Perilla frutescens: A Rich Source of Pharmacological Active Compounds
"> Figure 1
<p>Different bioactive compounds of <span class="html-italic">P. frutescens</span> involved in enzyme inhibitory activities.</p> "> Figure 2
<p>Different bioactive compounds of <span class="html-italic">P. frutescens</span>, exhibiting different biological functions, including antiallergic activity, antidepressant activity, antispasmodic effect, hypolipidemic, hepatoprotection, and neuroprotection activities.</p> "> Figure 3
<p>Various bioactive compounds of <span class="html-italic">P. frutescens</span>, exhibiting different biological functions, including antioxidant, anti-inflammatory, anticancer, and antimicrobial activities.</p> "> Figure 4
<p>Schematic representation of Nrf2-ARE activation, by 2<sup>1</sup>,3<sup>1</sup>-dihydroxy-4<sup>1</sup>,6<sup>1</sup>-dimethoxychalcone from <span class="html-italic">P. frutescens</span>.</p> "> Figure 5
<p>Different biological functions of rosmarinic acid and luteolin, reported from <span class="html-italic">P. frutescens</span>.</p> ">
Abstract
:1. Introduction
2. Phytoconstituents of P. frutescens
2.1. Alkaloids, Phenylpropanoids, and Terpenoids
2.2. Polyphenolic Compounds
2.3. Flavonoids
2.4. Anthocyanins, Coumarins, Carotenoids, and Neolignans
2.5. Fatty Acids, Policosanols, Tocopherols, and Sitosterols
2.6. Glucosides, Peptides, Benzoxepin Derivatives, and Other Constituents
3. Biological Functions of P. frutescens
3.1. Aldose Reductase Inhibitory Activity
3.2. α-Glucosidase Inhibitory Activity
3.3. Xanthine Oxidase (XO) Inhibitory Activity
3.4. Tyrosinase Inhibitory Activity
3.5. Antispasmodic Effect
3.6. Insecticidal Activity
3.7. Anti-Allergic Activity
3.8. Anti-Depressant Activity
3.9. Hepatoprotective Activity
3.10. Hair Growth Promotion Activity
3.11. Hypolipidemic Activity
3.12. Inotropic and Lusitropic Effects
3.13. Neuroprotective Activity
3.14. Anti-Inflammatory Activity
3.15. Antioxidant Activity
3.16. Anticancer Activity
3.17. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, H.W.; Szilvia, T.-S. Identification and quantification of essential oil content and composition total polyphenols and antioxidant capacity of Perilla frutescens (L.) Britt. Food Chem. 2019, 275, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Peng, C.C.; Wang, H.E.; Liu, Y.W.; Shen, K.H.; Chen, K.C.; Peng, R.Y. Active volatile constituents in Perilla frutescens essential oils and improvement of antimicrobial and anti-inflammatory bioactivity by fractionation. J. Essen. Oil Bear. Plants 2016, 19, 1957–1983. [Google Scholar] [CrossRef]
- Tian, J.; Zeng, X.; Zhang, S.; Wang, Y.; Zhang, P.; Lü, A.; Peng, X. Regional variation in components and antioxidant and antifungal activities of Perilla frutescens essential oils in China. Ind. Crops Prod. 2014, 59, 69–79. [Google Scholar] [CrossRef]
- Ito, M.; Toyoda, M.; Honda, G. Chemical composition of the essential oil of Perilla frutescens. Nat. Med. 1999, 53, 32–36. [Google Scholar]
- Tabanca, N.; Demirci, B.; Ali, A.; Ali, Z.; Blythe, E.K.; Khan, I.A. Essential oils of green and red Perilla frutescens as potential sources of compounds for mosquito management. Ind. Crops Prod. 2015, 1, 36–44. [Google Scholar] [CrossRef]
- Ye, Q.; Zheng, D. Rapid analysis of the essential oil components of dried Perilla frutescens (L) by magnetic nanoparticle-assisted microwave distillation and simultaneous headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Anal. Methods 2009, 1, 39–44. [Google Scholar] [CrossRef]
- You, C.X.; Yang, K.; Wu, Y.; Zhang, W.J.; Wang, Y.; Geng, Z.F.; Chen, H.P.; Jiang, H.Y.; Du, S.S.; Deng, Z.W.; et al. Chemical composition and insecticidal activities of the essential oil of Perilla frutescens (L) Britt aerial parts against two stored product insects. Eur. Food Res. Technol. 2014, 239, 481–490. [Google Scholar] [CrossRef]
- Wang, X.-F.; Li, H.; Jiang, K.; Wang, Q.-Q.; Zheng, Y.-H.; Tang, W.; Tan, C.-H. Anti-inflammatory constituents from Perilla frutescens on lipopolysaccharide-stimulated RAW2.647 cells. Fitoterapia 2018, 130, 61–65. [Google Scholar] [CrossRef]
- Kwon, S.J.; Lee, J.H.; Moon, K.D.; Jeong, I.Y.; Ahn, D.U.; Lee, M.K.; Seo, K.I. Induction of apoptosis by isoegomaketone from Perilla frutescens L in B16 melanoma cells is mediated through ROS generation and mitochondrial-dependent-independent pathway. Food Chem. Toxicol. 2014, 65, 97–104. [Google Scholar] [CrossRef]
