Synthesis of Enantiostructured Triacylglycerols Possessing a Saturated Fatty Acid, a Polyunsaturated Fatty Acid and an Active Drug Intended as Novel Prodrugs
"> Figure 1
<p>The structure of TAG prodrugs <b>1</b> and <b>2</b> belong to the first category prodrugs, and TAG products <b>3</b> and <b>4</b> belong to the second category prodrugs.</p> "> Figure 2
<p>Chemoenzymatic synthesis of the first category TAG prodrug diastereomer series (<span class="html-italic">S</span>,<span class="html-italic">S′</span>)-<b>10a</b>–<b>f</b>–<b>13a</b>–<b>f</b>, starting from 1-<span class="html-italic">O</span>-benzyl-<span class="html-italic">sn</span>-glycerol. In the scheme, SFA-CO-, PUFA-CO- and Drug-CO- refer to the corresponding saturated fatty acyl, polyunsaturated fatty acyl and drug acyl group substituents, respectively. In box: (<span class="html-italic">S′</span>)-ibuprofen and (<span class="html-italic">S′</span>)-naproxen attached as esters to acylglycerols (AG).</p> "> Figure 3
<p>Chemoenzymatic synthesis of the first category TAG prodrug diastereomer series (<span class="html-italic">R</span>,<span class="html-italic">S′</span>)-<b>10a</b>–<b>f</b>–<b>13a</b>–<b>f</b>, starting from 3-<span class="html-italic">O</span>-benzyl-<span class="html-italic">sn</span>-glycerol. In the scheme, SFA-CO-, PUFA-CO- and Drug-CO- refer to the corresponding saturated fatty acyl, polyunsaturated fatty acyl and drug acyl group substituents, respectively. In box: (<span class="html-italic">S′</span>)-ibuprofen and (<span class="html-italic">S′</span>)-naproxen attached as esters to acylglycerols (AG).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Strategies
2.2. The Enzymatic Coupling of the SFAs
2.3. The Coupling of the Active Drugs
2.4. The Removal of the Benzyl Protective Group
2.5. The Coupling of the PUFA
3. Materials and Methods
3.1. General Information
3.2. The Enzymatic Coupling of the SFAs: Synthesis of (R)-5a and (S)-5a
3.2.1. Synthesis of 1-O-Benzyl-3-hexanoyl-sn-glycerol, (R)-5a
3.2.2. Synthesis of 3-O-Benzyl-1-hexanoyl-sn-glycerol, (S)-5a
3.3. The Coupling of the Active Drugs: Synthesis of (R,S′)-6a, (S,S′)-6a, (R,S′)-7a and (S,S′)-7a
3.3.1. Synthesis of 1-O-Benzyl-3-hexanoyl-2-[(S)-2-(4-isobutylphenyl)propanoyl]-sn-glycerol, (R,S′)-6a
3.3.2. Synthesis of 3-O-Benzyl-1-hexanoyl-2-[(S)-2-(4-isobutylphenyl)propanoyl]-sn-glycerol, (S,S′)-6a
3.3.3. Synthesis of 1-O-Benzyl-3-hexanoyl-2-[(S)-2-(6-methoxynaphthalen-2-yl)propanoyl]-sn-glycerol, (R,S′)-7a
3.3.4. Synthesis of 3-O-Benzyl-1-hexanoyl-2-[(S)-2-(6-methoxynaphthalen-2-yl)propanoyl]-sn-glycerol, (S,S′)-7a
3.4. The Removal of the Benzyl Protective Group: Synthesis of (R,S′)-8a, (S,S′)-8a, (R,S′)-9a and (S,S′)-9a
3.4.1. Synthesis of 3-Hexanoyl-2-[(S)-2-(4-isobutylphenyl)propanoyl]-sn-glycerol, (R,S′)-8a
3.4.2. Synthesis of 1-Hexanoyl-2-[(S)-2-(4-isobutylphenyl)propanoyl]-sn-glycerol, (S,S′)-8a
3.4.3. Synthesis of 3-Hexanoyl-2-[(S)-2-(6-methoxynaphthalen-2-yl)propanoyl]-sn-glycerol, (R,S′)-9a
3.4.4. Synthesis of 1-Hexanoyl-2-[(S)-2-(6-methoxynaphthalen-2-yl)propanoyl]-sn-glycerol, (S,S′)-9a
