Study on pH-Responsive Delayed, Cross-Linking and Weighted Fracturing Fluid
"> Figure 1
<p>Laboratory temperature and shear resistance of the QCL cross-linking and weighted fracturing fluid system (pH = 6–7).</p> "> Figure 2
<p>Laboratory gel breaking and dissolution test of the QCL cross-linking and weighted fracturing fluid system: (<b>a</b>) the residue content changes with the gel-breaking time; (<b>b</b>) gel-breaking situation of the QCL fluid system; (<b>c</b>) the dissolution situation of the QCL fluid system.</p> "> Figure 3
<p>Cross-linking situations of the QCL fracturing fluid system under different pH conditions: (<b>a</b>) hanging time and viscosity of the QCL fluid under different pH conditions; (<b>b</b>) hanging state of the QCL fluid.</p> "> Figure 4
<p>The temperature and shear resistance situations of the QCL fracturing fluid system under different pH conditions: (<b>a</b>) pH = 3; (<b>b</b>) pH = 9; (<b>c</b>) pH = 12.</p> "> Figure 5
<p>Temperature and shear resistance situations of NaOH-adjusted QCL fracturing fluid system.</p> "> Figure 6
<p>Temperature and shear resistance situations of NaHCO<sub>3</sub>-adjusted QCL fracturing fluid system.</p> "> Figure 7
<p>The gel breaking of the QCL fracturing fluid system under different alkali types (from left to right: NaHCO<sub>3</sub>, NaOH, and Na<sub>2</sub>CO<sub>3</sub>).</p> "> Figure 8
<p>Viscosity changes of the QCL fracturing fluid system with only pH adjustment cross-linking.</p> "> Figure 9
<p>Temperature and shear resistance situations of the QCL fracturing fluid system with only pH adjustment cross-linking.</p> "> Figure 10
<p>Viscoelastic modulus curves of cross-linking fracturing fluid under different conditions: (<b>a</b>) Only pH—low viscosity stage; (<b>b</b>) Only cross-linked agent—low viscosity stage; (<b>c</b>) pH + cross-linking agent—high viscosity stage.</p> "> Figure 11
<p>Temperature and shear resistance situations of the QCL fracturing fluid system under different conditions (from left to right: only pH, only cross-linking agent, pH + cross-linking agent).</p> "> Figure 12
<p>The friction reduction rate curves of cross-linking fracturing fluid under different conditions.</p> "> Figure 13
<p>SEM structure of the QCL polymer fracturing fluid under different conditions: (<b>a</b>) only pH- acid conditions (400 μm accuracy); (<b>b</b>) only cross-linking agent (100 μm accuracy); (<b>c</b>) only pH- alkali conditions (100 μm accuracy); (<b>d</b>) pH + cross-linking agent (100 μm accuracy).</p> "> Figure 14
<p>Infrared spectra of the QCL fracturing fluid system under different pH conditions.</p> "> Figure 15
<p>Acid-promoted organic zirconium cross-linking agent releases zirconium ions.</p> "> Figure 16
<p>Charge and hydrolysis changes of the QCL polymer in the process of gradually adding sodium carbonate.</p> "> Figure 17
<p>Field fracturing operation curve of Man X well.</p> "> Figure 18
<p>Field fracturing curves of Man X well after adjusting pump sequence.</p> "> Figure 19
<p>Production situations after fracturing in Man X well.</p> ">
Abstract
:1. Introduction
2. Problems with the Used Fluid System in the Field
2.1. Rheological Test
2.2. Gel-Breaking Test