- Luo, W.; Du, Z.; Zheng, Y.; Liang, X.; Huang, G.; Zhang, Q.; Liu, Z.; Zhang, K.; Zheng, X.; Lin, L.; et al. Phytochemical composition and bioactivities of essential oils from six Lamiaceae species. Ind. Crops Prod. 2019, 133, 357–364. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Z.J.; Li, X.J.; Li, H.Z.; Cui, L.X.; He, D.L. Microcapsules biologically prepared using Perilla frutescens (L) Britt essential oil and their use for extension of fruit shelf life. J. Sci. Food Agric. 2018, 98, 1033–1041. [Google Scholar] [CrossRef]
- Seo, W.H.; Baek, H.H. Characteristic aroma-active compounds of Korean perilla (Perilla frutescens Britton) leaf. J. Agric. Food Chem. 2009, 57, 11537–11542. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Demirci, B.; Donmez, A.A. Composition of the essential oil of Perilla frutescens (L) Britton from Turkey. Flavour Fragr. J. 2003, 18, 122–123. [Google Scholar] [CrossRef]
- Banno, N.; Akihisa, T.; Tokuda, H.; Yasukawa, K.; Higashihara, H.; Ukiya, M.; Watanabe, K.; Kimura, Y.; Hasegawa, J.I.; Nishino, H. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci. Biotechnol. Biochem. 2004, 68, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Akihisa, T.; Satoshi, K.; Taketo, U.; Hiroyuki, A.; Norihiro, B.; Yosuke, T.; Ken, Y. Cytotoxic activity of Perilla frutescens var japonica leaf extract is due to high concentrations of oleanolic and ursolic acids. J. Nat. Med. 2006, 60, 331–333. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, B.; Kim, S.; Kim, M.S.; Kim, H.; Hwang, S.R.; Kim, K.; Lee, J.H. Characterization of metabolite profiles from the leaves of green perilla (Perilla frutescens) by ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry and screening for their antioxidant properties. J. Food Drug Anal. 2017, 25, 776–788. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, X.-H.; Zhou, S.; Hua, G.; Li, G.-L.; Guo, W.-J.; Fang, X.-Y.; Wang, W. Perillanolides A and B new monoterpene glycosides from the leaves of Perilla frutescens. Rev. Bras. Farmacogn. 2017, 27, 564–568. [Google Scholar] [CrossRef]
- Lim, H.J.; Woo, K.W.; Lee, K.R.; Lee, S.K.; Kim, H.P. Inhibition of proinflammatory cytokine generation in lung inflammation by the leaves of Perilla frutescens and its constituents. Biomol. Ther. 2014, 22, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Fujita, T.; Ohira, K.; Miyatake, K.; Nakano, Y.; Nakayama, M. Inhibitory effect of perilloside A and C and related monoterpene glucosides on aldose reductase and their structure-activity relationships. Chem. Pharm. Bull. 1995, 43, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.J.; Ku, S.K.; Lee, W.; Lee, S.; Lee, T.; Song, K.S.; Bae, J.S. Barrier protective effects of rosmarinic acid on HMGB1-induced inflammatory responses in vitro and in vivo. J. Cell. Physiol. 2013, 228, 975–982. [Google Scholar] [CrossRef]
- Gu, L.; Wu, T.; Wang, Z. TLC bioautography-guided isolation of antioxidants from fruit of Perilla frutescens var acuta. LWT Food Sci. Technol. 2009, 42, 131–136. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, J.H. Comparative evaluation of phenolic phytochemicals from perilla seeds of diverse species and screening for their tyrosinase inhibitory and antioxidant properties. S. Afr. J. Bot. 2019, 123, 341–350. [Google Scholar] [CrossRef]
- Ha, T.J.; Lee, J.H.; Lee, M.-H.; Lee, B.W.; Kwon, H.S.; Park, C.-H.; Shim, K.B.; Kim, H.T.; Baek, I.Y.; Jang, D.S. Isolation and identification of phenolic compounds from the seeds of Perilla frutescens (L) and their inhibitory activities against α-glucosidase and aldose reductase. Food Chem. 2012, 135, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.J.; Yan, L.L.; Yin, P.P.; Shi, L.L.; Zhang, J.H.; Liu, Y.J.; Ma, C. Structural characterization and antioxidant activity evaluation of phenolic compounds from cold-pressed Perilla frutescens var arguta seed flour. Food Chem. 2014, 164, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Paek, J.H.; Shin, K.H.; Kang, Y.H.; Lee, J.Y.; Lim, S.S. Rapid identification of aldose reductase inhibitory compounds from Perilla frutescens. BioMed Res. Int. 2013, 2013, 679463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.Y.; Nam, M.H.; Lee, H.S.; Jun, W.; Hendrich, S.; Lee, K.W. Isolation of caffeic acid from Perilla frutescens and its role in enhancing γ-glutamylcysteine synthetase activity and glutathione level. Food Chem. 2010, 119, 724–730. [Google Scholar] [CrossRef]