3.5. Coupling of EPA: Synthesis of (S,S′)-10a, (R,S′)-10a, (S,S′)-11a and (R,S′)-11a
3.5.1. Synthesis of 1-[5Z,8Z,11Z,14Z,17Z)-Eicosa-5,8,11,14,17-pentaenoyl]-3-hexanoyl-2-[(S)-2-(4-isobutylphenyl)propanoyl]-sn-glycerol, (S,S′)-10a
3.5.2. Synthesis of 3-[5Z,8Z,11Z,14Z,17Z)-Eicosa-5,8,11,14,17-pentaenoyl]-1-hexanoyl-2-[(S)-2-(4-isobutylphenyl)propanoyl]-sn-glycerol, (R,S′)-10a
3.5.3. Synthesis of 1-[5Z,8Z,11Z,14Z,17Z)-Eicosa-5,8,11,14,17-pentaenoyl]-3-hexanoyl-2[(S)-2-(6-methoxynaphthalen-2-yl)propanoyl]-sn-glycerol, (S,S′)-11a
3.5.4. Synthesis of 3-[5Z,8Z,11Z,14Z,17Z)-Eicosa-5,8,11,14,17-pentaenoyl]-1-hexanoyl-2[(S)-2-(6-methoxynaphthalen-2-yl)propanoyl]-sn-glycerol, (R,S′)-11a
3.6. Coupling of DHA: Synthesis of (S,S′)-12a, (R,S′)-12a, (S,S′)-13a and (R,S′)-13a
3.6.1. Synthesis of 1-[4Z,7Z,10Z,13Z,16Z,19Z)-Docosa-4,7,10,13,16,19-hexaenoyl]-3-hexanoyl-2-[(S)-2-(4-isobutylphenyl)propanoyl]-sn-glycerol, (S,S′)-12a
3.6.2. Synthesis of 3-[4Z,7Z,10Z,13Z,16Z,19Z)-Docosa-4,7,10,13,16,19-hexaenoyl]-1-hexanoyl-2-[(S)-2-(4-isobutylphenyl)propanoyl]-sn-glycerol, (R,S′)-12a
3.6.3. Synthesis of 1-[4Z,7Z,10Z,13Z,16Z,19Z)-Docosa-4,7,10,13,16,19-hexaenoyl]-3-hexanoyl-2-[(S)-2-(6-methoxynaphthalen-2-yl)propanoyl]-sn-glycerol, (S,S′)-13a
3.6.4. Synthesis of 3-[4Z,7Z,10Z,13Z,16Z,19Z)-Docosa-4,7,10,13,16,19-hexaenoyl]-1-hexanoyl-2-[(S)-2-(6-methoxynaphthalen-2-yl)propanoyl]-sn-glycerol, (R,S′)-13a
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lembke, P. Omega-3 Fatty Acids. A Scientific Approach to Healthy Aging and Optimized Nutrition; Academic Press: London, UK, 2024; p. 296. [Google Scholar]
- Jesionowska, M.; Ovadia, J.; Hockemeyr, K.; Clews, A.C.; Xu, Y. EPA and DHA microalgae: Health benefits, biosynthesis, and metabolic engineering advances. J. Am. Oil Chem. Soc. 2023, 100, 831–842. [Google Scholar] [CrossRef]
- Javanovic, S.; Dietrich, D.; Becker, J.; Kohlstedt, M.; Whittmann, C. Microbial production of polyunsaturated fatty acids—High-value ingredients for aquafeed, superfoods, and pharmaceuticals. Curr. Opin. Biotechnol. 2021, 69, 199–211. [Google Scholar] [CrossRef]
- Dawczynski, C.; Dittrich, M.; Neumann, T.; Goetze, K.; Welzel, A.; Oelzner, P.; Völker, S.; Schaible, A.M.; Troisi, F.; Thomas, L.; et al. Docosahexaenoic acid in the treatment of rheumatoid arthritis: A double-blind, placebo-controlled, randomized cross-over study with microalgae vs. sunflower oil. Clin. Nutr. 2018, 37, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Innes, J.K.; Calder, P.C. Marine omega-3 (n-3) fatty acids for cardiovascular health: An update for 2020. Intern. J. Mol. Sci. 2020, 21, 1362. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Health benefits of omega-3 fatty acids. In Omega-3 Delivery Systems. Production, Physical Characterization and Oxidative Stability; Garcia-Moreno, P.J., Jacobsen, C., Moltke Sörensen, A.-D., Yesiltas, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 25–53. [Google Scholar]
- Calder, P.C. The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atheroschlerosis and plaque stability. Mol. Nutr. Food Res. 2012, 56, 1073–1080. [Google Scholar] [CrossRef]
