Biocompatibility Study of Curcumin-Loaded Pluronic F127 Nanoformulation (NanoCUR) against the Embryonic Development of Zebrafish (Danio rerio)
<p>Particle morphology of NanoCUR; (<b>A</b>) with spherical and bead-like shape and the (<b>B</b>) size of NanoCUR particles measured by FESEM analysis that is comparable to the DLS results at 100,000× magnification. Scale bars represent 1 µm.</p> "> Figure 2
<p>FTIR spectra of CUR, NanoCUR, and PF. The characteristic peaks of CUR, NanoCUR, and PF are shown. The FTIR profile of the NanoCUR samples indicates a new broad peak at around 1596 cm<sup>−1</sup>, which corresponds to the peak of CUR as indicated by the circled region. Loading of CUR into PF was also proven by the presence of a characteristic peak region at 3504 cm<sup>−1</sup> and overlapping of other characteristic peaks of NanoCUR with that of PF.</p> "> Figure 3
<p>XRD patterns of native CUR and NanoCUR, along with PF as control, measured at 30 kV and 30 mA, with a scanning rate of 2°/min and 2ϴ angles ranging 2–60°. The XRD peaks in the CUR spectra indicate a crystalline nature. PF is also shown to be crystalline by the two distinctive peaks at 19.2 and 24. The XRD spectrum of NanoCUR shows a masking of the crystalline peaks of CUR upon encapsulation.</p> "> Figure 4
<p>Survival rates (%) of zebrafish embryos treated with samples; CUR and NanoCUR at 1–100 µM, as well as PF at 0.1–2.0% <span class="html-italic">w</span>/<span class="html-italic">v</span>. Embryos exposed to embryo medium with and without 0.5% DMSO were used as control (CTRL). Data were averaged from three independent experiments and are shown as mean ± SD. * denotes significant difference to control, CTRL (two-way ANOVA, <span class="html-italic">p</span> ≤ 0.05).</p> "> Figure 5
<p>Hatching rate (%) of zebrafish embryos treated with samples, CUR at 1–10 µM, NanoCUR at 1–100 µM, and PF (0.1–2.0% <span class="html-italic">w</span>/<span class="html-italic">v</span>). Embryos exposed to embryo medium with and without 0.5% DMSO were used as control (CTRL). Data were averaged from three independent experiments and are shown as mean ± SD. Significant difference to CTRL is denoted by “*” (one-way ANOVA, <span class="html-italic">p</span> ≤ 0.05).</p> "> Figure 6
<p>Heart rate (bpm) of zebrafish embryos treated with samples at 96 hpf, CUR at 1–10 µM, NanoCUR at 1–15 µM, and PF (1–2.0% <span class="html-italic">w</span>/<span class="html-italic">v</span>). Embryos exposed to embryo medium with and without 0.5% DMSO were used as control (CTRL). Data were averaged from three independent experiments and are shown as mean ± SD. No significant difference as compared to the control treatment (one-way ANOVA, <span class="html-italic">p</span> ≤ 0.05).</p> "> Figure 7
<p>Images showing incidence of malformations in zebrafish embryo, including edema, marked by an asterisk (*) and scoliosis, indicated by a black triangle (▴), following exposure of CUR at 10 µM at 72 and 96 hpf. Embryos exposed to embryo medium with and without 0.5% DMSO were used as control (CTRL) and did not show any malformations at any time points.</p> "> Figure 8
<p>ROS generated following exposure of zebrafish embryos to CUR and NanoCUR at from 2 to 10 µM for 24 hpf as measured by fluorescence intensity (λex: 485 nm, λem: 530 nm). Embryos exposed to an embryo medium with and without 0.5% DMSO were used as control (CTRL). Data were averaged from three independent experiments and are shown as mean ± SD. * denotes significant difference to H<sub>2</sub>O<sub>2</sub> and # denotes significant difference to CTRL (<span class="html-italic">p</span> ≤ 0.05).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Characterization of NanoCUR
2.2. Survival Rate
2.3. Hatching Rate
2.4. Heart Rate
2.5. Morphological Assessments
2.6. Reactive Oxygen Species (ROS) Assay
3. Discussion
4. Materials and Methods
4.1. Preparation and Characterization of NanoCUR
4.2. Toxicity Assessment in Zebrafish Embryos
4.3. Measurement of Reactive Oxygen Species