- Tada, M.; Matsumoto, R.; Yamaguchi, H.; Chiba, K. Novel antioxidants isolated from Perilla frutescens Britton var crispa (Thunb). Biosci. Biotechnol. Biochem. 1996, 60, 1093–1095. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, A.; Yamamoto, Y.; Yoshinaka, N.; Namba, M.; Matsuo, H.; Okuyama, T.; Yoshigai, E.; Okumura, T.; Nishizawa, M.; Ikeya, Y. A new flavanone and other flavonoids from green perilla leaf extract inhibit nitric oxide production in interleukin 1β-treated hepatocytes. Biosci. Biotechnol. Biochem. 2015, 79, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Jun, H.I.; Kim, B.T.; Song, G.S.; Kim, Y.S. Structural characterization of phenolic antioxidants from purple perilla (Perilla frutescens var acuta) leaves. Food Chem. 2014, 148, 367–372. [Google Scholar] [CrossRef]
- Asif, M. Health effects of omega-369 fatty acids: Perilla frutescens is a good example of plant oils. Orient. Pharm. Exp. Med. 2011, 11, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Ye, J.; Kong, J. Determination of phenolic compounds in Perilla frutescens L by capillary electrophoresis with electrochemical detection. J. Agric. Food Chem. 2005, 53, 8141–8147. [Google Scholar] [CrossRef]
- Assefa, A.D.; Jeong, Y.J.; Kim, D.J.; Jeon, Y.A.; Ok, H.C.; Baek, H.J.; Sung, J.S. Characterization identification and quantification of phenolic compounds using UPLC-Q-TOF-MS and evaluation of antioxidant activity of 73 Perilla frutescens accessions. Food Res. Int. 2018, 111, 153–167. [Google Scholar] [CrossRef]
- Kagawa, N.; Iguchi, H.; Henzan, M.; Hanaoka, M. Drying the leaves of Perilla frutescens increases their content of anticancer nutraceuticals. Food Sci. Nutr. 2019, 7, 1494–1501. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Lozano, Y.; Bombarda, I.; Gaydou, E.M.; Li, B. Polyphenol extraction from eight Perilla frutescens cultivars. Comptes Rendus Chim. 2009, 12, 602–611. [Google Scholar] [CrossRef]
- Makino, T.; Ito, M.; Kiuchiu, F.; Ono, T.; Muso, E.; Honda, G. Inhibitory effect of decoction of Perilla frutescens on cultured murine mesangial cell proliferation and quantitative analysis of its active constituents. Planta Med. 2001, 67, 24–28. [Google Scholar] [CrossRef]
- Iwai, M.; Ohta, M.; Tsuchiya, H.; Suzuki, T. Enhanced accumulation of caffeic acid rosmarinic acid and luteolin-glucoside in red perilla cultivated under red diode laser and blue LED illumination followed by UV-A irradiation. J. Funct. Foods 2010, 2, 66–70. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, K.H.; Lee, M.H.; Kim, H.T.; Seo, W.D.; Kim, J.Y.; Baek, I.Y.; Jang, D.S.; Ha, T.J. Identification characterization and quantification of phenolic compounds in the antioxidant activity-containing fraction from the seeds of Korean perilla (Perilla frutescens) cultivars. Food Chem. 2013, 136, 843–852. [Google Scholar] [CrossRef]
- Lee, J.; Rodriguez, J.P.; Quilantang, N.G.; Lee, M.H.; Cho, E.J.; Jacinto, S.D.; Lee, S. Determination of flavonoids from Perilla frutescens var japonica seeds and their inhibitory effect on aldose reductase. Appl. Biol. Chem. 2017, 60, 155–162. [Google Scholar] [CrossRef]
- Yoshida, K.; Kameda, K.; Kondo, T. Diglucuronoflavones from purple leaves of Perilla ocimoides. Phytochemistry 1993, 33, 917–919. [Google Scholar] [CrossRef]
- Verspohl, E.J.; Fujii, H.; Homma, K.; Sybille, B.-W. Testing of Perilla frutescens extract and vicenin 2 for their antispasmodic effect. Phytomedicine 2013, 20, 427–431. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, Y.; Si, Y.; Wang, W.; Zhang, S.; Sun, S.; Liu, X.; Wang, R.; Wang, W. Isolation, characterization, and xanthine oxidase inhibitory activities of flavonoids from the leaves of Perilla frutescens. Nat. Prod. Res. 2020, 34, 2566–2572. [Google Scholar] [CrossRef] [PubMed]