- Serhan, C.N.; Petasis, N.A. Resolvins and protectins in inflammation resolution. Chem. Rev. 2012, 111, 5922–5943. [Google Scholar] [CrossRef]
- Serhan, C.N.; Yang, R.; Martinod, K.; Kasuga, K.; Pillai, P.S.; Porter, T.F.; Oh, S.F.; Spite, M. Maresins: Novel macrophage mediators with potent antiinflammatory and proreseolving actions. J. Exp. Med. 2009, 206, 15–23. [Google Scholar] [CrossRef]
- Serhan, C.N. Novel pro-resolving lipid mediators in inflammation are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef]
- Gunstone, F.D. Structured and Modified Lipids; Marcel Decker: New York, NY, USA, 2001; p. 547. [Google Scholar]
- Zhou, J.; Lee, Y.-Y.; Mao, Y.; Wang, Y.; Zhang, Z. Future of structured lipids: Enzymatic synthesis and their new applications in food systems. Foods 2022, 11, 2400. [Google Scholar] [CrossRef]
- Hong, C.R.; Jeon, B.J.; Park, K.-M.; Lee, E.H.; Hong, S.-C.; Choi, S.J. An overview of structured lpids in food science: Synthesis, methods, applications and future prospects. J. Chem. 2023, 2023, 1222373. [Google Scholar]
- Lopes, P.A.; Alfaia, C.M.; Pestana, J.M.; Prates, J.A.M. Structured lipids engineering for health: Novel formulations enriched in n-3 long-chain polyunsaturated fatty acids with potential nutritional benefits. Metabolites 2023, 13, 1060. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.S.; Hoy, C.E. Effects of dietary triacylglycerol structure on triacylglycerols of resultant chylomicrons from fish oil- and seal oil-fed rats. Lipids 1996, 31, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.; Yamane, T. Enzymatic synthesis of structured lipids. J. Mol. Catal. B Enzym. 2000, 10, 129–140. [Google Scholar] [CrossRef]
- Takano, S.; Kondoh, Y. Triglyceride analysis by combined argentation/nonaqueous reversed phase high performance liquid chromatography. J. Am. Oil Chem. Soc. 1987, 64, 380–383. [Google Scholar] [CrossRef]
- Innis, S.M. Dietary Triacylglycerol structure and its role in infant nutrition. Adv. Nutr. 2011, 2, 275–283. [Google Scholar] [CrossRef]
- Dubey, P.; Jayasooriya, A.P.; Cheema, S.K. Diets enriched in fish-oil or seal-oil have distinct effects on lipid levels and peroxidation in BioF1B hamsters. Nutr. Metab. Insights 2011, 4, 7–17. [Google Scholar] [CrossRef]
- Halldorsson, A.; Magnusson, C.D.; Haraldsson, G.G. Chemoenzymatic synthesis of structured triacylglycerols by highly regioselective acylation. Tetrahedron 2003, 59, 9101–9109. [Google Scholar] [CrossRef]
- Magnusson, C.D.; Haraldsson, G.G. Chemoenzymatic synthesis of symmetrically structured triacylglycerols possessing short-chain fatty acids. Tetrahedron 2010, 66, 2728–2731. [Google Scholar] [CrossRef]
- Gunstone, F.D. The Chemistry of Oils and Fats. Sources, Composition, Properties and Uses; Blackwell Publishing: Oxford, UK, 2004; pp. 50–75. [Google Scholar]
- IUPAC-IUB Commission on Biochemical Nomenclature. The nomenclature of lipids. Eur J. Biochem. 1977, 79, 11–21. [Google Scholar] [CrossRef]
