Anti-Proliferative and Cytoprotective Activity of Aryl Carbamate and Aryl Urea Derivatives with Alkyl Groups and Chlorine as Substituents
"> Figure 1
<p>Cytokinin-like compounds.</p> "> Figure 2
<p>Anti-proliferative activity of the compounds <b>III</b><span class="html-italic">a</span>–<span class="html-italic">h</span> on the U-87 MG glioblastoma (<b>A</b>), SH-SY5Y neuroblastoma (<b>B</b>), A-375 melanoma (<b>C</b>), and MDA-MB-231 carcinoma (<b>D</b>) cell lines. Negative control cells (100% viability) were treated with 0.5% DMSO. Positive control cells (100% cell death) were treated with 3.6 μL of 50% Triton X-100 in ethanol per 200 μL of the cell culture medium. 24 h incubation. MTT test data. Mean ± standard error (<span class="html-italic">n</span> = 5 experiments).</p> "> Figure 3
<p>Anti-proliferative activity of the aryl carbamates for the U-87 MG glioblastoma (<b>A</b>), SH-SY5Y neuroblastoma (<b>B</b>), A-375 melanoma (<b>C</b>), and MDA-MB-231 carcinoma (<b>D</b>) cell lines. Negative control cells (100% viability) were treated with 0.5% DMSO. Positive control cells (100% cell death) were treated with 3.6 μL of 50% Triton X-100 in ethanol per 200 μL of the cell culture medium. 24 h incubation. MTT test data. Mean ± standard error (<span class="html-italic">n</span> = 5 experiments). * Statistically significant difference from the control, ANOVA with the Dunnett post-test, <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 4
<p>Anti-proliferative activity of the pyridyl urea derivatives for the U-87 MG glioblastoma (<b>A</b>), SH-SY5Y neuroblastoma (<b>B</b>), A-375 melanoma (<b>C</b>), and MDA-MB-231 carcinoma (<b>D</b>) cell lines. Negative control cells (100% viability) were treated with 0.5% DMSO. Positive control cells (100% cell death) were treated with 3.6 μL of 50% Triton X-100 in ethanol per 200 μL of the cell culture medium. 24 h incubation. MTT test data. Mean ± standard error (<span class="html-italic">n</span> = 5 experiments). * Statistically significant difference from the control, ANOVA with the Dunnett post-test, <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 5
<p>Anti-proliferative activity of the aryl carbamates <b>II</b> for the human immortalized fibroblast Bj-5ta cell line. Negative control cells (100% viability) were treated with 0.5% DMSO. Positive control cells (100% cell death) were treated with 3.6 μL of 50% Triton X-100 in ethanol per 200 μL of the cell culture medium. 24 h incubation. MTT test data. Mean ± standard error (<span class="html-italic">n</span> = 3 experiments).</p> "> Figure 6