- Kamei, R.; Fujimura, T.; Matsuda, M.; Kakihara, K.; Hirakawa, N.; Baba, K.; Ono, K.; Arakawa, K.; Kawamoto, S. A flavanone derivative from the Asian medicinal herb (Perilla frutescens) potently suppresses IgE-mediated immediate hypersensitivity reactions. Biochem. Biophys. Res. Commun. 2017, 483, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Izumi, Y.; Matsumura, A.; Wakita, S.; Akagi, K.I.; Fukuda, H.; Kume, T.; Irie, K.; Yuki, T.-T.; Sugimoto, H.; Hashimoto, T.; et al. Isolation identification and biological evaluation of Nrf2-ARE activator from the leaves of green perilla (Perilla frutescens var crispa f viridis). Free Rad. Biol. Med. 2012, 53, 669–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Yao, Y.-Y.; Chang, Y.-N. Characterization of anthocyanins in Perilla frutescens var acuta extract by advanced UPLC-ESI-IT-TOF-MS method and their anticancer bioactivity. Molecules 2015, 20, 9155–9169. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, M.; Nakajima, J.I.; Yamanashi, M.; Sugiyama, M.; Makita, Y.; Springob, K.; Awazuhara, M.; Saito, K. Metabolomics and differential gene expression in anthocyanin chemo-varietal forms of Perilla frutescens. Phytochemistry 2003, 62, 987–995. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Haeng, J.S.; Lee, S.H.; Sohn, D.H. Two neolignans from Perilla frutescens and their inhibition of nitric oxide synthase and tumor necrosis factor-α expression in murine macrophage cell line Raw 2.647. Bioorg. Med. Chem. Lett. 2002, 12, 649–651. [Google Scholar] [CrossRef]
- Liu, J.; Steigel, A.; Reininger, E.; Bauer, R. Two new prenylated 3-benzoxepin derivatives as cyclooxygenase inhibitors from Perilla frutescens var. acuta. J. Nat. Prod. 2000, 63, 403–405. [Google Scholar] [CrossRef]
- Jung, S.; Lee, W.Y.; Yong, S.J.; Shin, K.C.; Kim, C.W.; Lee, J.H.; Kim, S.H. Occupational asthma caused by inhaling smoke from roasting perilla seeds. Allergy Asthma Respir. Dis. 2013, 1, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, P.; Hwang, K.T.; Park, J.N.; Kim, C.K. Policosanol content and composition in perilla seeds. J. Agric. Food Chem. 2006, 54, 5359–5362. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, S.Y.; Na, J.K.; Seong, E.S.; Yu, C.Y. Metabolite profiling based on lipophilic compounds for quality assessment of perilla (Perilla frutescens) cultivars. J. Agric. Food Chem. 2012, 60, 2257–2263. [Google Scholar] [CrossRef]
- Da Silva, M.V.; Da Silva, A.V.; Bonafe, E.G.; De Souza, N.E.; Visentainer, J.V. Perilla frutescens: A potential ingredient for the enhancement of white bread as a source of Omega-3. Acta Sci. Technol. 2016, 38, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Longvah, T.; Deosthale, Y.G.; Kumar, P.U. Nutritional and short tem toxicological evaluation of Perilla seed oil. Food Chem. 2000, 70, 13–16. [Google Scholar] [CrossRef]
- Sirilun, S.; Sivamaruthi, B.S.; Pengkumsri, N.; Saelee, M.; Chaiyasut, K.; Tuntisuwanno, N.; Suttajit, M.; Peerajan, S.; Chaiyasut, C. Impact of different pre-treatment strategies on the quality of fatty acid composition, tocols content and metabolic syndrome related activities of Perilla frutescens seed oil. J. Appl. Pharm. Sci. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.D.; Jin, C.H.; Choi, D.S.; Byun, M.W.; Jeong, I.Y. Biological evaluation of isoegomaketone isolated from Perilla frutescens and its synthetic derivatives as anti-inflammatory agents. Arch. Pharm. Res. 2011, 34, 1277–1282. [Google Scholar] [CrossRef]
- Nam, B.; Yangkang, S.; Kim, H.Y.; Kim, J.B.; Jin, C.H.; Han, A.R. A New Monoterpene from the leaves of a radiation mutant cultivar of Perilla frutescens var crispa with inhibitory activity on LPS-induced NO production. Molecules 2017, 22, 1471. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.W.; Wang, S.Y.; Ma, Z.Q.; Li, R.P.; Li, S.S.; Xue, J.S.; Li, W.; Niu, X.X.; Yan, L.; Zhang, X.; et al. Effects of perillaldehyde on alternations in serum cytokines and depressive-like behaviour in mice after lipopolysaccharide administration. Pharm. Biochem. Behav. 2014, 116, 1–8. [Google Scholar] [CrossRef]
- Lee, A.Y.; Choi, J.M.; Lee, M.H.; Lee, J.; Lee, S.; Cho, E.J. Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide. Nutr. Res. Pract. 2018, 12, 93. [Google Scholar] [CrossRef]
- Bumblauskiene, L.; Jakstas, V.; Janulis, V.; Mazdzieriene, R.; Ragazinskiene, O. Preliminary analysis on essential oil composition of Perilla L cultivated in Lithuania. Acta Pol. Pharm. Drug Res. 2009, 66, 409–413. [Google Scholar]