3. Formula Adjustment and Optimization
3.1. Study on Cross-Linking and Rheology of Fluids at Different pH
3.2. Optimization of Alkali Types
3.3. Optimization of Fluid’s Gel-Breaking Performance
4. Comprehensive Performance Evaluation of Fluids
4.1. Viscosity/Viscoelasticity Test
4.2. Sand-Carrying Test
4.3. Friction Reduction Test
5. pH-Responsive Mechanism Study
5.1. Scanning Electron Microscopy (SEM) Test
5.2. Infrared Spectroscopy (IR) Test
5.3. Molecular Structure Changes and Mechanism of Action
6. Field Application
6.1. Field Operation Status of the QCL Fluids Before Adjustment
6.2. Field Operation and Production Status of the QCL Fluids After Adjustment
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, C.; Zhang, J.; Sun, Y.; Pang, S.; Zhang, Y. Enhancing fluid classification using meta-learning and transformer through small-sample drilling data to interpret well logging data. Phys. Fluids 2024, 36, 076608. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, M.; Zhang, S. Types, structural evolution difference and petroleum geological significance of Cambrian-Ordovician carbonate platforms in Gucheng-Xiaotang area, Tarim Basin, NW China. Pet. Explor. Dev. 2022, 49, 1019–1032. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Zhang, J.; Wang, K.; Zhang, R.; Wang, Q. Subsurface fracture characterization in a folded ultra-deep tight-gas sandstone reservoir: A case study from the Keshen gas field, Tarim Basin, China. J. Struct. Geol. 2023, 172, 104867. [Google Scholar] [CrossRef]
- Zhang, R.H.; Wang, K.; Zeng, Q.L.; Yu, C.F.; Wang, J.P. Effectiveness and petroleum geological significance of tectonic fractures in the ultra-deep zone of the Kuqa foreland thrust belt: A case study of the Cretaceous Bashijiqike Formation in the Keshen gas field. Pet. Sci. 2021, 18, 728–741. [Google Scholar] [CrossRef]
- Shi, H.; Luo, X.; Yang, H.; Lei, G.; Tang, Y.; Zhang, L. Sources of quartz grains influencing quartz cementation and reservoir quality in ultra-deeply buried sandstones in Keshen-2 gas field, north-west China. Mar. Pet. Geol. 2018, 98, 185–198. [Google Scholar] [CrossRef]
- Lei, Q.; Xu, Y.; Yang, Z.; Cai, B.; Wang, X.; Zhou, L. Progress and development directions of stimulation techniques for ultra-deep oil and gas reservoirs. Pet. Explor. Dev. 2021, 48, 221–231. [Google Scholar] [CrossRef]
- Yang, X.; Chen, A.; Mao, J.; Zhang, C.; Wang, J.; Fu, M. Synthetic polymer fracturing fluid weighted by sodium formate enables fracture stimulations in Ultra-High pressure and High-Temperature reservoir. Fuel 2023, 353, 129170. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, F.; Deng, Y.; Wang, K.; von Gunten, K.; He, Y. Organic Weighting Hydraulic Fracturing Fluid: Complex Interactions between Formate Salts, Hydroxy Carboxylate Acid, and Guar. SPE J. 2022, 27, 2334–2351. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Xu, N.; Gong, J.; Liang, S. Synthesis and Crosslinking Mechanism of Colloidal Graphene Oxide Crosslinker for Crosslinking Low-Concentration Hydroxypropyl Guar Gum Fracturing Fluids. Energy Fuels 2022, 36, 14760–14770. [Google Scholar] [CrossRef]