<p>Apoptosis induction by the <b>II</b><span class="html-italic">d</span> compound for the MDA-MB-231 cell line. Caspases activity after 5 (<b>A</b>) and 2 (<b>B</b>) h of incubation with 100 µM of GT-04 or 90 µM of apoptosis inductor (N-docosahexaenoyl dopamine, DHA-DA) with or without 80 µM of Z-VAD-FMK. amalgamated data of <span class="html-italic">n</span> = 3 experiments. Membrane integrity loss (DNA-binding dye propidium iodide, red) and phosphatidylserine externalization (annexin-FITC dye, green) in the control cells (<b>C</b>) and after the treatment with 5 mM of H<sub>2</sub>O<sub>2</sub> (<b>D</b>), 80 µM of DHA-DA (<b>E</b>) or 100 µM of <b>II</b><span class="html-italic">d</span> (<b>F</b>).</p> "> Figure 7
<p>Cell death mechanism of the <b>II</b><span class="html-italic">d</span> compound for the MDA-MB-231 cell line. (<b>A</b>) Effect of necroptosis (necrostatin-1, 100 µM, and necrosulfonate, 1 µM), apoptosis (Z-VAD-FMK, 10 µM), autophagy (hydroxychloroquine sulfate, 1 µM), and ASK1 (NQDI-1, 10 µM) blockers and ROS scavenger (N-Ac-Cys, 0.05 or 0.5 mM + 50 mM HEPES for pH stabilization) on the cytotoxicity of 100 µM of <b>II</b><span class="html-italic">d</span>. 24 h incubation time, MTT assay data, mean ± standard error, <span class="html-italic">n</span> = 3 amalgamated experiments. (<b>B</b>), ROS accumulation after the treatment of the cells with 5 mM of H<sub>2</sub>O<sub>2</sub> or 100 µM of <b>II</b><span class="html-italic">d</span>. 24 h incubation time, DCFH-DA fluorescence data, <span class="html-italic">n</span> = 3 amalgamated experiments. * Statistically significant difference from the control without blocker (<b>A</b>) or substance (<b>B</b>), ANOVA with the Tukey post-test, <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 8
<p>The effect of aryl carbamates <b>II</b> (<b>A</b>,<b>D</b>) pyridyl ureas <b>I</b> (<b>B</b>,<b>E</b>), and EDU analogs <b>III</b> (<b>C</b>,<b>F</b>) on the cytotoxicity of H<sub>2</sub>O<sub>2</sub> (<b>A</b>–<b>C</b>) and CoCl<sub>2</sub> (<b>D</b>–<b>F</b>) for the SH-SY5Y cell line. 24 h incubation time. MTT assay data, mean ± standard error, <span class="html-italic">n</span> = 3 amalgamated experiments. * Statistically significant difference from the control without substance. ANOVA with the Holm-Sidak post-test, <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 9
<p>EDU analogs <b>III</b> effect on the proliferation of SH-SY5Y cell line in a prolonged incubation. Negative control cells (100% viability) were treated with 0.5% DMSO. Positive control cells (100% cell death) were treated with 3.6 μL of 50% Triton X-100 in ethanol per 200 μL of the cell culture medium. 72 h incubation time. MTT assay data, mean ± standard error, <span class="html-italic">n</span> = 3 amalgamated experiments. * Statistically significant difference from the control without substance. ANOVA with the Dunnett post-test, <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 10
<p>Chosen cluster location for the A2AR variant 5mzj. Violet: centroids of the receptor residues. Purple: centroids of the docked molecules.</p> "> Figure 11
<p>Chosen cluster location for the APRT variant 6hgs. Rose: centroids of the receptor residues. Blue: centroids of the docked molecules.</p> "> Figure 12
