Effect of Rh Doping on Optical Absorption and Oxygen Evolution Reaction Activity on BaTiO3 (001) Surfaces
<p>(<b>a</b>) TiO<sub>2</sub>- and (<b>b</b>) BaO-terminated (001) surfaces of tetragonal BaTiO<sub>3</sub>.</p> "> Figure 2
<p>(<b>Left</b>): Top view of the outermost layer of TiO<sub>2</sub>-terminated (<b>a</b>) undoped and (<b>b</b>) Rh-doped surfaces. The numbers indicate the distance (Å) between the (<b>a</b>) Ti and (<b>b</b>) Rh atoms and the nearest surface oxygen atoms (O1). (<b>c</b>) Side view of a doped TiO<sub>2</sub>-terminated surface (Ba ions omitted); the numbers indicate the interatomic distance between the metal atoms (Ti: black, Rh: pink) and subsurface oxygen (O2). (<b>Right</b>): Top view of the two upper layers of BaO-terminated (<b>d</b>) undoped and (<b>e</b>) Rh-doped surfaces. Side view of a doped BaO-terminated surface (<b>f</b>).</p> "> Figure 3
<p>Total and partial densities of states for bare and doped TiO<sub>2</sub>- and BaO-terminated surfaces. Top: (<b>a</b>) undoped TiO<sub>2</sub>-terminated surface; (<b>b</b>) Rh-doped TiO<sub>2</sub>-terminated surface. The contribution of the surface nearest to the oxygen atoms of Rh, O(Rh), is highlighted. Bottom: (<b>c</b>) undoped BaO-terminated surface; (<b>d</b>) Rh-doped BaO-terminated surface. <span class="html-italic">E</span><sub>F</sub>: Fermi energy.</p> "> Figure 4
<p>Optical absorption of undoped and Rh-doped (<b>a</b>) TiO<sub>2</sub>- and (<b>b</b>) BaO-terminated surfaces. Black and blue lines correspond to dry and wet surfaces, respectively. The solid lines illustrate total optical absorption, while dashed and dotted lines correspond to the contributions of spin-up (UP) and spin-down (DW) electronic states. Orange lines refer to experimental data adapted from Ref. [<a href="#B32-molecules-29-02707" class="html-bibr">32</a>].</p> "> Figure 5
<p>(<b>a</b>) Change in the arrangement of ions in the slab after Ba was replaced with Rh; (<b>b</b>) electronic DOS for relaxed slab; (<b>c</b>) optical absorption spectrum for the model investigated. Dashed and dotted lines represent optical absorption by spin-up and spin-down states. The solid line illustrates total absorption.</p> "> Figure 6
<p>Standard free energy diagram for the OER at zero potential (U = 0, dotted lines) and equilibrium potential for oxygen evolution (<span class="html-italic">U</span> = 1.23 V, solid lines) at pH = 0 and T = 298 K. Black and blue lines show data for dry and wet surfaces, respectively. Dashed lines correspond to the ideal catalyst.</p> "> Figure 7
<p>Equation (5) calculates the charge transfer between the TiO<sub>2</sub>-termiated catalyst surface and the intermediate reaction products. A side view of the surface of the top two layers is presented. OH adsorbed on (<b>a</b>) undoped and (<b>b</b>) Rh-doped surfaces; O adsorbed on (<b>c</b>) undoped and (<b>d</b>) Rh-doped surfaces; and HOO adsorbed on (<b>e</b>) undoped and (<b>f</b>) Rh-doped surfaces. The yellow and blue clouds indicate the isocontours of positive and negative values of the electron charge density, respectively.</p> "> Figure 8
<p>Equation (6) calculates the charge transfer between wet and dry TiO<sub>2</sub>-termiated catalyst surfaces. Top view of the upper layer of the (<b>a</b>) undoped and (<b>b</b>) Rh-doped surfaces; side view of the two upper layers of the (<b>c</b>) undoped and (<b>d</b>) Rh-doped surfaces. The yellow and blue clouds indicate the isocontours of positive and negative values of the electron charge density, respectively.</p> ">
Abstract
:1. Introduction
2. Theoretical Surface and Thermodynamic Model
2.1. Structure Models
2.2. Thermodynamic Description
3. Results and Discussion
3.1. Effect of Doping on Ground-State Electronic Properties
3.2. Optical Absorption