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ammon, H.P.T.; Anazodo, M.I.; Safayhi, H.; Dhawan, B.N.; Srimal, R.C. Curcumin: A potent inhibitor of leukotriene B4 formation in rat peritoneal polymorphonuclear neutrophils (PMNL). Planta Med. 1992, 58, 226. [Google Scholar] [CrossRef] [PubMed]
- Kharat, M.; Du, Z.; Zhang, G.; McClements, D.J. Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. J. Agric. Food Chem. 2017, 65, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Bugli, F.; Cacaci, M.; Palmieri, V.; Di Santo, R.; Torelli, R.; Ciasca, G.; Di Vito, M.; Vitali, A.; Conti, C.; Sanguinetti, M.; et al. Curcumin-loaded graphene oxide flakes as an effective antibacterial system against methicillin-resistant Staphylococcus aureus. Interface Focus 2018, 8, 20170059. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yan, L.; Tang, E.K.Y.; Zhang, Z.; Chen, W.; Liu, G.; Mo, J. Synthesis of TPGS/curcumin nanoparticles by thin-film hydration and evaluation of their anti-colon cancer efficacy in vitro and in vivo. Front. Pharmacol. 2019, 10, 769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvathy, K.S.; Negi, P.S.; Srinivas, P. Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglucoside. Food Chem. 2009, 115, 265–271. [Google Scholar] [CrossRef]
- Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Ren, H.; Hu, H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A meta-analysis of randomized controlled trials. Nutr. J. 2017, 16, 68. [Google Scholar] [CrossRef]
- Kurien, B.T.; Singh, A.; Matsumoto, H.; Scofield, R.H. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev. Technol. 2007, 5, 567–576. [Google Scholar] [CrossRef]
- Tønnesen, H.H.; Másson, M.; Loftsson, T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: Solubility, chemical and photochemical stability. Int. J. Pharm. 2002, 244, 127–135. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Kwon, Y.; Magnuson, B.A. Effect of azoxymethane and curcumin on transcriptional levels of cyclooxygenase-1 and -2 during initiation of colon carcinogenesis. Scand. J. Gastroenterol. 2007, 42, 72–80. [Google Scholar] [CrossRef]
- Cas, M.D.; Ghidoni, R. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients 2019, 11, 2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, A.; Kasoju, N.; Goswami, P.; Bora, U. Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications. J. Biomater. Appl. 2011, 25, 619–639. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, S.; Chen, Y.; Lim, L.Y. Characterization and biological properties of NanoCUR formulation and its effect on major human cytochrome P450 enzymes. Int. J. Pharm. 2015, 495, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, F.U.; Sharma, R.; Shaikh, S.; Ray, D.; Aswal, V.K.; Pathak, C. Pluronic micelles encapsulated curcumin manifests apoptotic cell death and inhibits pro-inflammatory cytokines in human breast adenocarcinoma cells. Cancer Rep. 2019, 2, e1133. [Google Scholar] [CrossRef]
- Shamsi, S. Development and Evaluation of Curcumin-Loaded Pluronic F127 Nanoformulation. Ph.D. Thesis, The University of Western Australia, Perth, Australia, 2015. [Google Scholar]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Yur, D.; Lieser, R.M.; Sullivan, M.O.; Chen, W. Engineering bionanoparticles for improved biosensing and bioimaging. Curr. Opin. Biotechnol. 2021, 71, 41–48. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, W. The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ. Sci. Nano 2019, 5, 2482–2499. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Wilkey, C.J.; Phan, T.T.N. Human cytochrome P450 enzymes bind drugs and other substrates mainly through conformational-selection modes. J. Biol. Chem. 2019, 294, 15875. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Chan, W.H. Injurious effects of curcumin on maturation of mouse oocytes, fertilization and fetal development via apoptosis. Int. J. Mol. Sci. 2012, 13, 4655–4672. [Google Scholar] [CrossRef] [Green Version]
- Alafiatayo, A.A.; Lai, K.S.; Syahida, A.; Mahmood, M.; Shaharuddin, N.A. Phytochemical evaluation, embryotoxicity, and teratogenic effects of Curcuma longa extract on zebrafish (Danio rerio). Evid. Based Complement. Altern. Med. 2019, 5, 3807207. [Google Scholar] [CrossRef] [Green Version]
