A Comparative Study of Ni-Based Catalysts Prepared by Various Sol–Gel Routes
"> Figure 1
<p><sup>29</sup>Si CP−MAS NMR spectra of prepared Si<sub>10</sub>Al<sub>90</sub> samples following the HSG in Acidic Media (AM) and basic media (BM) and NHSG using the ether route (ER) and alcohol route (AR) as oxygen donors.</p> "> Figure 2
<p><sup>27</sup>Al MAS NMR spectra of prepared Si<sub>0</sub>Al<sub>100</sub> samples following HSG in Acidic Media (AM) and basic media (BM) and NHSG using ether route (ER) and alcohol route (AR) as oxygen donors.</p> "> Figure 3
<p><sup>27</sup>Al MAS NMR spectra of prepared Si<sub>10</sub>Al<sub>90</sub> samples following HSG in Acidic Media (AM) and basic media (BM) and NHSG using ether route (ER) and alcohol route (AR) as oxygen donors.</p> "> Scheme 1
<p>Experimental conditions for materials syntheses following the hydrolytic sol-gel process (HSG) in acidic Media (AM) and basic media (BM) and non-hydrolytic sol-gel using the ether route (ER) and alcohol route (AR) as oxygen donors.</p> "> Scheme 2
<p>Reaction equation of the formation of C4, C6 and C8 olefins.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Mixed Oxides
2.2. Catalyst Tests of Ternary Mixed Oxides
3. Materials and Methods
3.1. Supports Synthesis
3.2. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrei, R.D.; Popa, M.I.; Fajula, F.; Hulea, V. Heterogeneous oligomerization of ethylene over highly active and stable Ni-AlSBA-15 mesoporous catalysts. J. Catal. 2015, 323, 76–84. [Google Scholar] [CrossRef]
- Finiels, A.; Fajula, F.; Hulea, V. Nickel-based solid catalysts for ethylene oligomerization—A review. Catal. Sci. Technol. 2014, 4, 2412–2426. [Google Scholar] [CrossRef]
- Olivier-Bourbigou, H.; Breuil, P.A.R.; Magna, L.; Michel, T.; Pastor, M.F.E.; Delcroix, D. Nickel Catalyzed Olefin Oligomerization and Dimerization. Chem. Rev. 2020, 120, 7919–7983. [Google Scholar] [CrossRef]
- Debecker, D.P.; Hulea, V.; Mutin, P.H. Mesoporous mixed oxide catalysts via non-hydrolytic sol–gel: A review. Appl. Catal. A Gen. 2013, 451, 192–206. [Google Scholar] [CrossRef]
- Moussa, S.; Concepción, P.; Arribas, M.A.; Martínez, A. ature of active nickel sites and initiation mechanism for ethylene oligomerization on heterogeneous Ni-beta catalysts. ACS Catal. 2018, 8, 3903–3912. [Google Scholar] [CrossRef]
- Godelitsas, A.; Charistos, D.; Tsipis, C.; Misaelides, P.; Filippidis, A.; Schindler, M. Heterostructures patterned on aluminosilicate microporous substrates: Crystallization of cobalt(III) tris(N,N-diethyldithiocarbamato) on the surface of a HEU-type zeolite. Microporous Mesoporous Mater. 2003, 61, 69–77. [Google Scholar] [CrossRef]
- Livage, J.; Henry, M.; Sanchez, C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 1988, 18, 259–341. [Google Scholar] [CrossRef]
- West, J.; Hench, L. The sol-gel process. Chem. Rev. 1990, 90, 33–72. [Google Scholar]
- Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. eview on sol-gel synthesis of perovskite and oxide nanomaterials. Gels 2021, 7, 275. [Google Scholar] [CrossRef]