- Kristinsson, B.; Linderborg, K.M.; Kallio, H.; Haraldsson, G.G. Synthesis of enantiopure structured triacylglycerols. Tetrahedron: Asymmetry 2014, 25, 125–132. [Google Scholar] [CrossRef]
- Gudmundsson, H.G.; Linderborg, K.M.; Kallio, H.; Yang, B.; Haraldsson, G.G. Synthesis of Enantiopure ABC-Type Triacylglycerols. Tetrahedron 2020, 76, 130813. [Google Scholar] [CrossRef]
- Kalpio, M.; Magnússon, J.D.; Gudmundsson, H.G.; Linderborg, K.M.; Kallio, H.; Haraldsson, G.G.; Yang, B. Synthesis and enantiospecific analysis of enantiostructured triacylglycerols containing n-3 polyunsaturated fatty acids. Chem. Phys. Lipids 2020, 231, 104937. [Google Scholar] [CrossRef]
- Haraldsdottir, H.; Gudmundsson, H.G.; Linderborg, K.M.; Yang, B.; Haraldsson, G.G. Chemoenzymatic synthesis of ABC-type enantiostructured triacylglycerols by the use of the p-methoxybenzyl protective group. Molecules 2024, 29, 1633. [Google Scholar] [CrossRef] [PubMed]
- Lísa, M.; Holčapek, M. Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols. Anal. Chem. 2013, 85, 1852–1859. [Google Scholar] [CrossRef]
- Christie, W.W. The positional distribution of fatty acids in triglycerides. In The Analysis of Oils and Fats; Hamilton, R.J., Rossell, J.B., Eds.; Elsevier Applied Science: London, UK, 1986; Chapter 7; pp. 313–339. [Google Scholar]
- Wu, K.W. A new classification of prodrugs: Regulatory perspectives. Pharmaceuticals 2009, 2, 77–81. [Google Scholar] [CrossRef]
- Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J. Prodrugs: Design and clinical applications. Nat. Reviews. Drug Discov. 2008, 7, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Rautio, J.; Meanwell, N.A.; Di, L.; Hageman, M.J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 2018, 17, 559–587. [Google Scholar] [CrossRef]
- Lambert, D.M. Rationale and application of lipids as prodrug carriers. Eur. J. Pharmaceut. Sci. 2000, 11, S15–S27. [Google Scholar] [CrossRef]
- Zaro, J.L. Lipid-based carriers for prodrugs to enhance delivery. AAPS J. 2015, 17, 83–92. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2012, 75, 645–662. [Google Scholar] [CrossRef]
- Zhu, Y.; Feng, Y.; Wang, J.; Yuan, Z.; Miao, Y.; Miao, T.; Gao, B.; Zhang, L. Selective esterification design of lipases for TAG synthesis based on the unique structure of curved DHA. ACS Food Sci. Technol. 2024, 4, 1722–1730. [Google Scholar] [CrossRef]
- Skulas-Ray, A.C.; Wilson, P.W.F.; Harris, W.S.; Brinton, E.A.; Kris-Etherton, P.M.; Richter, C.K.; Jacobson, T.A.; Engler, M.B.; Miller, M.; Robinson, J.G.; et al. Omega-3 fatty acids for the management of hypertriglyceridemia. A science advisory from the American Heart Association. Circulation 2019, 140, e673–e691. [Google Scholar] [CrossRef] [PubMed]
- Hoy, S.M.; Keating, G.M. Omega-3 ethylester concentrate: A review of its use in secondary prevention post-myocardial infarction and the treatment of hypertriglyceridaemia. Drugs 2009, 69, 1077–1105. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.A.; Glickstein, S.B.; Rowe, J.D.; Soni, P.N. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: A review. J. Clin. Lipidol. 2012, 6, 5–18. [Google Scholar] [CrossRef]