3.3. OER over Pristine and Rh-Modified BaTiO3
4. Computational Details
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Suntivich, J.; May, K.J.; Gasteiger, H.A.; Goodenough, J.B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385. [Google Scholar] [CrossRef]
- Castelli, I.E.; Landis, D.D.; Thygesen, K.S.; Dahl, S.; Chorkendorff, I.; Jaramillo, T.F.; Jacobsen, K.W. New cubic perovskites for one-and two-photon water splitting using the computational materials repository. Energy Environ. Sci. 2012, 5, 9034–9043. [Google Scholar] [CrossRef]
- Luo, J.; Im, J.-H.; Mayer, M.T.; Schreier, M.; Nazeeruddin, M.K.; Park, N.-G.; Tilley, S.D.; Fan, H.J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345, 1593–1596. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, W.; Zhou, W.; Shao, Z. Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy-Related Applications. Small Methods 2018, 2, 1800071. [Google Scholar] [CrossRef]
- Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality. Chem. Rev. 2014, 114, 10292–10368. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Sun, K.; Wang, J. Perovskites for photovoltaics: A combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. J. Mater. Chem. A 2015, 3, 18809–18828. [Google Scholar] [CrossRef]
- Mefford, J.T.; Rong, X.; Abakumov, A.M.; Hardin, W.G.; Dai, S.; Kolpak, A.M.; Johnston, K.P.; Stevenson, K.J. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Parolin, J.; Kolpak, A.M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. Acs Catal. 2016, 6, 1153–1158. [Google Scholar] [CrossRef]
- Tang, J.; Xu, X.; Tang, T.; Zhong, Y.; Shao, Z. Perovskite-Based Electrocatalysts for Cost-Effective Ultrahigh-Current-Density Water Splitting in Anion Exchange Membrane Electrolyzer Cell. Small Methods 2022, 6, 2201099. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Pan, Y.; Zhong, Y.; Ran, R.; Shao, Z. Ruddlesden–Popper perovskites in electrocatalysis. Mater. Horiz. 2020, 7, 2519–2565. [Google Scholar] [CrossRef]
- Buscaglia, V.; Buscaglia, M.T.; Canu, G. BaTiO3-based ceramics: Fundamentals, properties and applications. Encycl. Mater. Tech. Ceram. Glas. 2021, 3, 311–344. [Google Scholar]
- Wemple, S. Polarization Fluctuations and the Optical-Absorption Edge in BaTiO3. Phys. Rev. B 1970, 2, 2679. [Google Scholar] [CrossRef]
- Kennedy, J.H.; Frese, K.W. Photo-oxidation of water at barium titanate electrodes. J. Electrochem. Soc. 1976, 123, 1683. [Google Scholar] [CrossRef]
- Nasby, R.; Quinn, R.K. Photoassisted electrolysis of water using a BaTiO3 electrode. Mater. Res. Bull. 1976, 11, 985–992. [Google Scholar] [CrossRef]
- Hayakawa, T.; Suzuki, S.; Nakamura, J.; Uchijima, T.; Hamakawa, S.; Suzuki, K.; Shishido, T.; Takehira, K. CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method. Appl. Catal. A Gen. 1999, 183, 273–285. [Google Scholar] [CrossRef]
- Ko, S.; Tang, X.; Gao, F.; Wang, C.; Liu, H.; Liu, Y. Selective catalytic reduction of NOx with NH3 on Mn, Co-BTC-derived catalysts: Influence of thermal treatment temperature. J. Solid State Chem. 2022, 307, 122843. [Google Scholar] [CrossRef]
- Srilakshmi, C.; Saraf, R.; Prashanth, V.; Rao, G.M.; Shivakumara, C. Structure and catalytic activity of Cr-doped BaTiO3 nanocatalysts synthesized by conventional oxalate and microwave assisted hydrothermal methods. Inorg. Chem. 2016, 55, 4795–4805. [Google Scholar] [CrossRef]
- Upadhyay, S.; Shrivastava, J.; Solanki, A.; Choudhary, S.; Sharma, V.; Kumar, P.; Singh, N.; Satsangi, V.R.; Shrivastav, R.; Waghmare, U.V. Enhanced photoelectrochemical response of BaTiO3 with Fe doping: Experiments and first-principles analysis. J. Phys. Chem. C 2011, 115, 24373–24380. [Google Scholar] [CrossRef]
- Nageri, M.; Kumar, V. Manganese-doped BaTiO3 nanotube arrays for enhanced visible light photocatalytic applications. Mater. Chem. Phys. 2018, 213, 400–405. [Google Scholar] [CrossRef]