- Liu, J.; Wan, Y.; Zhao, Z.; Chen, H. Determination of the content of rosmarinic acid by HPLC and analytical comparison of volatile constituents by GC-MS in different parts of Perilla frutescens (L.) Britt. Chem. Cent. J. 2013, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Ito, M. Bioconversion of essential oil components of Perilla frutescens by Saccharomyces cerevisiae. J. Nat. Med. 2020, 74, 189–199. [Google Scholar] [CrossRef]
- Kubo, E.; Miyoshi, N.; Fukuda, M.; Akagi, Y. Cataract formation through the polyol pathway is associated with free radical production. Exp. Eye Res. 1999, 68, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Carper, D.A.; Hohman, T.C.; Old, S.E. Residues affecting the catalysis and inhibition of rat lens aldose reductase. Biochim. Biophys. Acta 1995, 1246, 67–73. [Google Scholar] [CrossRef]
- Oates, P.J.; Mylari, B.L. Aldose reductase inhibitors: Therapeutic implications for diabetic complications. Expert Opin. Investig. Drugs 1999, 8, 2095–2119. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Collier, A. Section 3—Management of Diabetes. In Churchill’s Pocketbook of Diabetes; Churchill Livingstone: London, UK, 2012; pp. 83–125. [Google Scholar]
- Smelcerovic, A.; Tomovic, K.; Smelcerovic, Z.; Petronijevic, Z.; Kocic, G.; Tomasic, T.; Jakopin, Z.; Anderluh, M. Xanthine oxidase inhibitors beyond allopurinol and febuxostat; an overview and selection of potential leads based on in silico calculated physico-chemical properties predicted pharmacokinetics and toxicity. Eur. J. Med. Chem. 2017, 135, 491–516. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.Y.; Zhang, X.H.; Zhang, X.L.; Wei, J.F.; Meng, L. Analysis of patents on anti-gout therapies issued in China. Expert Opin. Ther. Pat. 2014, 24, 555–572. [Google Scholar] [CrossRef] [PubMed]
- Zalawadiya, S.K.; Veeranna, V.; Mallikethi-Reddy, S.; Bavishi, C.; Lunagaria, A.; Kottam, A.; Afonso, L. Uric acid and cardiovascular disease risk reclassification: Findings from NHANES III. Eur. J. Prev. Cardiol. 2015, 22, 513–518. [Google Scholar] [CrossRef]
- Lin, M.S.; Dai, Y.S.; Pwu, R.F.; Chen, Y.H.; Chang, N.C. Risk estimates for drugs suspected of being associated with Stevens-Johnson syndrome and toxic epidermal necrolysis: A case-control study. Intern. Med. J. 2005, 35, 188–190. [Google Scholar] [CrossRef]
- Mockenhaupt, M.; Viboud, C.; Dunant, A.; Naldi, L.; Halevy, S.; Bavinck, J.N.; Sidoroff, A.; Schneck, J.; Roujeau, J.C.; Flahault, A. Stevens–Johnson syndrome and toxic epidermal necrolysis: Assessment of medication risks with emphasis on recently marketed drugs. The EuroSCAR-study. J. Investig. Derm. 2008, 128, 35–44. [Google Scholar] [CrossRef]
- Nakanishi, T.; Nishi, M.; Inada, A.; Obata, H.; Tanabe, M.; Abe, S.; Wakashiro, M. Two new potent inhibitors of xanthine oxidase from leaves of Perilla frutescens britton var Acuta Kudo. Chem. Pharm. Bull. 1990, 38, 1772–1774. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.-M. Tyrosinase and tyrosinase inhibitors. J. Biocatal. Biotransform. 2012, 1, 2. [Google Scholar] [CrossRef]
- Kim, H.K.; Cho, S.R.; Kim, G.H. Insecticidal and antifeeding activity of Perilla frutescens-derived material against the diamondback moth Plutella xylostella L. Entomol. Res. 2019, 49, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.A.; Park, C.S.; Ahn, H.J.; Park, Y.S.; Kim, H.M. Effect of Perilla frutescens var. acuta Kudo and rosmarinic acid on allergic inflammatory reactions. Exp. Biol. Med. 2011, 236, 99–106. [Google Scholar] [CrossRef]
- Sbardella, D.; Fasciglione, G.F.; Gioia, M.; Ciaccio, C.; Tundo, G.R.; Marini, S.; Coletta, M. Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes. Mol. Asp. Med. 2012, 33, 119–208. [Google Scholar] [CrossRef] [Green Version]
- Heo, J.C.; Nam, D.-Y.; Myung, S.S.; Le, S.-H. Alleviation of atopic dermatitis-related symptoms by Perilla frutescens Britton. Int. J. Mol. Med. 2011, 28, 733–737. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, K.I.; Takanari, J.; Maeda, T.; Kitadate, K.; Sato, T.; Mihara, Y.; Uehara, K.; Wakame, K. Perilla leaf extract prevents atopic dermatitis induced by an extract of Dermatophagoides farinae in NC/Nga mice. Asian Pac. J. Allergy Immunol. 2016, 34, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Shin, T.Y.; Kim, S.H.; Kim, S.H.; Kim, Y.K.; Park, H.J.; Chae, B.S.; Jung, H.J.; Kim, H.M. Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by Perilla frutescens. Immunopharmacol. Immunotoxicol. 2000, 22, 489–500. [Google Scholar] [CrossRef]