- Catauro, M.; Ciprioti, S.V. Characterization of hybrid materials prepared by sol-gel method for biomedical implementations. A critical review. Materials 2021, 14, 1788. [Google Scholar] [CrossRef]
- Figueira, R.B. Hybrid sol–gel coatings for corrosion mitigation: A critical review. Polymers 2020, 12, 689. [Google Scholar] [CrossRef] [PubMed]
- Debecker, D.P.; Mutin, P.H. Non-hydrolytic sol–gel routes to heterogeneous catalysts. Chem. Soc. Rev. 2012, 41, 3624–3650. [Google Scholar] [CrossRef] [PubMed]
- Vioux, A. Nonhydrolytic Sol−Gel Routes to Oxides. Chem. Mater. 1997, 9, 2292–2299. [Google Scholar] [CrossRef]
- Smeets, V.; Styskalik, A.; Debecker, D.P. Non-hydrolytic sol–gel as a versatile route for the preparation of hybrid heterogeneous catalysts. J. Sol-Gel Sci. Technol. 2021, 97, 505–522. [Google Scholar] [CrossRef]
- Izadi, R.; Mahinroosta, M.; Mohammadzadeh, K.; Ashrafizadeh, S.N. An inclusive review on inorganic gels: Classifications, synthesis methods and applications. J. Iran. Chem. Soc. 2023, 20, 1757–1779. [Google Scholar] [CrossRef]
- Mutin, P.H.; Vioux, A. Nonhydrolytic processing of oxide-based materials: Simple routes to control homogeneity, morphology, and nanostructure. Chem. Mater. 2009, 21, 582–596. [Google Scholar] [CrossRef]
- Bourget, L.; Corriu, R.J.P.; Leclercq, D.; Mutin, P.H.; Vioux, A. Non-hydrolytic sol–gel routes to silica. J. Non-Cryst. Solids 1998, 242, 81–91. [Google Scholar] [CrossRef]
- Saltarelli, M.; de Faria, E.H.; Ciuffi, K.J.; Nassar, E.J.; Trujillano, R.; Rives, V.; Vicente, M.A. Aminoiron(III)-porphyrin-alumina catalyst obtained by non-hydrolytic sol-gel process for heterogeneous oxidation of hydrocarbons. Mol. Catal. 2019, 462, 114–125. [Google Scholar] [CrossRef]
- Chen, L.; Li, G.; Wang, Z.; Li, S.; Zhang, M.; Li, X. Ethylene Oligomerization over Nickel Supported Silica-Alumina Catalysts with High Selectivity for C10+ Products. Catalysts 2020, 10, 180. [Google Scholar] [CrossRef]
- Agliullin, M.R.; Danilova, I.G.; Faizullin, A.V.; Amarantov, S.V.; Bubennov, S.V.; Prosochkina, T.R.; Grigor’eva, N.G.; Paukshtis, E.A.; Kutepov, B.I. Sol-gel synthesis of mesoporous aluminosilicates with a narrow pore size distribution and catalytic activity thereof in the oligomerization of dec-1-ene. Microporous Mesoporous Mater. 2016, 230, 118–127. [Google Scholar] [CrossRef]
- May, M.; Asomoza, M.; Lopez, T.; Gomez, R. Precursor Aluminum Effect in the Synthesis of Sol−Gel Si−Al Catalysts: FTIR and NMR Characterization. Chem. Mater. 1997, 9, 2395–2399. [Google Scholar] [CrossRef]
- Sánchez-Muñoz, L.; Florian, P.; Gan, Z.; Muñoz, F. Order–Disorder Diversity of the Solid State by NMR: The Role of Electrical Charges. Minerals 2022, 12, 1375. [Google Scholar] [CrossRef]
- Al Khudhair, A.; Bouchmella, K.; Andrei, R.D.; Mehdi, A.; Mutin, P.H.; Hulea, V. One-step non-hydrolytic sol-gel synthesis of mesoporous SiO2-Al2O3-NiO catalysts for ethylene oligomerization. Microporous Mesoporous Mater. 2021, 322, 111165. [Google Scholar] [CrossRef]
- Lippmaa, E.; Samoson, A.; Magi, M. High-resolution aluminum-27 NMR of aluminosilicates. J. Am. Chem. Soc. 1986, 108, 1730–1735. [Google Scholar] [CrossRef]