- Demircivi, P.; Simsek, E.B. Visible-light-enhanced photoactivity of perovskite-type W-doped BaTiO3 photocatalyst for photodegradation of tetracycline. J. Alloys Compd. 2019, 774, 795–802. [Google Scholar] [CrossRef]
- Artrith, N.; Sailuam, W.; Limpijumnong, S.; Kolpak, A.M. Reduced overpotentials for electrocatalytic water splitting over Fe- and Ni-modified BaTiO3. Phys. Chem. Chem. Phys. 2016, 18, 29561–29570. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Yang, F.; Li, R.; Ai, C.; Lin, C.; Lin, S. Improving hydrogen evolution activity of perovskite BaTiO3 with Mo doping: Experiments and first-principles analysis. Int. J. Hydrogen Energy 2019, 44, 11695–11704. [Google Scholar] [CrossRef]
- Tanwar, N.; Upadhyay, S.; Priya, R.; Pundir, S.; Sharma, P.; Pandey, O. Eu-doped BaTiO3 perovskite as an efficient electrocatalyst for oxygen evolution reaction. J. Solid State Chem. 2023, 317, 123674. [Google Scholar] [CrossRef]
- Maeda, K. Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 2014, 6, 2167–2173. [Google Scholar] [CrossRef] [PubMed]
- Konta, R.; Ishii, T.; Kato, H.; Kudo, A. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J. Phys. Chem. B 2004, 108, 8992–8995. [Google Scholar] [CrossRef]
- Nishioka, S.; Maeda, K. Hydrothermal synthesis of rhodium-doped barium titanate nanocrystals for enhanced photocatalytic hydrogen evolution under visible light. RSC Adv. 2015, 5, 100123–100128. [Google Scholar] [CrossRef]
- Bhat, D.K.; Bantawal, H.; Shenoy, U.S. Rhodium doping augments photocatalytic activity of barium titanate: Effect of electronic structure engineering. Nanoscale Adv. 2020, 2, 5688–5698. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Eglitis, R.; Vanderbilt, D. Ab initio calculations of BaTiO3 and PbTiO3 (001) and (011) surface structures. Phys. Rev. B 2007, 76, 155439. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, B.; Liu, K.; Zhang, J.; Ma, G. Rhodium-Doped Barium Titanate Perovskite as a Stable p-Type Photocathode in Solar Water Splitting. ACS Appl. Mater. Interfaces 2023, 15, 47754–47763. [Google Scholar] [CrossRef] [PubMed]
- Man, I.C.; Su, H.-Y.; Calle-Vallejo, F.; Hansen, H.A.; Martínez, J.I.; Inoglu, N.G.; Kitchin, J.; Jaramillo, T.F.; Nørskov, J.K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165. [Google Scholar] [CrossRef]
- García-Mota, M.; Bajdich, M.; Viswanathan, V.; Vojvodic, A.; Bell, A.T.; Nørskov, J.K. Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C 2012, 116, 21077–21082. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 93rd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Shirane, G.; Danner, H.; Pepinsky, R. Neutron Diffraction Study of Orthorhombic BaTi3. Phys. Rev. 1957, 105, 856–860. [Google Scholar] [CrossRef]
- Yasuda, N.; Murayama, H.; Fukuyama, Y.; Kim, J.; Kimura, S.; Toriumi, K.; Tanaka, Y.; Moritomo, Y.; Kuroiwa, Y.; Kato, K.; et al. X-ray diffractometry for the structure determination of a submicrometre single powder grain. J. Synchrotron Radiat. 2009, 16, 352–357. [Google Scholar] [CrossRef]
- Al-Shakarchi, E.K.; Mahmood, N.B. Three Techniques Used to Produce BaTiO3 Fine Powder. J. Mod. Phys. 2011, 2, 9. [Google Scholar] [CrossRef]
- Buttner, R.H.; Maslen, E.N. Structural parameters and electron difference density in BaTiO3. Acta Crystallogr. Sect. B 1992, 48, 764–769. [Google Scholar] [CrossRef]
- Xiao, C.J.; Jin, C.Q.; Wang, X.H. Crystal structure of dense nanocrystalline BaTiO3 ceramics. Mater. Chem. Phys. 2008, 111, 209–212. [Google Scholar] [CrossRef]
- Inerbaev, T.M.; Hoefelmeyer, J.D.; Kilin, D.S. Photoinduced Charge Transfer from Titania to Surface Doping Site. J. Phys. Chem. C 2013, 117, 9673–9692. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. A Quantum Theory; Oxford University Press, Oxford, UK, 1990.