- Olson, H.; Betton, G.; Robinson, D.; Thomas, K.; Monro, A.; Kolaja, G.; Lilly, P.; Sanders, J.; Sipes, G.; Bracken, W.; et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharm. 2000, 32, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Rothenbücher, T.S.P.; Ledin, J.; Gibbs, D.; Engqvist, H.; Persson, C.; Hulsart-Billström, G. Zebrafish embryo as a replacement model for initial biocompatibility studies of biomaterials and drug delivery systems. Acta Biomater. 2019, 100, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Stemple, D.L. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Cordero-Maldonado, M.L.; Siverio-Mota, D.; Vicet-Muro, L.; Wilches-Arizábala, I.M.; Esguerra, C.V.; de Witte, P.A.; Crawford, A.D. Optimization and pharmacological validation of a leukocyte migration assay in zebrafish larvae for the rapid in vivo bioactivity analysis of anti-inflammatory secondary metabolites. PLoS ONE 2013, 8, e75404. [Google Scholar] [CrossRef] [Green Version]
- Segner, H. Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp. Biochem. Physiol. C Toxicol. Pharm. 2009, 149, 187–195. [Google Scholar] [CrossRef]
- Shamsi, S.; Alagan, A.A.; Sarchio, S.N.E.; Yasin, F.M. Synthesis, characterization, and toxicity assessment of Pluronic F127-functionalized graphene oxide on the embryonic development of zebrafish (Danio rerio). Int. J. Nanomed. 2020, 15, 8311–8329. [Google Scholar] [CrossRef]
- Ghafor, A.A.H.A.; Elias, N.; Shamsi, S.; Yasin, F.M.; Sarchio, S.N.E. Toxicity assessment of gallic acid loaded graphene oxide (GAGO) nano-formulation in zebrafish (Danio rerio) embryos. Pertanika J. Sci. Tech. 2020, 28, 311–326. [Google Scholar]
- Shamsi, S.; Zainudin, F.S.; Othman, A.N. Effects of different extraction solvents on the toxicity of Piper sarmentosum leaf extract in zebrafish (Danio rerio) embryos. Malays. J. Biochem. Mol. Biol. 2021, 3, 127–142. [Google Scholar]
- Fako, V.E.; Furgeson, D.Y. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv. Drug. Deliv. Rev. 2009, 61, 478–486. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.; Wu, Y.; You, H.; Lv, L. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat. Toxicol. 2013, 136–137, 49–59. [Google Scholar] [CrossRef]
- Ismail, E.H.; Sabry, D.Y.; Mahdy, H.; Khalil, M.M.H. Synthesis and characterization of some ternary metal complexes of curcumin with 1,10-phenanthroline and their anticancer applications. J. Sci. Res. 2014, 6, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Rao, R. Analytical tools for cyclodextrin nanosponges in pharmaceutical field: A review. J. Incl. Phenom. Macrocycl. Chem. 2019, 94, 11–30. [Google Scholar] [CrossRef]
- Kant, V.; Gopal, A.; Pathak, N.N.; Kumar, P.; Tandan, S.K.; Kumar, D. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int. Immunopharmacol. 2014, 20, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Vareed, S.K.; Kakarala, M.; Ruffin, M.T.; Crowell, J.A.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1411–1417. [Google Scholar] [CrossRef] [Green Version]
- Psimadas, D.; Georgoulias, P.; Valotassiou, V.; Loudos, G. Molecular nanomedicine towards cancer: ¹¹¹In-labeled nanoparticles. J. Pharm. Sci. 2012, 101, 2271–2280. [Google Scholar] [CrossRef]
- Zuckerman, J.E.; Choi, C.H.; Han, H.; Davis, M.E. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl. Acad. Sci. USA 2012, 109, 3137–3142. [Google Scholar] [CrossRef] [Green Version]
- Gumustas, M.; Sengel-Turk, C.T.; Gumustas, A.; Ozkan, S.A.; Uslu, B. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems. In Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 67–108. [Google Scholar]
- Shnoudeh, A.J.; Hamad, I.; Abdo, R.W.; Qadumii, L.; Jaber, A.Y.; Surchi, H.S.; Alkelany, S.Z. Synthesis, characterization, and applications of metal nanoparticles. In Advances in Pharmaceutical Product Development and Research, Biomaterials and Bionanotechnology; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 527–612. [Google Scholar]
- Sant, K.E.; Timme-Laragy, A.R. Zebrafish as a model for toxicological perturbation of yolk and nutrition in the early embryo. Curr. Environ. Health Rep. 2018, 5, 125–133. [Google Scholar] [CrossRef]