<p>Chosen cluster location for the CDK2 variant 5fp5. Brown: centroids of the receptor residues. Blue: centroids of the docked molecules.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Compound Synthesis
2.2. Anti-Proliferative Activity Evaluation
2.3. Selectivity of the Active Arylcarbamates
2.4. Cell Death Type and Mechanism of the Active Arylcarbamates
2.5. Cytoprotection
2.6. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Synthesized Compounds’ Characterization
4.3. Chemical Synthesis
4.4. Cell Culture
4.5. Oxidative Stress Induction
4.6. Cytotoxicity and Proliferation Stimulation
4.7. Cell Viability Assay
4.8. Apoptosis Assay
4.9. Caspase Activity Assay
4.10. ROS Assay
4.11. Molecular Docking
4.12. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Duszka, K.; Clark, B.; Massino, F.; Barciszewski, J. Biological Activities of Kinetin. In Herbal Drugs: Ethnomedicine to Modern Medicine; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Sun, J.-H.; Liu, Y.-M.; Cao, T.; Ouyang, W.-Q. Effect of kinetin on ovary and uterus in D-galactose-induced female mouse model of aging. Sheng Li Xue Bao 2013, 65, 389–394. [Google Scholar] [PubMed]
- Kim, S.W.; Goossens, A.; Libert, C.; Van Immerseel, F.; Staal, J.; Beyaert, R. Phytohormones: Multifunctional Nutraceuticals against Metabolic Syndrome and Comorbid Diseases. Biochem. Pharmacol. 2020, 175, 113866. [Google Scholar] [CrossRef] [PubMed]
- Voller, J.; Maková, B.; Kadlecová, A.; Gonzalez, G.; Strnad, M. Plant Hormone Cytokinins for Modulating Human Aging and Age-Related Diseases. In Hormones in Ageing and Longevity; Springer: Cham, Switzerland, 2017; pp. 311–335. ISBN 978-3-319-63001-4. [Google Scholar]
- Oshchepkov, M.S.; Kalistratova, A.V.; Savelieva, E.M.; Romanov, G.A.; Bystrova, N.A.; Kochetkov, K.A. Natural and Synthetic Cytokinins and Their Applications in Biotechnology, Agrochemistry and Medicine. Russ. Chem. Rev. 2020, 89, 787–810. [Google Scholar] [CrossRef]
- Kalistratova, A.V.; Kovalenko, L.V.; Oshchepkov, M.S.; Solovieva, I.N.; Polivanova, A.G.; Bystrova, N.A.; Kochetkov, K.A. Biological Activity of the Novel Plant Growth Regulators: N-Alkoxycarbonylaminoethyl-N′-Arylureas. Bulg. J. Agric. Sci. 2020, 26, 772–776. [Google Scholar]
- Okamoto, T.; Shudo, K.; Isogai, Y. Structural and biological links between urea and purine cytokinins. In Pesticide Chemistry: Human Welfare and Environment; Doyle, P., Fujita, T., Eds.; Elsevier Ltd.: Pergamon, Turkey, 1983; pp. 333–338. ISBN 978-0-08-029222-9. [Google Scholar]
- Okamoto, T.; Shudo, K.; Takahashi, S.; Kawachi, E.; Isogai, Y. 4-Pyridylureas Are Surprisingly Potent Cytokinins. The Structure-Activity Relationship. Chem. Pharm. Bull. 1981, 29, 3748–3750. [Google Scholar] [CrossRef] [Green Version]
- Kalistratova, A.V.; Oshchepkov, М.S.; Ivanova, M.S.; Kovalenko, L.V.; Tsvetikova, M.A.; Bystrova, N.A.; Kochetkov, K.A. Wheat (Triticum aestivum L.) Reaction to New Bifunctional Carbamate Compounds. J. Agric. Sci. 2021, 13, 36. [Google Scholar] [CrossRef]