- Iwashina, K.; Kudo, A. Rh-Doped SrTiO3 Photocatalyst Electrode Showing Cathodic Photocurrent for Water Splitting under Visible-Light Irradiation. J. Am. Chem. Soc. 2011, 133, 13272–13275. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.W.D.; García-Melchor, M.; Bajdich, M.; Chakthranont, P.; Kirk, C.; Vojvodic, A.; Jaramillo, T.F. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 2016, 1, 16053. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Maldonado, F.; Jácome, S.; Stashans, A. Codoping of Ni and Fe in tetragonal BaTiO3. Comput. Condens. Matter 2017, 13, 49–54. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T.A.; Hennig, R.G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106. [Google Scholar] [CrossRef]
- Mom, R.V.; Cheng, J.; Koper, M.T.M.; Sprik, M. Modeling the Oxygen Evolution Reaction on Metal Oxides: The Infuence of Unrestricted DFT Calculations. J. Phys. Chem. C 2014, 118, 4095–4102. [Google Scholar] [CrossRef]
TiO2 Surface | |||||||||
Dry | Empty site (*) | OH* | O* | OOH* | |||||
Species | q | μ | q | μ | q | μ | q | μ | |
Ti | 2.15 | 0 | 2.25 | 0 | 2.10 | 0 | 2.22 | 0 | |
O1 | −1.18 | 0 | −1.15 | 0 | −1.15 | 0 | −1.13 | 0 | |
O2 | −1.22 | 0 | −1.24 | 0 | −1.19 | 0 | −1.24 | 0 | |
Adsorbant | - | - | −0.49 | 0 | −0.74 | 0.53 | −0.31 | 0.14 | |
Wet | Ti | 2.24 | 0 | 2.24 | 0 | 2.12 | 0 | 2.21 | 0 |
O1 | −1.22 | 0 | −1.16 | 0 | −1.19 | 0 | −1.15 | 0 | |
O2 | −1.23 | 0 | −1.24 | 0 | −1.22 | 0 | −1.24 | 0 | |
Adsorbant | - | - | −0.52 | 0 | −0.91 | 0.48 | −0.35 | 0.13 | |
TiO2:Rh surface | |||||||||
Dry | Rh | 1.51 | 1.59 | 1.77 | 0.85 | 1.73 | 1.04 | 1.64 | 0.73 |
O1 | −1.06 | 0.17 | −1.04 | 0.11 | −1.03 | 0.129 | −1.02 | 0.13 | |
O2 | −1.11 | 0.15 | −1.20 | 0.03 | −1.19 | 0.014 | −1.18 | 0.01 | |
Adsorbant | - | - | −0.37 | 0.86 | −0.33 | 1.04 | −0.19 | 0.28 | |
Wet | Rh | 1.49 | 1.60 | 1.76 | 0.84 | 1.73 | 1.08 | 1.63 | 0.74 |
O1 | −1.08 | 0.17 | −1.08 | 0.11 | −1.05 | 0.14 | −1.05 | 0.13 | |
O2 | −1.10 | 0.15 | −1.11 | 0.03 | −1.20 | 0.019 | −1.20 | 0.01 | |
Adsorbant | - | - | −0.43 | 0.84 | −0.46 | 1.08 | −0.23 | 0.29 |
Surface | Adsorbant | ||
---|---|---|---|
O | OH | OOH | |
Undoped | 1.655 | 1.836 | 2.055 |
Rh-doped | 1.754 | 1.897 | 1.902 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inerbaev, T.M.; Abuova, A.U.; Zakiyeva, Z.Y.; Abuova, F.U.; Mastrikov, Y.A.; Sokolov, M.; Gryaznov, D.; Kotomin, E.A. Effect of Rh Doping on Optical Absorption and Oxygen Evolution Reaction Activity on BaTiO3 (001) Surfaces. Molecules 2024, 29, 2707. https://doi.org/10.3390/molecules29112707
Inerbaev TM, Abuova AU, Zakiyeva ZY, Abuova FU, Mastrikov YA, Sokolov M, Gryaznov D, Kotomin EA. Effect of Rh Doping on Optical Absorption and Oxygen Evolution Reaction Activity on BaTiO3 (001) Surfaces. Molecules. 2024; 29(11):2707. https://doi.org/10.3390/molecules29112707
Chicago/Turabian StyleInerbaev, Talgat M., Aisulu U. Abuova, Zhadyra Ye. Zakiyeva, Fatima U. Abuova, Yuri A. Mastrikov, Maksim Sokolov, Denis Gryaznov, and Eugene A. Kotomin. 2024. "Effect of Rh Doping on Optical Absorption and Oxygen Evolution Reaction Activity on BaTiO3 (001) Surfaces" Molecules 29, no. 11: 2707. https://doi.org/10.3390/molecules29112707
APA StyleInerbaev, T. M., Abuova, A. U., Zakiyeva, Z. Y., Abuova, F. U., Mastrikov, Y. A., Sokolov, M., Gryaznov, D., & Kotomin, E. A. (2024). Effect of Rh Doping on Optical Absorption and Oxygen Evolution Reaction Activity on BaTiO3 (001) Surfaces. Molecules, 29(11), 2707. https://doi.org/10.3390/molecules29112707