- Hering, I.; Eilebrecht, E.; Parnham, M.J.; Günday-Türeli, N.; Türeli, A.E.; Weiler, M.; Schäfers, C.; Fenske, M.; Wacker, M.G. Evaluation of potential environmental toxicity of polymeric nanomaterials and surfactants. Environ. Toxicol. Pharmacol. 2020, 76, 103353. [Google Scholar] [CrossRef]
- Wu, J.Y.; Lin, C.Y.; Lin, T.W.; Ken, C.F.; Wen, Y.D. Curcumin affects development of zebrafish embryo. Biol. Pharm. Bull. 2007, 30, 1336–1339. [Google Scholar] [CrossRef] [Green Version]
- Wahlang, B.; Pawar, Y.B.; Bansal, A.K. Identification of permeability-related hurdles in oral delivery of curcumin using the Caco-2 cell model. Eur. J. Pharm. Biopharm. 2011, 77, 275–282. [Google Scholar] [CrossRef]
- Nam, J.P.; Park, S.C.; Kim, T.H.; Jang, J.Y.; Choi, C.; Jang, M.K.; Nah, J.W. Encapsulation of paclitaxel into lauric acid-O-carboxymethyl chitosan-transferrin micelles for hydrophobic drug delivery and site-specific targeted delivery. Int. J. Pharm. 2013, 457, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Alakhova, D.Y.; Zhao, X.; Band, V.; Batrakova, E.V.; Kabanov, A.V. Eradication of cancer stem cells in triple negative breast cancer using doxorubicin/pluronic polymeric micelles. Nanomedicine 2020, 24, 102124. [Google Scholar] [CrossRef] [PubMed]
- Dehghankelishadi, P.; Saadat, E.; Ravar, F.; Safavi, M.; Pordeli, M.; Gholami, M.; Dorkoosh, F.A. In vitro and in vivo evaluation of paclitaxel-lapatinib-loaded F127 pluronic micelles. Drug Dev. Ind. Pharm. 2017, 43, 390–398. [Google Scholar] [CrossRef]
- Kancharla, S.; Zoyhofski, N.A.; Bufalini, L.; Chatelais, B.F.; Alexandridis, P. Association between nonionic amphiphilic polymer and ionic surfactant in aqueous solutions: Effect of polymer hydrophobicity and micellization. Polymers 2020, 12, 1831. [Google Scholar] [CrossRef]
- Lewis, M.A. Chronic and sublethal toxicities of surfactants to aquatic animals: A review and risk assessment. Water Res. 1991, 25, 101–113. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, X.; Sun, M.; Wei, Z.; Wang, Y.; Gao, A.; Chen, D.; Zhao, X.; Feng, X. Exploring the effects of different types of surfactants on zebrafish embryos and larvae. Sci. Rep. 2015, 5, 10107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Song, X.; Shang, M.; Zou, W.; Zhang, M.; Wei, H.; Shao, H. Curcumin exerts cytotoxicity dependent on reactive oxygen species accumulation in non-small-cell lung cancer cells. Future Oncol. 2019, 15, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
Exposure Time (hpf) | LC50 (µM) | ||
---|---|---|---|
CUR | NanoCUR | PF | |
24 | 8.077 ± 1.283 | >100 | >2% w/v |
48 | 6.853 ± 1.079 | >100 | >2% w/v |
72 | 6.379 ± 0.835 | >100 | >2% w/v |
96 | 6.302 ± 0.859 | 28.4 ± 4.406 * | >2% w/v |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, S.N.S.; Subramaniam, K.A.; Muhamad Zamani, Z.H.; Sarchio, S.N.E.; Md Yasin, F.; Shamsi, S. Biocompatibility Study of Curcumin-Loaded Pluronic F127 Nanoformulation (NanoCUR) against the Embryonic Development of Zebrafish (Danio rerio). Molecules 2022, 27, 4493. https://doi.org/10.3390/molecules27144493
Abdullah SNS, Subramaniam KA, Muhamad Zamani ZH, Sarchio SNE, Md Yasin F, Shamsi S. Biocompatibility Study of Curcumin-Loaded Pluronic F127 Nanoformulation (NanoCUR) against the Embryonic Development of Zebrafish (Danio rerio). Molecules. 2022; 27(14):4493. https://doi.org/10.3390/molecules27144493
Chicago/Turabian StyleAbdullah, Siti Nur Sharmila, Kalai Arasu Subramaniam, Zahir Haizat Muhamad Zamani, Seri Narti Edayu Sarchio, Faizah Md Yasin, and Suhaili Shamsi. 2022. "Biocompatibility Study of Curcumin-Loaded Pluronic F127 Nanoformulation (NanoCUR) against the Embryonic Development of Zebrafish (Danio rerio)" Molecules 27, no. 14: 4493. https://doi.org/10.3390/molecules27144493
APA StyleAbdullah, S. N. S., Subramaniam, K. A., Muhamad Zamani, Z. H., Sarchio, S. N. E., Md Yasin, F., & Shamsi, S. (2022). Biocompatibility Study of Curcumin-Loaded Pluronic F127 Nanoformulation (NanoCUR) against the Embryonic Development of Zebrafish (Danio rerio). Molecules, 27(14), 4493. https://doi.org/10.3390/molecules27144493