- Tatsuno, I.; Saito, Y.; Kudou, K.; Ootake, J. Efficacy and safety of TAK-085 compared with eicosapentaenoic acid in Japanese subjects with hypertriglyceridemia undergoing lifestyle modification: The omega-3 fatty acids randomized long-term (ORL) study. J. Clin. Lipidol. 2013, 7, 199–207. [Google Scholar] [CrossRef]
- Tatsuno, I.; Saito, Y.; Kudou, K.; Ootake, J. Long-term safety and efficacy of TAK-085 in Japanese subjects with hypertriglyceridemia undergoing lifestyle modification: The omega-3 fatty acids randomized double-blind (ORL) study. J. Clin. Lipidol. 2013, 7, 615–625. [Google Scholar] [CrossRef]
- Bays, H.E.; Braeckman, R.A.; Ballantyne, C.M.; Kastelein, J.J.; Otvos, J.D.; Stirtan, W.G.; Soni, P.N. Icosapent ethyl, a pure EPA omega-3 fatty acid: Effects on lipoprotein particle concentration and size in patients with very high triglyceride levels (the MARINE study). J. Clin. Lipidol. 2012, 6, 565–572. [Google Scholar] [CrossRef]
- Lau, W.M.; White, A.W.; Gallagher, S.J.; Donaldson, M.; McNaughton, G.; Heard, C.M. Scope and limitations of the co-drug approach to topical drug delivery. Curr. Pharm. Des. 2008, 14, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Dhanawat, M.; Dash, B.; Nagarwal, R.C.; Shrivastava, S.K. Codrug: An efficient approach for drug optimization. Eur. J. Pharmaceut. Sci. 2010, 41, 571–588. [Google Scholar] [CrossRef]
- Nudelman, A. Mutual prodrugs—Codrugs. Curr. Med. Chem. 2023, 30, 4283–4339. [Google Scholar] [CrossRef]
- Aljuffali, I.A.; Lin, C.-F.; Chen, C.-H.; Fang, J.-Y. The codrug approach for facilitating drug delivery and bioactivity. Expert. Opin. Drug Deliv. 2016, 13, 1311–1325. [Google Scholar] [CrossRef] [PubMed]
- Kodali, D.R.; Tercyak, A.; Fahey, D.A.; Small, D.M. Acyl migration in 1,2-dipalmitoyl-sn-glycerol. Chem. Phys. Lipids 1990, 52, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lipids, 3rd ed.; The Oily Press: Bridgwater, UK, 2003; Chapter 4; pp. 105–135. [Google Scholar]
- Haraldsson, G.G.; Halldorsson, A.; Kulas, E. Chemoenzymatic synthesis of structured triacylglycerols containing eicosapentaenoic and docosahexaenoic acids. J. Am. Oil Chem. Soc. 2000, 77, 1139–1145. [Google Scholar] [CrossRef]
(a) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(R)-5a | OBn | OH | 6:0 | 94% | −2.29 |
(R)-5b | OBn | OH | 8:0 | 94% | −2.22 |
(R)-5c | OBn | OH | 10:0 | 97% | −1.59 |
(R)-5d | OBn | OH | 12:0 | 97% | −1.91 |
(R)-5e | OBn | OH | 14:0 | 94% | −1.31 |
(R)-5f | OBn | OH | 16:0 | 94% | −2.37 |
(b) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(S)-5a | 6:0 | OH | OBn | 95% | +2.01 |
(S)-5b | 8:0 | OH | OBn | 95% | +2.10 |
(S)-5c | 10:0 | OH | OBn | 97% | +1.48 |
(S)-5d | 12:0 | OH | OBn | 96% | +1.31 |
(S)-5e | 14:0 | OH | OBn | 94% | +3.64 |
(S)-5f | 16:0 | OH | OBn | 87% | +1.11 |
(a) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(R,S′)-6a | OBn | Ibu | 6:0 | 80% | −0.77 |
(R,S′)-6b | OBn | Ibu | 8:0 | 91% | −0.99 |
(R,S′)-6c | OBn | Ibu | 10:0 | 98% | −0.58 |
(R,S′)-6d | OBn | Ibu | 12:0 | 91% | −0.86 |