- Chieng, Z.H.; Mohyaldinn, M.E.; Hassan, A.M.; Bruining, H. Experimental Investigation and Performance Evaluation of Modified Viscoelastic Surfactant (VES) as a New Thickening Fracturing Fluid. Polymers 2020, 12, 1470. [Google Scholar] [CrossRef]
- Fan, H.; Gong, Z.; Wei, Z.; Chen, H.; Fan, H.; Geng, J. Understanding the temperature–resistance performance of a borate cross-linked hydroxypropyl guar gum fracturing fluid based on a facile evaluation method. RSC Adv. 2017, 7, 53290–53300. [Google Scholar] [CrossRef]
- Zhang, T.; Chang, X.; Wen, X.; Li, Z.; Yang, Q.; Li, Z. Development and performance evaluation of a novel SiO2-enhanced seawater-based temperature-resistant clean fracturing fluid. Colloids Surf. A 2024, 693, 133963. [Google Scholar] [CrossRef]
- Wang, G.; Huang, T.; Yan, S.; Liu, X. Experimental study of the fracturing-wetting effect of VES fracturing fluid for the coal seam water injection. J. Mol. Liq. 2022, 295, 111715. [Google Scholar] [CrossRef]
- Mao, J.; Mao, J.; Liu, B.; Xiao, Y.; Yang, X.; Lin, C. Study of crosslinker size on the rheological properties of borate crosslinked guar gum. Int. J. Biol. Macromol. 2023, 231, 123284. [Google Scholar] [CrossRef]
- Othman, A.; Kamal, M.S.; Aljawad, M.S.; Mahmoud, M.; Sultan, A.; Kalgaonkar, R. Study of Cross-Linked Gel and Chelating Agent Compatibility in High Salinity Environments. Energy Fuels 2023, 38, 608–616. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, J.; Zhang, Y.; Han, T.; Yang, B.; Xiao, W. Improved fracturing fluid using: Organic amino boron composite crosslinker with B-N covalent bond. J. Appl. Polym. Sci. 2019, 136, 47675. [Google Scholar] [CrossRef]
- Qiu, L.; Shen, Y.; Wang, C.; Yang, X. Scanning electron microscopy analysis of guar gum in the dissolution, gelation and gel-breaking process. Polym. Test. 2018, 68, 95–99. [Google Scholar] [CrossRef]
- Kang, W.; Bao, Y.; Wang, H.; Cao, N.; Cui, S. Force-Induced Enhancement of Hydrophilicity of Individual Polymethyl Methacrylate Chain. Chin. J. Chem. 2023, 41, 2289–2295. [Google Scholar] [CrossRef]
- Wang, L.; Xu, G.L.X.; Tang, M.; Liang, Y. Preparation and properties of quaternary phosphonium salt containing poly-acrylate emulsion. Prog. Org. Coat. 2023, 175, 107337. [Google Scholar]
- Mao, H.; Liu, J.; Zhang, W.; Qiu, W.; Zhang, Q.; Wang, J. Self-Soluble Hydrophobically Associating Polyacrylamide Inverse Emulsions with Extraordinary Thickening Properties. ACS Appl. Polym. Mater. 2024, 6, 3748–3755. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, E.; Chen, Q.; Zhao, L.; Wang, Y.; Deng, J. Influence of Alkyl Chain Length on the Performance of Inverse Emulsion Polyacrylamide Fracturing Fluid Thickeners. Ind. Eng. Chem. Res. 2024, 63, 5513–5526. [Google Scholar] [CrossRef]
- Xin, H.; Fang, B.; Yu, L.; Lu, Y.; Xu, K.; Li, K. Rheological Performance of High-Temperature-Resistant, Salt-Resistant Fracturing Fluid Gel Based on Organic-Zirconium-Crosslinked HPAM. Gels 2023, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, J.; Zuo, Z.; Liao, M.; Peng, P.A. Preparation and property evaluation of a temperature-resistant Zr-crosslinked fracturing fluid. J. Ind. Eng. Chem. 2021, 96, 121–129. [Google Scholar] [CrossRef]