- Vorob’ev, M.M.; Khomenkov, V.S.; Sinitsyna, O.V.; Levinskaya, O.A.; Kitaeva, D.K.; Kalistratova, A.V.; Oshchepkov, M.S.; Kovalenko, L.V.; Kochetkov, K.A. Encapsulation of Chlorine-Containing Carbamates in Polypeptide Nanoparticles Prepared by Enzymatic Hydrolysis of Casein. Russ. Chem. Bull. 2018, 67, 1508–1512. [Google Scholar] [CrossRef]
- Lee, E.H.; Chen, C.M. Studies on the Mechanisms of Ozone Tolerance: Cytokinin-like Activity of N-[2-(2-oxo-1-imidazolidinyl)Ethyl]-N′-phenylurea, a Compound Protecting against Ozone Injury. Physiol. Plant. 1982, 56, 486–491. [Google Scholar] [CrossRef]
- Kannaujia, R.; Singh, P.; Prasad, V.; Pandey, V. Evaluating Impacts of Biogenic Silver Nanoparticles and Ethylenediurea on Wheat (Triticum aestivum L.) against Ozone-Induced Damages. Environ. Res. 2022, 203, 111857. [Google Scholar] [CrossRef]
- Nigar, S.; Nazneen, S.; Khan, S.; Ali, N.; Sarwar, T. Response of Vigna radiata L. (Mung Bean) to Ozone Phytotoxicity Using Ethylenediurea and Magnesium Nitrate. J. Plant Growth Regul. 2021, 1–13. [Google Scholar] [CrossRef]
- Surabhi, S.; Gupta, S.K.; Pande, V.; Pandey, V. Individual and Combined Effects of Ethylenediurea (EDU) and Elevated Carbon Dioxide (ECO₂), on Two Rice (Oryza sativa L.) Cultivars under Ambient Ozone. Environ. Adv. 2020, 2, 100025. [Google Scholar] [CrossRef]
- Motte, H.; Galuszka, P.; Spíchal, L.; Tarkowski, P.; Plíhal, O.; Šmehilová, M.; Jaworek, P.; Vereecke, D.; Werbrouck, S.; Geelen, D. Phenyl-Adenine, Identified in a LIGHT-DEPENDENT SHORT HYPOCOTYLS4-Assisted Chemical Screen, Is a Potent Compound for Shoot Regeneration through the Inhibition of CYTOKININ OXIDASE/DEHYDROGENASE Activity. Plant Physiol. 2013, 161, 1229–1241. [Google Scholar] [CrossRef] [Green Version]
- Romanov, G.A.; Lomin, S.N.; Schmülling, T. Biochemical Characteristics and Ligand-Binding Properties of Arabidopsis Cytokinin Receptor AHK3 Compared to CRE1/AHK4 as Revealed by a Direct Binding Assay. J. Exp. Bot. 2006, 57, 4051–4058. [Google Scholar] [CrossRef] [Green Version]
- Yonova, P. Design, Synthesis and Properties of Synthetic Cytokinins. Recent Advances on Their Application. Gen. Appl. Plant Physiol. 2010, 36, 124–147. [Google Scholar]
- Weidner, C.; Rousseau, M.; Micikas, R.J.; Fischer, C.; Plauth, A.; Wowro, S.J.; Siems, K.; Hetterling, G.; Kliem, M.; Schroeder, F.C.; et al. Amorfrutin C Induces Apoptosis and Inhibits Proliferation in Colon Cancer Cells through Targeting Mitochondria. J. Nat. Prod. 2016, 79, 2–12. [Google Scholar] [CrossRef]
- Kalistratova, A.V.; Kovalenko, L.V.; Oshchepkov, M.S.; Gamisoniya, A.M.; Gerasimova, T.S.; Demidov, Y.A.; Akimov, M.G. Synthesis of New Compounds in the Series of Aryl-Substituted Ureas with Cytotoxic and Antioxidant Activity. Mendeleev Commun. 2020, 30, 153–155. [Google Scholar] [CrossRef]