- Engelhardt, G. Multinuclear solid-state NMR in silicate and zeolite chemistry. TrAC Trends Anal. Chem. 1989, 8, 343–347. [Google Scholar] [CrossRef]
- Müller, D.; Gessner, W.; Behrens, H.; Scheler, G. Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high-resolution 27AI NMR. Chem. Phys. Lett. 1981, 79, 59–62. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Baiker, A.; Huang, J. Pentacoordinated aluminum species: New frontier for tailoring acidity-enhanced silica–alumina Catalysts. Accounts Chem. Res. 2020, 53, 2648–2658. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, W. Improving the water-wettability and oxidation resistance of graphite using Al2O3/SiO2 sol-gel coatings. J. Eur. Ceram. Soc. 2003, 23, 1215–1221. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Zhang, H.-L.; Yang, Z.-Z.; Zhao, M.; Huang, M.-L.; Liang, Y.-L.; Wang, J.-L.; Chen, Y.-Q. Effects of CeO2 addition on improved NO oxidation activities of Pt/SiO2-Al2O3 diesel oxidation catalysts. Acta Phys. Chim. Sin. 2017, 33, 1242–1252. [Google Scholar] [CrossRef]
- Imoisili, P.E.; Nwanna, E.C.; Jen, T.-C. Facile preparation and characterization of silica nanoparticles from South Africa fly ash using a sol–gel hydrothermal method. Processes 2022, 10, 2440. [Google Scholar] [CrossRef]
- Drobná, H.; Kout, M.; Sołtysek, A.; González-Delacruz, V.M.; Caballero, A.; Čapek, L. Analysis of Ni species formed on zeolites, mesoporous silica and alumina supports and their catalytic behavior in the dry reforming of methane. React. Kinet. Catal. Lett. 2017, 121, 255–274. [Google Scholar] [CrossRef]
- Hensen, E.J.; Poduval, D.G.; Degirmenci, V.; Ligthart, D.J.M.; Chen, W.; Maugé, F.; Rigutto, M.S.; van Veen, J.R. Acidity characterization of amorphous silica–alumina. J. Phys. Chem. C 2012, 116, 21416–21429. [Google Scholar] [CrossRef]
- Rajagopal, S.; Marini, H.; Marzari, J.; Miranda, R. Silica-alumina-supported acidic molybdenum catalysts-TPR and XRD characterization. J. Catal. 1994, 147, 417–428. [Google Scholar] [CrossRef]
- Scokart, P.O.; Declerck, F.D.; Sempels, R.E.; Rouxhet, P.G. Evolution of the acidic properties of silica—Alumina gels as a function of chemical composition: Infrared approach. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1977, 73, 359–371. [Google Scholar] [CrossRef]
- Chizallet, C.; Raybaud, P. Acidity of amorphous silica-alumina: From coordination promotion of Lewis sites to proton transfer. Chemphyschem 2010, 11, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Busca, G. Catalytic materials based on silica and alumina: Structural features and generation of surface acidity. Prog. Mater. Sci. 2019, 104, 215–249. [Google Scholar] [CrossRef]
- Seufitelli, G.V.S.; Park, J.J.W.; Tran, P.N.; Dichiara, A.; Resende, F.L.P.; Gustafson, R. The Role of Nickel and Brønsted Sites on Ethylene Oligomerization with Ni-H-Beta Catalysts. Catalysts 2022, 12, 565. [Google Scholar] [CrossRef]
- Bai, Y.; Cordero-Lanzac, T.; Nova, A.; Olsbye, U.; Taarning, E.; Martinez-Espin, J.S. Selective linear ethylene oligomerization over nickel-containing zeotypes with tetravalent framework heteroatoms. Catal. Sci. Technol. 2024, 14, 1991–2002. [Google Scholar] [CrossRef]
