbonate to Boost the Photovoltaic Performance of Perovskite Solar Cells. Molecules 2024, 29, 6045. https://doi.org/10.3390/molecules29246045
Yang S, Chi S, Qi Y, Li K, Zhang X, Gao X, Yang L, Yang J. Diluting Ionic Liquids with Small Functional Molecules of Polypropylene Carbonate to Boost the Photovoltaic Performance of Perovskite Solar Cells. Molecules. 2024; 29(24):6045. https://doi.org/10.3390/molecules29246045
Chicago/Turabian StyleYang, Shuo, Shaohua Chi, Youshuai Qi, Kaiyue Li, Xiang Zhang, Xinru Gao, Lili Yang, and Jinghai Yang. 2024. "Diluting Ionic Liquids with Small Functional Molecules of Polypropylene Carbonate to Boost the Photovoltaic Performance of Perovskite Solar Cells" Molecules 29, no. 24: 6045. https://doi.org/10.3390/molecules29246045
APA StyleYang, S., Chi, S., Qi, Y., Li, K., Zhang, X., Gao, X., Yang, L., & Yang, J. (2024). Diluting Ionic Liquids with Small Functional Molecules of Polypropylene Carbonate to Boost the Photovoltaic Performance of Perovskite Solar Cells. Molecules, 29(24), 6045. https://doi.org/10.3390/molecules29246045