- Searls, T.; McLaughlin, L.W. Synthesis of the Analogue Nucleoside 3-Deaza-2′-Deoxycytidine and Its Template Activity with DNA Polymerase. Tetrahedron 1999, 55, 11985–11996. [Google Scholar] [CrossRef]
- Lougiakis, N.; Gavriil, E.-S.; Kairis, M.; Sioupouli, G.; Lambrinidis, G.; Benaki, D.; Krypotou, E.; Mikros, E.; Marakos, P.; Pouli, N.; et al. Design and Synthesis of Purine Analogues as Highly Specific Ligands for FcyB, a Ubiquitous Fungal Nucleobase Transporter. Bioorg. Med. Chem. 2016, 24, 5941–5952. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, B.; Wang, P.; Yao, F.; Zhang, C.; Yu, G. Overview of MicroRNA-199a Regulation in Cancer. Cancer Manag. Res. 2019, 11, 10327–10335. [Google Scholar] [CrossRef] [Green Version]
- Voller, J.; Zatloukal, M.; Lenobel, R.; Doleal, K.; Bére, T.; Krytof, V.; Spíchal, L.; Niemann, P.; Dubák, P.; Hajdúch, M.; et al. Anticancer Activity of Natural Cytokinins: A Structure-Activity Relationship Study. Phytochemistry 2010, 71, 1350–1359. [Google Scholar] [CrossRef]
- Cheng, R.K.Y.; Segala, E.; Robertson, N.; Deflorian, F.; Doré, A.S.; Errey, J.C.; Fiez-Vandal, C.; Marshall, F.H.; Cooke, R.M. Structures of Human A1 and A2A Adenosine Receptors with Xanthines Reveal Determinants of Selectivity. Structure 2017, 25, 1275–1285.e4. [Google Scholar] [CrossRef]
- Lebon, G.; Warne, T.; Edwards, P.C.; Bennett, K.; Langmead, C.J.; Leslie, A.G.W.; Tate, C.G. Agonist-Bound Adenosine A2A Receptor Structures Reveal Common Features of GPCR Activation. Nature 2011, 474, 521–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozeir, M.; Huyet, J.; Burgevin, M.-C.; Pinson, B.; Chesney, F.; Remy, J.-M.; Siddiqi, A.R.; Lupoli, R.; Pinon, G.; Saint-Marc, C.; et al. Structural Basis for Substrate Selectivity and Nucleophilic Substitution Mechanisms in Human Adenine Phosphoribosyltransferase Catalyzed Reaction. J. Biol. Chem. 2019, 294, 11980–11991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludlow, R.F.; Verdonk, M.L.; Saini, H.K.; Tickle, I.J.; Jhoti, H. Detection of Secondary Binding Sites in Proteins Using Fragment Screening. Proc. Natl. Acad. Sci. USA 2015, 112, 15910–15915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, N.R.; Lowe, E.D.; Petri, E.; Skamnaki, V.; Antrobus, R.; Johnson, L. Cyclin B and Cyclin A Confer Different Substrate Recognition Properties on CDK2. Cell Cycle 2007, 6, 1350–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-N.; Wu, D.-W.; Li, T.; Yang, K.-J.; Cheng, L.; Zhou, Z.-P.; Pu, S.-M.; Lin, W.-H. Arylurea Derivatives: A Class of Potential Cancer Targeting Agents. Curr. Top. Med. Chem. 2017, 17, 3099–3130. [Google Scholar] [CrossRef] [PubMed]
- Naseem, M.; Othman, E.M.; Fathy, M.; Iqbal, J.; Howari, F.M.; AlRemeithi, F.A.; Kodandaraman, G.; Stopper, H.; Bencurova, E.; Vlachakis, D.; et al. Integrated Structural and Functional Analysis of the Protective Effects of Kinetin against Oxidative Stress in Mammalian Cellular Systems. Sci. Rep. 2020, 10, 13330. [Google Scholar] [CrossRef]