(R,S′)-6e | OBn | Ibu | 14:0 | 94% | −0.93 |
(R,S′)-6f | OBn | Ibu | 16:0 | 98% | −0.57 |
(b) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(S,S′)-6a | 6:0 | Ibu | OBn | 93% | +22.2 |
(S,S′)-6b | 8:0 | Ibu | OBn | 95% | +21.0 |
(S,S′)-6c | 10:0 | Ibu | OBn | 81% | +22.0 |
(S,S′)-6d | 12:0 | Ibu | OBn | 84% | +19.3 |
(S,S′)-6e | 14:0 | Ibu | OBn | 91% | +17.9 |
(S,S′)-6f | 16:0 | Ibu | OBn | 84% | +11.6 |
(a) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(R,S′)-7a | OBn | Nap | 6:0 | 90% | −3.90 |
(R,S′)-7b | OBn | Nap | 8:0 | 95% | −3.02 |
(R,S′)-7c | OBn | Nap | 10:0 | 96% | −3.23 |
(R,S′)-7d | OBn | Nap | 12:0 | 92% | −2.00 |
(R,S′)-7e | OBn | Nap | 14:0 | 98% | −1.33 |
(R,S′)-7f | OBn | Nap | 16:0 | 96% | −2.00 |
(b) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(S,S′)-7a | 6:0 | Nap | OBn | 97% | +20.8 |
(S,S′)-7b | 8:0 | Nap | OBn | 97% | +4.82 |
(S,S′)-7c | 10:0 | Nap | OBn | 92% | +6.69 |
(S,S′)-7d | 12:0 | Nap | OBn | 92% | +17.1 |
(S,S′)-7e | 14:0 | Nap | OBn | 75% | +15.3 |
(S,S′)-7f | 16:0 | Nap | OBn | 77% | +15.3 |
(a) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(R,S′)-8a | OH | Ibu | 6:0 | 84% | +23.9 |
(R,S′)-8b | OH | Ibu | 8:0 | 86% | +18.3 |
(R,S′)-8c | OH | Ibu | 10:0 | 98% | +7.50 |
(R,S′)-8d | OH | Ibu | 12:0 | 92% | +2.43 |
(R,S′)-8e | OH | Ibu | 14:0 | 84% | +8.00 |
(R,S′)-8f | OH | Ibu | 16:0 | 90% | +0.75 |
(b) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(S,S′)-8a | 6:0 | Ibu | OH | 95% | +5.65 |
(S,S′)-8b | 8:0 | Ibu | OH | 86% | +18.8 |
(S,S′)-8c | 10:0 | Ibu | OH | 89% | +20.2 |
(S,S′)-8d | 12:0 | Ibu | OH | 93% | +13.8 |
(S,S′)-8e | 14:0 | Ibu | OH | 94% | +4.20 |
(S,S′)-8f | 16:0 | Ibu | OH | 90% | +15.0 |
(a) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(R,S′)-9a | OBn | Nap | 6:0 | 98% | +5.63 |
(R,S′)-9b | OBn | Nap | 8:0 | 94% | +7.17 |
(R,S′)-9c | OBn | Nap | 10:0 | 84% | +5.70 |
(R,S′)-9d | OBn | Nap | 12:0 | 94% | +3.08 |
(R,S′)-9e | OBn | Nap | 14:0 | 89% | +2.04 |
(R,S′)- 9f | OBn | Nap | 16:0 | 91% | +4.95 |
(b) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(S,S′)-9a | 6:0 | Nap | OH | 97% | +8.60 |
(S,S′)-9b | 8:0 | Nap | OH | 97% | +18.0 |
(S,S′)-9c | 10:0 | Nap | OH | 92% | +8.56 |
(S,S′)-9d | 12:0 | Nap | OH | 87% | +17.2 |
(S,S′)-9e | 14:0 | Nap | OH | 90% | +17.9 |
(S,S′)-9f | 16:0 | Nap | OH | 90% | +17.0 |
(a) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(S,S′)-10a | EPA | Ibu | 6:0 | 90% | +11.7 |
(S,S′)-10b | EPA | Ibu | 8:0 | 91% | +9.60 |
(S,S′)-10c | EPA | Ibu | 10:0 | 88% | +8.40 |
(S,S′)-10d | EPA | Ibu | 12:0 | 87% | +7.98 |
(S,S′)-10e | EPA | Ibu | 14:0 | 89% | +6.58 |
(S,S′)-10f | EPA | Ibu | 16:0 | 86% | +6.68 |
(b) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(R,S′)-10a | 6:0 | Ibu | EPA | 74% | +6.50 |
(R,S′)-10b | 8:0 | Ibu | EPA | 91% | +9.11 |
(R,S′)-10c | 10:0 | Ibu | EPA | 88% | +7.44 |
(R,S′)-10d | 12:0 | Ibu | EPA | 87% | +7.57 |
(R,S′)-10e | 14:0 | Ibu | EPA | 89% | +7.12 |
(R,S′)-10f | 16:0 | Ibu | EPA | 86% | +7.43 |
(a) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(S,S′)-11a | EPA | Nap | 6:0 | 91% | +8.12 |