- Shi, S.; Sun, J.; Mu, S.; Lv, K.; Liu, J.; Bai, Y. Effect of Chemical Composition of Metal-Organic Crosslinker on the Properties of Fracturing Fluid in High-Temperature Reservoir. Molecules 2024, 29, 2798. [Google Scholar] [CrossRef] [PubMed]
- Santo, K.P.; Vishnyakov, A.; Kumar, R.; Neimark, A.V. Elucidating the Effects of Metal Complexation on Morphological and Rheological Properties of Polymer Solutions by a Dissipative Particle Dynamics Model. Macromolecules 2018, 51, 4987–5000. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Wang, Z.; Wang, H.; Liang, S.; Xu, N. Mechanism analysis of enhancing the temperature and shear resistance of hydroxypropyl guar gum fracturing fluid by boron-functionalized nanosilica colloidal crosslinker. Colloids Surf. A 2023, 676, 132154. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Xu, N.; Lan, J.; Jiang, B.; Meng, L. Synthesis and properties of organoboron functionalized nanocellulose for crosslinking low polymer fracturing fluid system. RSC Adv. 2021, 11, 13466–13474. [Google Scholar] [CrossRef]
- Sokhanvarian, K.; Nasr-El-Din, H.A.; Harper, T.L. Effect of Ligand Type Attached to Zirconium-Based Crosslinkers and the Effect of a New Dual Crosslinker on the Properties of Crosslinked Carboxymethylhydroxypropylguar. SPE J. 2022, 24, 1741–1756. [Google Scholar] [CrossRef]
- Huang, Y.P.; Hu, Y.; Liu, C.L.; Wu, Y.N.; Zou, C.W.; Zhang, L.Y. Supramolecular polymer-based gel fracturing fluid with a double network applied in ultra-deep hydraulic fracturing. Pet. Sci. 2024, 21, 1875–1888. [Google Scholar] [CrossRef]
- Liang, Z.; Li, Y.; He, L.; Gao, Z.; Tang, Z.; Xu, Y. A Delayed Cross-Linking Strategy for Evolvable Hydrogels. Adv. Funct. Mater. 2023, 33, 2302285. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, X.; Huang, Y.; Zhao, M.; Zhang, L.; Dai, C. Ultra-deep reservoirs gel fracturing fluid with stepwise reinforcement network from supramolecular force to chemical crosslinking. Energy 2024, 293, 130632. [Google Scholar] [CrossRef]
- Zuo, C.; Wu, Y.; Du, K.; Zhu, L.; Gou, Z.; Xia, Y. Preparation and laboratory study of a sodium carboxymethyl cellulose smart temperature-controlled crosslinked gel fracturing fluid system. J. Appl. Polym. Sci. 2023, 140, 54380. [Google Scholar] [CrossRef]
- Jian, C.; Yu, Y.; Yu, D. Synthesis and evaluation of salt tolerant delayed-crosslinking fracturing fluid system in ultra-deep high temperature wells. Colloid Polym. Sci. 2024, 302, 1591–1601. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, F.; Wu, H.; Yang, S.; Li, Y.; Wang, Y. Experimental Research on the Proppant Settling and Transport Characteristics of Silica Gel-Based Fracturing Fluid. SPE J. 2024, 29, 1321–362024. [Google Scholar] [CrossRef]
- Manz, K.E.; Adams, T.J.; Carter, K.E. Furfural degradation through heat-activated persulfate: Impacts of simulated brine and elevated pressures. Chem. Eng. J. 2018, 353, 727–735. [Google Scholar] [CrossRef]
- Zhang, G.; Li, M.; Guo, T.; Li, Y.; Chen, Z. Characterization of proppant effective settlement diameter falling in non-Newtonian fracturing fluids. Adv. Powder Technol. 2016, 27, 486–495. [Google Scholar] [CrossRef]
- Habibpour, M.; Clark, P.E. Drag reduction behavior of hydrolyzed polyacrylamide/xanthan gum mixed polymer solutions. Pet. Sci. 2017, 14, 412–423. [Google Scholar] [CrossRef]