- Spíchal, L.; Krystof, V.; Paprskárová, M.; Lenobel, R.; Styskala, J.; Binarová, P.; Cenklová, V.; De Veylder, L.; Inzé, D.; Kontopidis, G.; et al. Classical Anticytokinins Do Not Interact with Cytokinin Receptors but Inhibit Cyclin-Dependent Kinases. J. Biol. Chem. 2007, 282, 14356–14363. [Google Scholar] [CrossRef] [Green Version]
- Gopinathan, L.; Tan, S.L.W.; Padmakumar, V.C.; Coppola, V.; Tessarollo, L.; Kaldis, P. Loss of Cdk2 and Cyclin A2 Impairs Cell Proliferation and Tumorigenesis. Cancer Res. 2014, 74, 3870–3879. [Google Scholar] [CrossRef] [Green Version]
- Gessi, S.; Bencivenni, S.; Battistello, E.; Vincenzi, F.; Colotta, V.; Catarzi, D.; Varano, F.; Merighi, S.; Borea, P.A.; Varani, K. Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455. Front. Pharmacol. 2017, 8, 888. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Shudo, K.; Okamoto, T.; Yamada, K.; Isogai, Y. Cytokinin Activity of N-Phenyl-N′-(4-Pyridyl)Urea Derivatives. Phytochemistry 1978, 17, 1201–1207. [Google Scholar] [CrossRef]
- Baskakov, J.A.; Shevelukha, V.S.; Simonov, V.D.; Kulaeva, O.N.; Chimishkian, A.L.; Butenko, R.G.; Shapovalov, A.A.; Nedelchenko, B.M.; Shanbanovich, G.N.; Taschi, V.P.; et al. Carbamoyl Derivatives of Alkanolamines and Antistress-Type Means for Plant Growth Regulation Based Thereon. WO1991007381A1, 30 May 1991. [Google Scholar]
- van de Loosdrecht, A.A.; Beelen, R.H.J.; Ossenkoppele, G.J.; Broekhoven, M.G.; Langenhuijsen, M.M.A.C. A Tetrazolium-Based Colorimetric MTT Assay to Quantitate Human Monocyte Mediated Cytotoxicity against Leukemic Cells from Cell Lines and Patients with Acute Myeloid Leukemia. J. Immunol. Methods 1994, 174, 311–320. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, S.; Kota, P.; Ding, F.; Dokholyan, N.V. Automated Minimization of Steric Clashes in Protein Structures. Proteins 2011, 79, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Maslova, V.D.; Reshetnikov, R.V.; Bezuglov, V.V.; Lyubimov, I.I.; Golovin, A.V. Supercomputer Simulations of Dopamine-Derived Ligands Complexed with Cyclooxygenases. Supercomput. Front. Innov. 2018, 5, 98–102. [Google Scholar] [CrossRef]
- Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; Sander, J. OPTICS: Ordering Points to Identify the Clustering Structure. SIGMOD Rec. 1999, 28, 49–60. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
1-Phenyl-3- (4-Pyridyl) Urea Derivatives | Arylcarbamates | Arylureas | ||||||
---|---|---|---|---|---|---|---|---|
R | X | R | X = O, R | X = NH, R | ||||
Ia | — | H | IIa | iPrO | IIIa | H | IIIe | H |
Ib | 2-CH3 | Cl | IIb | nPrOC(O) | IIIb | 3-Cl | IIIf | 3-Cl |
Ic | 3-CH3 | Cl | IIc | iPrOC(O) | IIIc | 4-Cl | IIIg | 4-Cl |
Id | 3-Cl | Cl | IId | iBuOC(O) | IIId | 3,4-Cl | IIIh | 3,4-Cl |
A-375 | U-87 MG | MDA-MB-231 | Bj-5ta | ||||
---|---|---|---|---|---|---|---|