(S,S′)-11b | EPA | Nap | 8:0 | 94% | +6.00 |
(S,S′)-11c | EPA | Nap | 10:0 | 84% | +6.58 |
(S,S′)-11d | EPA | Nap | 12:0 | 96% | +4.89 |
(S,S′)-11e | EPA | Nap | 14:0 | 90% | +5.29 |
(S,S′)-11f | EPA | Nap | 16:0 | 91% | +5.44 |
(b) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(R,S′)-11a | 6:0 | Nap | EPA | 80% | +4.20 |
(R,S′)-11b | 8:0 | Nap | EPA | 80% | +4.97 |
(R,S′)-11c | 10:0 | Nap | EPA | 86% | +8.76 |
(R,S′)-11d | 12:0 | Nap | EPA | 74% | +5.20 |
(R,S′)-11e | 14:0 | Nap | EPA | 76% | +6.30 |
(R,S′)-11f | 16:0 | Nap | EPA | 89% | +6.23 |
(a) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(S,S′)-12a | DHA | Ibu | 6:0 | 81% | +9.95 |
(S,S′)-12b | DHA | Ibu | 8:0 | 86% | +4.44 |
(S,S′)-12c | DHA | Ibu | 10:0 | 95% | +4.05 |
(S,S′)-12d | DHA | Ibu | 12:0 | 89% | +5.30 |
(S,S′)-12e | DHA | Ibu | 14:0 | 82% | +7.54 |
(S,S′)-12f | DHA | Ibu | 16:0 | 85% | +3.16 |
(b) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(R,S′)-12a | 6:0 | Ibu | DHA | 81% | +6.73 |
(R,S′)-12b | 8:0 | Ibu | DHA | 86% | +7.86 |
(R,S′)-12c | 10:0 | Ibu | DHA | 80% | +4.57 |
(R,S′)-12d | 12:0 | Ibu | DHA | 78% | +6.57 |
(R,S′)-12e | 14:0 | Ibu | DHA | 82% | +7.01 |
(R,S′)-12f | 16:0 | Ibu | DHA | 79% | +3.93 |
(a) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(S,S′)-13a | DHA | Nap | 6:0 | 84% | +6.81 |
(S,S′)-13b | DHA | Nap | 8:0 | 85% | +2.78 |
(S,S′)-13c | DHA | Nap | 10:0 | 89% | +6.60 |
(S,S′)-13d | DHA | Nap | 12:0 | 92% | +3.67 |
(S,S′)-13e | DHA | Nap | 14:0 | 93% | +7.37 |
(S,S′)-13f | DHA | Nap | 16:0 | 92% | +3.60 |
(b) | |||||
Compound | sn-1 | sn-2 | sn-3 | Yields | |
(R,S′)-13a | 6:0 | Nap | DHA | 74% | +8.80 |
(R,S′)-13b | 8:0 | Nap | DHA | 72% | +2.01 |
(R,S′)-13c | 10:0 | Nap | DHA | 80% | +3.93 |
(R,S′)-13d | 12:0 | Nap | DHA | 92% | +3.50 |
(R,S′)-13e | 14:0 | Nap | DHA | 88% | +4.58 |
(R,S′)-13f | 16:0 | Nap | DHA | 89% | +2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jónsdóttir, L.R.; Haraldsson, G.G. Synthesis of Enantiostructured Triacylglycerols Possessing a Saturated Fatty Acid, a Polyunsaturated Fatty Acid and an Active Drug Intended as Novel Prodrugs. Molecules 2024, 29, 5745. https://doi.org/10.3390/molecules29235745
Jónsdóttir LR, Haraldsson GG. Synthesis of Enantiostructured Triacylglycerols Possessing a Saturated Fatty Acid, a Polyunsaturated Fatty Acid and an Active Drug Intended as Novel Prodrugs. Molecules. 2024; 29(23):5745. https://doi.org/10.3390/molecules29235745
Chicago/Turabian StyleJónsdóttir, Lena Rós, and Gudmundur G. Haraldsson. 2024. "Synthesis of Enantiostructured Triacylglycerols Possessing a Saturated Fatty Acid, a Polyunsaturated Fatty Acid and an Active Drug Intended as Novel Prodrugs" Molecules 29, no. 23: 5745. https://doi.org/10.3390/molecules29235745
APA StyleJónsdóttir, L. R., & Haraldsson, G. G. (2024). Synthesis of Enantiostructured Triacylglycerols Possessing a Saturated Fatty Acid, a Polyunsaturated Fatty Acid and an Active Drug Intended as Novel Prodrugs. Molecules, 29(23), 5745. https://doi.org/10.3390/molecules29235745