- Yoldas, B.E. Alumina sol preparation from alkoxides. Ceram. Bull. 1975, 54, 289–290. [Google Scholar]
Samples | Route | Expected and Experimental Compositions (wt.%) | Texture | Acidity | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Si/Al | SiO2 | Al2O3 | NiO | SSA a (m2g−1) | Vp b (cm3g−1) | Dp c (nm) | SSA d µ/(m2g−1) | Total Desorbed-NH3 (mmol g−1) | Density (NH3 nm−2) | ||
Si0Al100 | Acidic HSG | 0.0 (0.0) | 0.0 (0.0) | 100.0 (99.7) | - | 375 | 0.4 | 4.8 | 40 | 1.0 | 1.6 |
Si0Al100 | Basic HSG | 0.0 (0.0) | 0.0 (0.0) | 100.0 (99.7) | - | 340 | 0.4 | 4.0 | 42 | 0.9 | 1.6 |
Si0Al100 | EtOH NHSG | 0.0 (0.0) | 0.0 (0.0) | 100.0 (99.7) | - | 360 | 0.2 | 3.1 | 55 | 2.8 | 4.7 |
Si0Al100 | Ether NHSG | 0.0 (0.0) | 0.0 (0.0) | 100.0 (99.9) | - | 297 | 0.4 | 4.0 | 35 | 2.9 | 5.9 |
Si10Al90 | Acidic HSG | 0.1 (0.1) | 10.0 (10.3) | 90.0 (89.7) | - | 286 | 0.3 | 4.4 | 70 | 1.3 | 2.7 |
Si10Al90 | Basic HSG | 0.1 (0.1) | 10.0 (10.2) | 90.0 (89.8) | - | 400 | 0.4 | 3.6 | 65 | 1.4 | 2.1 |
Si10Al90 | EtOH NHSG | 0.1 (0.1) | 10.0 (9.9) | 90.0 (90.1) | - | 271 | 0.4 | 5.8 | 60 | 2.8 | 6.2 |
Si10Al90 | Ether NHSG | 0.1 (0.1) | 10.0 (9.8) | 90.01 (90.2) | - | 170 | 0.3 | 6.4 | 64 | 3.0 | 10.6 |
Si0Al90Ni10 | Ether NHSG | 0.0 (0.0) | 0.0 (0.0) | 92.7 (92.9) | 7.3 (7.1) | 348 | 0.4 | 6.5 | 59 | 4.8 | 11.6 |
Si10Al80Ni10 | Ether NHSG | 0.1 (0.1) | 9.3 (6.3) | 83.6 (86.5) | 7.1 (7.2) | 395 | 0.3 | 3.5 | 45 | 4.4 | 6.7 |
Si0Al90Ni10 | EtOH NHSG | 0.0 (0.0) | 0.0 (0.0) | 92.6 (92.8) | 7.4 (7.2) | 368 | 0.3 | 3.1 | 57 | 4.3 | 8.8 |
Si10Al80Ni10 | EtOH NHSG | 0.1 (0.1) | 9.1 (6.5) | 83.8 (86.2) | 7.1 (7.3) | 286 | 0.3 | 2.7 | 62 | 4.2 | 7.0 |
Catalyst | Si/Al | Conv. (%) | Activity (mmol g−1 h−1) | Selectivity to (wt.%) | ||
---|---|---|---|---|---|---|
C4 | C6 | C8 | ||||
NHSG-AR-Si0Al90Ni10 | 0.0 | 49 | 175 | 82 | 13 | 3 |
NHSG-AR-Si10Al80Ni10 | 0.1 | 44 | 157 | 78 | 15 | 4 |
NHSG-ER-Si0Al90Ni10 | 0.0 | 73 | 261 | 69 | 15 | 3 |
NHSG-ER-Si10Al80Ni10 | 0.1 | 79 | 282 | 72 | 20 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Khudhair, A.; Bouchmella, K.; Andrei, R.D.; Hulea, V.; Mehdi, A. A Comparative Study of Ni-Based Catalysts Prepared by Various Sol–Gel Routes. Molecules 2024, 29, 4172. https://doi.org/10.3390/molecules29174172
Al Khudhair A, Bouchmella K, Andrei RD, Hulea V, Mehdi A. A Comparative Study of Ni-Based Catalysts Prepared by Various Sol–Gel Routes. Molecules. 2024; 29(17):4172. https://doi.org/10.3390/molecules29174172
Chicago/Turabian StyleAl Khudhair, Atheer, Karim Bouchmella, Radu Dorin Andrei, Vasile Hulea, and Ahmad Mehdi. 2024. "A Comparative Study of Ni-Based Catalysts Prepared by Various Sol–Gel Routes" Molecules 29, no. 17: 4172. https://doi.org/10.3390/molecules29174172
APA StyleAl Khudhair, A., Bouchmella, K., Andrei, R. D., Hulea, V., & Mehdi, A. (2024). A Comparative Study of Ni-Based Catalysts Prepared by Various Sol–Gel Routes. Molecules, 29(17), 4172. https://doi.org/10.3390/molecules29174172