- Jeon, I.H.; Kim, H.S.; Kang, H.J.; Lee, H.S.; Jeong, S.I.; Kim, S.J.; Jang, S.I. Anti-inflammatory and antipruritic effects of luteolin from Perilla (P frutescens L.) leaves. Molecules 2014, 19, 6941–6951. [Google Scholar] [CrossRef] [Green Version]
- Asada, M.; Fukumori, Y.; Inoue, M.; Nakagomi, K.; Sugie, M.; Fujita, Y. Glycoprotein derived from the hot water extract of mint plant Perilla frutescens Britton. J. Agric. Food Chem. 1999, 47, 468–472. [Google Scholar] [CrossRef]
- Chen, C.Y.; Leu, Y.L.; Fang, Y.; Lin, C.F.; Kuo, L.M.; Sung, W.C. Anti-inflammatory effects of Perilla frutescens in activated human neutrophils through two independent pathways: Src family kinases and calcium. Sci. Rep. 2015, 5, 18204. [Google Scholar] [CrossRef] [Green Version]
- Sanbongi, C.; Takano, H.; Osakabe, N.; Sasa, N.; Natsume, M.; Yanagisawa, R.; Inoue, K.I.; Sadakane, K.; Ichinose, T.; Yoshikawa, T. Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen in a mouse model. Clin. Exp. Allergy 2004, 34, 971–977. [Google Scholar] [CrossRef]
- Takano, H.; Osakabe, N.; Sanbongi, C.; Yanagisawa, R.; Inoue, K.I.; Yasuda, A.; Natsume, M.; Baba, S.; Ichiishi, E.I.; Yoshikawa, T. Extract of Perilla frutescens enriched for rosmarinic acid a polyphenolic phytochemical inhibits seasonal allergic rhinoconjunctivitis in humans. Exp. Biol. Med. 2004, 229, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Makino, T.; Furuta, Y.; Wakushima, H.; Fujii, H.; Saito, K.I.; Kano, Y. Antiallergic effect of Perilla frutescens and its active consti3tuents. Phytother. Res. 2003, 17, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Chen, C.S.; Lin, J.Y. Dietary perilla oil lowers serum lipids and ovalbumin-specific IgG1 but increases total IgE levels in ovalbumin-challenged mice. Food Chem. Toxicol. 2009, 47, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H.; Tsuji, M.; Masato, I.; Egashira, T.; Matsumiya, T. Rosmarinic acid and caffeic acid produce antidepressive-like effect in the forced swimming test in mice. Eur. J. Pharmacol. 2002, 449, 261–267. [Google Scholar] [CrossRef]
- Rimando, A.M.; Inoshiri, S.; Otsuka, H. Screening for mast cell histamine release inhibitory activity of Philippine medicinal plants Active constituent of Ehretia. Microphylla 1987, 41, 242–247. [Google Scholar]
- Cheng, J.T.; Liu, I.M. Stimulatory effect of caffeic acid on α 1A-adrenoceptors to increase glucose uptake into cultured C 2 C 12 cells. Naunyn-Schmiedebergs Arch. Pharm. 2000, 362, 122–127. [Google Scholar] [CrossRef]
- Soliman, K.F.; Mazzio, E.A. In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc. Soc. Exp. Biol. Med. 1998, 218, 390–397. [Google Scholar] [CrossRef]
- Yokozawa, T.; Chen, C.P. Role of Salviae Miltiorrhizae Radix extract and its compounds in enhancing nitric oxide expression. Phytomedicine 2000, 7, 55–61. [Google Scholar] [CrossRef]
- Yi, L.T.; Li, J.; Geng, D.; Liu, B.B.; Fu, Y.; Tu, J.Q.; Liu, Y.; Weng, L.-J. Essential oil of Perilla frutescens-induced change in hippocampal expression of brain-derived neurotrophic factor in chronic unpredictable mild stress in mice. J. Ethnopharmacol. 2013, 147, 245–253. [Google Scholar] [CrossRef]
- Ji, W.-W.; Li, R.P.; Li, M.; Wang, S.Y.; Zhang, X.; Ni, X.X.; Li, W.; Ya, L.; Yang, W.A.; Qiang, F.U. Antidepressant-like effect of essential oil of Perilla frutescens in a chronic unpredictable mild stress-induced depression model mice. Chin. J. Nat. Med. 2014, 12, 0753–0759. [Google Scholar] [CrossRef]
- Nakazawa, T.; Yasuda, T.; Ueda, J.; Ohsawa, K. Antidepressant-like effects of apigenin and 2 4 5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol. Pharm. Bull. 2003, 26, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Osakabe, N.; Yasuda, A.; Natsume, M.; Sanbongi, C.; Kato, Y.; Osawa, T.; Yoshikawa, T. Rosmarinic acid a major polyphenolic component of Perilla frutescens reduces lipopolysaccharide (LPS)-induced liver injury in D-galactosamine (D-GalN)-sensitized mice. Free Rad. Biol. Med. 2002, 33, 798–806. [Google Scholar] [CrossRef]
- Yang, S.Y.; Hong, C.O.; Lee, G.P.; Kim, C.T.; Lee, K.W. The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage. Food Chem. Toxicol. 2013, 55, 92–99. [Google Scholar] [CrossRef]
- Li, J.J.; Li, Z.; Gu, L.J.; Choi, K.J.; Kim, D.S.; Kim, H.K.; Sung, C.K. The promotion of hair regrowth by topical application of a Perilla frutescens extract through increased cell viability and antagonism of testosterone and dihydrotestosterone. J. Nat. Med. 2018, 72, 96–105. [Google Scholar] [CrossRef]