Proliferation Decrease Mean ± S.E. | Selectivity | Proliferation Decrease Mean ± S.E. | Selectivity | Proliferation Decrease Mean ± S.E. | Selectivity | Proliferation Decrease Mean ± S.E. | |
IIa | 39 ± 4.2 | 8.4 | 35.6 ± 1.1 | 7.7 | 34.5 ± 3.9 | 7.4 | 4.7 ± 2.4 |
IIb | 39.8 ± 1.9 | 6.1 | 29.8 ± 4.8 | 4.5 | 32.1 ± 3.9 | 4.9 | 6.6 ± 1.9 |
IIc | 5.4 ± 3.2 | 0.5 | 4.7 ± 2.7 | 0.4 | 7.3 ± 2.2 | 0.6 | 11.6 ± 2 |
IId | 42.3 ± 2.6 | 2.4 | 33.3 ± 2.6 | 1.9 | 34.3 ± 3.2 | 2.0 | 17.5 ± 2.6 |
A2AR | A2AR + Adenosine | A2AR + Caffeine | ||||
---|---|---|---|---|---|---|
Energy, Mean ± S.D. | Occurrence Frequency | Energy, Mean ± S.D. | Occurrence Frequency | Energy, Mean ± S.D. | Occurrence Frequency | |
Adenosine | −5.37 ± 0.42 | 0.25 | −5.05 ± 0.47 | 0.16 | −5.54 ± 0.47 | 0.1 |
Caffeine | −4.53 ± 0.09 | 0.22 | ND | ND | −4.35 ± 0.10 | 0.02 |
IIa | −4.87 ± 0.38 | 0.48 | −4.60 ± 0.48 | 0.46 | −4.74 ± 0.34 | 0.32 |
IIb | −4.80 ± 0.38 | 0.26 | −4.77 ± 0.48 | 0.31 | −4.61 ± 0.41 | 0.19 |
IIc | −4.99 ± 0.41 | 0.3 | −4.81 ± 0.45 | 0.3 | −4.71 ± 0.30 | 0.23 |
IId | −4.97 ± 0.51 | 0.45 | −4.79 ± 0.53 | 0.28 | −5.01 ± 0.34 | 0.2 |
IIIa | −4.26 ± 0.46 | 0.32 | −3.93 ± 0.37 | 0.33 | −4.38 ± 0.53 | 0.19 |
IIIb | −4.26 ± 0.59 | 0.32 | −4.17 ± 0.51 | 0.3 | −4.41 ± 0.37 | 0.27 |
IIIc | −4.25 ± 0.50 | 0.25 | −3.91 ± 0.42 | 0.26 | −4.31 ± 0.38 | 0.13 |
IIId | −4.28 ± 0.42 | 0.24 | −4.22 ± 0.40 | 0.44 | −4.25 ± 0.48 | 0.23 |
IIIe | −4.35 ± 0.43 | 0.23 | −4.33 ± 0.43 | 0.33 | −4.38 ± 0.40 | 0.31 |
IIIf | −4.43 ± 0.48 | 0.27 | −4.29 ± 0.40 | 0.33 | −4.47 ± 0.51 | 0.18 |
IIIg | −4.58 ± 0.46 | 0.29 | −4.41 ± 0.40 | 0.43 | −4.53 ± 0.37 | 0.21 |
IIIh | −4.58 ± 0.60 | 0.26 | −4.46 ± 0.48 | 0.39 | −4.36 ± 0.31 | 0.19 |
APRT + GMP | APRT + IMP | APRT + Phosphate | ||||
---|---|---|---|---|---|---|
Energy, Mean ± S.D. | Occurrence Frequency | Energy, Mean ± S.D. | Occurrence Frequency | Energy, Mean ± S.D. | Occurrence Frequency | |
GMP | −6.07 ± 0.45 | 0.18 | −6.16 ± 0.23 | 0.28 | −6.62 ± 0.42 | 0.34 |
IIa | −4.57 ± 0.70 | 0.15 | −5.14 ± 0.55 | 0.31 | −4.80 ± 0.50 | 0.14 |
IIb | −4.91 ± 0.81 | 0.19 | −4.72 ± 0.75 | 0.19 | −4.90 ± 0.1 | 0.01 |
IIc | −4.74 ± 0.34 | 0.12 | −5.07 ± 0.60 | 0.23 | −5.19 ± 0.58 | 0.23 |
IId | −4.53 ± 0.68 | 0.1 | −5.41 ± 0.63 | 0.27 | −4.92 ± 0.36 | 0.17 |
IMP | −7.43 ± 0.55 | 0.35 | −7.24 ± 0.49 | 0.28 | −7.73 ± 0.72 | 0.13 |
IIIa | −4.77 ± 0.57 | 0.23 | −4.33 ± 0.40 | 0.13 | −4.64 ± 0.79 | 0.14 |
IIIb | −4.65 ± 0.55 | 0.06 | −4.40 ± 0.50 | 0.32 | −4.25 ± 0.30 | 0.14 |
IIIc | −4.60 ± 0.56 | 0.05 | −4.26 ± 0.40 | 0.19 | −4.67 ± 0.50 | 0.14 |
IIId | −4.63 ± 0.51 | 0.07 | −4.48 ± 0.60 | 0.22 | −4.64 ± 0.66 | 0.15 |
IIIe | −4.41 ± 0.36 | 0.09 | −4.44 ± 0.53 | 0.13 | −4.26 ± 0.49 | 0.07 |
IIIf | −4.53 ± 0.58 | 0.12 | −4.35 ± 0.41 | 0.23 | −4.43 ± 0.32 | 0.1 |
IIIg | −4.47 ± 0.33 | 0.14 | −4.37 ± 0.23 | 0.09 | −4.39 ± 0.31 | 0.14 |
IIIh | −4.50 ± 0.17 | 0.04 | −4.58 ± 0.62 | 0.15 | −4.10 ± 0.10 | 0.05 |
CDK2 | CDK2 + CyclinB | |||