- Wilborn, E.G.; Gregory, C.M.; Machado, C.A.; Page, T.M.; Ramos, W.; Hunter, M.A. Unraveling Polymer Structures with RAFT Polymerization and Diels-Alder Chemistry. Macromolecules 2019, 52, 1308–1316. [Google Scholar] [CrossRef]
- Bai, H.; Zhou, F.; Zhang, M.; Gao, X.; Xu, H.; Yao, E. Optimization and friction reduction study of a new type of viscoelastic slickwater system. J. Mol. Liq. 2021, 344, 117876. [Google Scholar] [CrossRef]
- Almubarak, T.; Ng, J.H.C.; Nasr-El-Din, H.A.; Almubarak, M.; AlKhaldi, M. Influence of zirconium crosslinker chemical structure and polymer choice on the performance of crosslinked fracturing fluids. Can. J. Chem. Eng. 2022, 100, 1141–1157. [Google Scholar] [CrossRef]
- Legemah, M.; Guerin, M.; Sun, H.; Qu, Q. Novel High-Efficiency Boron Crosslinkers for Low-Polymer-Loading Fracturing Fluids. SPE J. 2014, 19, 737–743. [Google Scholar] [CrossRef]
- Okada, S.; Takayasu, S.; Tomita, S.; Suzuki, Y.; Yamamoto, S. Development of Neutral pH-Responsive Microgels by Tuning Cross-Linking Conditions. Sensors 2020, 20, 3367. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Xiang, K.; Zhao, L.; Lan, X.; Liu, P.; Liu, Y. Synthesis and characterization of a novel, pH-responsive, bola-based dynamic crosslinked fracturing fluid. RSC Adv. 2019, 9, 34389–34400. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Sun, R.; Lu, W.; Patil, S.; Mays, J.; Schweizer, K.S. Nature of Steady-State Fast Flow in Entangled Polymer Melts: Chain Stretching, Shear Thinning, and Viscosity Scaling. Macromolecules 2022, 55, 10737–10750. [Google Scholar] [CrossRef]
Number | pH | Average Viscosity Changes, mPa.s | Breaking Time After Cross-Linking, h | ||||
---|---|---|---|---|---|---|---|
Low Viscosity Stage | High Viscosity Stage | ||||||
Part 1 | Part 2 | Part 3 | |||||
1 | 3 | 51.31 | 221.43 | 175.37 | 126.34 | 2 | |
2 | 6~7 | 60.10 | 150.32 | 202.53 | 177.22 | 10 | |
3 | 9 | Na2CO3 | 48.83 | 80.64 | 150.78 | 152.93 | 3 |
4 | NaOH | 45.34 | 234.98 | 325.87 | 192.57 | >24 | |
5 | NaHCO3 | 61.18 | 133.17 | 206.81 | 208.74 | >24 | |
6 | 12 | 50.12 | 165.23 | 125.12 | 129.76 | >24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, H.; Zhou, F.; Liu, X.; Xin, X.; Zhao, H.; Ding, Z.; Wang, Y.; Wang, X.; Li, X.; Li, W.; et al. Study on pH-Responsive Delayed, Cross-Linking and Weighted Fracturing Fluid. Molecules 2024, 29, 5847. https://doi.org/10.3390/molecules29245847
Bai H, Zhou F, Liu X, Xin X, Zhao H, Ding Z, Wang Y, Wang X, Li X, Li W, et al. Study on pH-Responsive Delayed, Cross-Linking and Weighted Fracturing Fluid. Molecules. 2024; 29(24):5847. https://doi.org/10.3390/molecules29245847
Chicago/Turabian StyleBai, Hao, Fujian Zhou, Xinlei Liu, Xiaozhi Xin, Huimin Zhao, Zhiyuan Ding, Yunjin Wang, Xin Wang, Xingting Li, Wei Li, and et al. 2024. "Study on pH-Responsive Delayed, Cross-Linking and Weighted Fracturing Fluid" Molecules 29, no. 24: 5847. https://doi.org/10.3390/molecules29245847
APA StyleBai, H., Zhou, F., Liu, X., Xin, X., Zhao, H., Ding, Z., Wang, Y., Wang, X., Li, X., Li, W., & Yao, E. (2024). Study on pH-Responsive Delayed, Cross-Linking and Weighted Fracturing Fluid. Molecules, 29(24), 5847. https://doi.org/10.3390/molecules29245847