- Feng, L.J.; Yu, C.H.; Ying, K.J.; Hua, J.; Dai, X.Y. Hypolipidemic and antioxidant effects of total flavonoids of Perilla Frutescens leaves in hyperlipidemia rats induced by high-fat diet. Food Res. Int. 2011, 44, 404–409. [Google Scholar] [CrossRef]
- Korotkich, I.; Senikiene, Z.; Simoniene, G.; Lazauskas, R.; Laukeviciene, A.; Kevelaitis, E. Inotropic and lusitropic effects of Perilla frutescens (L) Britton extract on the rabbit myocardium. Medicina 2006, 42, 406–412. [Google Scholar]
- Zhao, G.; Yao-Yue, C.; Qin, G.W.; Guo, L.H. Luteolin from Purple Perilla mitigates ROS insult particularly in primary neurons. Neurobiol. Aging 2012, 33, 176–186. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, H.J.; Lee, M.H.; Kim, J.; Jin, C.; Ryu, J.H. Luteolin inhibits LPS-stimulated inducible nitric oxide synthase expression in BV-2 microglial cells. Planta Med. 2006, 72, 65–68. [Google Scholar] [CrossRef]
- Lee, A.Y.; Hwang, B.R.; Lee, M.H.; Lee, S.; Cho, E.J. Perilla frutescens var. japonica and rosmarinic acid improve amyloid-β25–35 induced impairment of cognition and memory function. Nutr. Res. Pract. 2016, 10, 274. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.Y.; Wu, T.T.; Hwang, B.R.; Lee, J.; Lee, M.H.; Lee, S.; Cho, E.J. The neuro-protective effect of the methanolic extract of Perilla frutescens var. japonica and rosmarinic acid against H2O2-induced oxidative stress in C6 glial cells. Biomol. Ther. 2016, 24, 338. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.H.; Hur, J.M.; Yang, E.J.; Jun, M.; Park, H.J.; Lee, K.B.; Moon, E.; Song, K.S. β-Secretase (BACE1) inhibitors from Perilla frutescens var acuta. Arch. Pharmacal Res. 2008, 31, 183–187. [Google Scholar] [CrossRef]
- Senavong, P.; Kongkham, S.; Saelim, S.; Suangkavathin, V. Neuroprotective effect of perilla extracts on PC12 cells. J. Med. Assoc. Thail. 2016, 99, S256–S264. [Google Scholar] [CrossRef]
- Huang, B.P.; Lin, C.H.; Chen, Y.C.; Kao, S.H. Anti-inflammatory effects of Perilla frutescens leaf extract on lipopolysaccharide-stimulated RAW2647 cells. Mol. Med. Rep. 2014, 10, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
- Urushima, H.; Nishimura, J.; Mizushima, T.; Hayashi, N.; Maeda, K.; Ito, T. Perilla frutescens extract ameliorates DSS-induced colitis by suppressing proinflammatory cytokines and inducing anti-inflammatory cytokines. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 308, G32–G41. [Google Scholar] [CrossRef] [Green Version]
- Ku, S.K.; Yang, E.J.; Song, K.S.; Bae, J.S. Rosmarinic acid down-regulates endothelial protein C receptor shedding in vitro and in vivo. Food Chem. Toxicol. 2013, 59, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Arya, E.; Saha, S.; Saraf, S.A.; Kaithwas, G. Effect of Perilla frutescens fixed oil on experimental esophagitis in albino wistar rats. BioMed Res. Int. 2013, 2013, 981372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.; Rahman, S.H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol. 2018, 16, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, W.S.; Jun, M.; Kong, A.N. Nrf2: A potential molecular target for cancer chemoprevention by natural compounds. Antioxid. Redox Signal. 2006, 8, 99–106. [Google Scholar] [CrossRef]
- Lin, C.S.; Kuo, C.L.; Wang, J.P.; Cheng, J.S.; Huang, Z.W.; Chen, C.F. Growth inhibitory and apoptosis inducing effect of Perilla frutescens extract on human hepatoma HepG2 cells. J. Ethnopharmacol. 2007, 112, 557–567. [Google Scholar] [CrossRef]
- Kwak, Y.; Ju, J. Inhibitory activities of Perilla frutescens britton leaf extract against the growth migration and adhesion of human cancer cells. Nutr. Res. Pract. 2015, 9, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Narisawa, T.; Fukaura, Y.; Yazawa, K.; Ishikawa, C.; Isoda, Y.; Nishizawa, Y. Colon cancer prevention with a small amount of dietary perilla oil high in alpha-linolenic acid in an animal model. Cancer 1994, 73, 2069–2075. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Feng, Q.; Huang, X.; Wang, X.; Peng, Y.; Zhao, Z.; Liu, Z. Perilaldehyde activates AMP-activated protein kinase to suppress the growth of gastric cancer via induction of autophagy. J. Cell. Biochem. 2019, 120, 1716–1725. [Google Scholar] [CrossRef]