---|---|---|---|---|
Energy, Mean ± S.D. | Occurrence Frequency | Energy, Mean ± S.D. | Occurrence Frequency | |
IIa | −4.48 ± 0.51 | 0.18 | −4.87 ± 0.32 | 0.16 |
IIb | −4.48 ± 0.38 | 0.14 | −5.09 ± 0.31 | 0.2 |
IIc | −4.83 ± 0.44 | 0.19 | −5.21 ± 0.45 | 0.24 |
IId | −4.41 ± 0.38 | 0.12 | −5.14 ± 0.47 | 0.2 |
SCP2 | −4.97 ± 0.44 | 0.18 | −5.68 ± 0.33 | 0.22 |
IIIa | −4.13 ± 0.38 | 0.3 | −4.89 ± 0.66 | 0.12 |
IIIb | −3.93 ± 0.35 | 0.14 | −4.51 ± 0.42 | 0.1 |
IIIc | −3.98 ± 0.43 | 0.14 | −4.27 ± 0.42 | 0.12 |
IIId | −4.11 ± 0.41 | 0.18 | −4.59 ± 0.59 | 0.16 |
IIIe | −4.39 ± 0.49 | 0.27 | −4.88 ± 0.44 | 0.17 |
IIIf | −4.30 ± 0.61 | 0.17 | −4.86 ± 0.52 | 0.22 |
IIIg | −4.32 ± 0.46 | 0.19 | −4.68 ± 0.48 | 0.09 |
IIIh | −4.54 ± 0.31 | 0.17 | −4.91 ± 0.54 | 0.15 |
Protein | Configuration Variant | x | y | z |
---|---|---|---|---|
A2AR 5mzj | 1 | −17.629 | −30.760 | 18.168 |
2 | −4.629 | −50.760 | 18.168 | |
3 | −17.629 | 6.760 | 18.168 | |
A2AR 2ydo | 1 | −23.602 | 10.545 | −25.256 |
2 | −23.602 | 20.545 | −25.256 | |
3 | −4.629 | −50.760 | 18.168 | |
A2AR 5mzp | 1 | −16.417 | −40.474 | 18.316 |
2 | −16.417 | 5.474 | 18.316 | |
3 | −1.417 | −50.474 | 18.316 | |
APRT 6hgs | 1 | 22.572 | −3.082 | 4.313 |
APRT 6hgr | 1 | 23.667 | −7.067 | 5.057 |
APRT 6hgp | 1 | −24.642 | 0.247 | 1.919 |
CDK2 5fp5 | 1 | 29.547 | 4.964 | 49.678 |
CDK2 2jgz | 1 | 55.623 | 20.504 | −10.503 |
2 | 38.623 | 20.504 | 5.503 | |
3 | 38.623 | 20.504 | −30.503 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oshchepkov, M.; Kovalenko, L.; Kalistratova, A.; Ivanova, M.; Sherstyanykh, G.; Dudina, P.; Antonov, A.; Cherkasova, A.; Akimov, M. Anti-Proliferative and Cytoprotective Activity of Aryl Carbamate and Aryl Urea Derivatives with Alkyl Groups and Chlorine as Substituents. Molecules 2022, 27, 3616. https://doi.org/10.3390/molecules27113616
Oshchepkov M, Kovalenko L, Kalistratova A, Ivanova M, Sherstyanykh G, Dudina P, Antonov A, Cherkasova A, Akimov M. Anti-Proliferative and Cytoprotective Activity of Aryl Carbamate and Aryl Urea Derivatives with Alkyl Groups and Chlorine as Substituents. Molecules. 2022; 27(11):3616. https://doi.org/10.3390/molecules27113616
Chicago/Turabian StyleOshchepkov, Maxim, Leonid Kovalenko, Antonida Kalistratova, Maria Ivanova, Galina Sherstyanykh, Polina Dudina, Alexey Antonov, Anastasia Cherkasova, and Mikhail Akimov. 2022. "Anti-Proliferative and Cytoprotective Activity of Aryl Carbamate and Aryl Urea Derivatives with Alkyl Groups and Chlorine as Substituents" Molecules 27, no. 11: 3616. https://doi.org/10.3390/molecules27113616
APA StyleOshchepkov, M., Kovalenko, L., Kalistratova, A., Ivanova, M., Sherstyanykh, G., Dudina, P., Antonov, A., Cherkasova, A., & Akimov, M. (2022). Anti-Proliferative and Cytoprotective Activity of Aryl Carbamate and Aryl Urea Derivatives with Alkyl Groups and Chlorine as Substituents. Molecules, 27(11), 3616. https://doi.org/10.3390/molecules27113616