- Kang, R.; Helms, R.; Stout, M.J.; Jaber, Z.; Chen, Z.; Nakatsu, T. Antimicrobial activity of the volatile constituents of Perilla frutescens and its synergistic effects with polygodial. J. Agric. Food Chem. 1992, 40, 2328–2330. [Google Scholar] [CrossRef]
- Yamamoto, H.; Ogawa, T. Antimicrobial activity of Perilla seed polyphenols against oral pathogenic bacteria. Biosci. Biotechnol. Biochem. 2002, 66, 921–924. [Google Scholar] [CrossRef]
- Li, H.Z.; Zhiqing, R.; Reddy, N.V.; Hou, T.; Zhang, Z. In silico evaluation of antimicrobial antihyaluronidase and bioavailability parameters of rosmarinic acid in Perilla frutescens leaf extracts. SN Appl. Sci. 2020, 2, 1547. [Google Scholar] [CrossRef]
S. No | Phytochemical Name | Molecular Formula | Plant Parts | Reference |
---|---|---|---|---|
Monoterpenes | ||||
Acyclic type | ||||
1. | β-Myrcene | C10H16 | Leaves | [1,2] |
2. | Geraniol | C10H18O | Leaves | [3,4] |
3. | β-Citronellene | C10H18 | Leaves | [3] |
4. | Nerol | C10H18O | Leaves | [2] |
5. | Linalool | C10H18O | Leaves, Aerial parts | [4,5] |
6. | Ocimene | C10H16 | Leaves | [3] |
Monocyclic type | ||||
7. | α-Terpineol | C10H18O | Leaves, Aerial parts | [3,5] |
8. | β-Terpineol | C10H18O | Aerial parts | [6] |
9. | Thymol | C10H14O | Leaves, Aerial parts | [1,5] |
10. | α-Phellandrene | C10H16 | Leaves | [1] |
11. | β-Phellandrene | C10H16 | Leaves, Aerial parts | [3,6] |
12. | 1,8-Cineole | C10H18O | Leaves | [1,2] |
13. | Damascenone | C13H18O | Leaves | [4] |
14. | Terpinen-4-ol | C10H18O | Leaves | [3] |
15. | Terpinene | C10H16 | Leaves | [3] |
16. | Carvacrol | C10H14O | Leaves, Aerial parts | [1,5] |
17. | Carvone | C10H14O | Leaves, Aerial parts | [4,7] |
18. | Piperitone | C10H16O | Leaves | [4] |
19. | Piperitenone | C10H14O | Leaves | [3,4] |
20. | Limonene | C10H16 | Leaves, Aerial parts | [1,2] |
21. | Menthone | C10H18O | Leaves | [3] |
22. | Carveole | C10H16O | Leaves | [4] |
23. | Pulegone | C10H16O | Leaves | [2] |
Bicyclic type | ||||
24. | δ -2-Carene | C10H16 | Leaves | [4] |
25. | Camphane | C10H18 | Leaves | [3] |
26. | Verbenol | C10H16O | Leaves | [3] |
27. | Sabinene | C10H16 | Leaves | [2,3] |
Furanoid type | ||||
28. | Frutescenone A | C10H10O4 | Aerial parts | [8] |
29. | Frutescenone B | C10H14O3 | Aerial parts | [8] |
30. | Frutescenone C | C15H19N5O2 | Aerial parts | [8] |
31. | Isoegomaketone | C10H12O2 | Aerial parts | [8,9] |
32. | 9-hydroxyisoegoma ketone | C10H12O3 | Aerial parts | [8,9] |
33. | (3S,4R)-3-hydroxy perillaldehyde | C10H14O | Aerial parts | [8] |
34. | Perillic acid | C10H14O2 | Aerial parts | [8] |
Sesquiterpenes | ||||
Acyclic type | ||||
35. | α-Farnesene | C15H24 | Leaves, Aerial parts | [2,3,4,5] |
36. | β -Farnesene | C15H24 | Leaves, Aerial parts | [3,10] |
37. | Farnesol | C15H26O | Leaves | [3] |
38. | Nerolidol | C15H26O | Leaves, Aerial parts | [2,5] |
Monocyclic type | ||||
39. | α-Humulene | C15H24O | Leaves, Aerial parts | [2,5] |
40. | Bisabolene | C15H24 | Leaves | [3] |
41. | Germacrene | C15H24 | Leaves | [1] |
42. | Elemene | C15H24 | Leaves | [1] |
43. | β-Ionone | C13H20O | Leaves, Aerial parts | [1,5] |
Bicyclic type | ||||
44. | α-pinene | C10H16 | Leaves, Aerial parts | [1,5] |
45. | β-pinene | C10H16 | Leaves, Aerial parts | [1] |
46. | β-Caryophyllene | C15H24 | Leaves, Aerial parts | [5,11] |
47. | ε-Muurolene | C15H24 | Leaves | [3] |
48. | α-Cadinene | C15H24 | Leaves | [2] |
49. | β-Cadinene | C15H24 | Leaves | [3] |
50. | α-Santalol | C15H24O | Leaves | [3] |
51. | α-Bulnesene | C15H24 | Leaves | [3] |
52. | β-Gurjunene | C15H24 | Leaves | [3] |
53. | β-Selinene | C15H24 | Leaves | [3] |
54. | α-Fenchene | C10H16 | Leaves | [3] |
55. | α-Cadinol | C15H26O | Leaves | [12] |
56. | Eremophilene | C15H24 | Leaves | [3] |
57. | Calarene | C15H24 | Leaves | [3] |
58. | Valencene | C15H24 | Aerial parts | [10] |
Tricyclic type | ||||
59. | Spathulenol | C15H24O | Leaves, Aerial parts | [1,13] |
60. | Viridiflorene | C15H24 | Leaves | [3] |
61. | Cubebene | C15H24 | Leaves | [2] |
62. | Alloaromadendrene | C15H24 | Leaves | [3] |
63. | Patchoulane | C15H26 | Leaves | [3] |
64. | α-Copaene | C15H24 | Leaves, Aerial parts | [3,10] |
65. | Longifolen | C15H24 | Leaves | [3] |
66. | Ylangene | C15H24 | Leaves, Aerial parts | [4] |
Diterpenoids | ||||
67. | Phytol | C20H40O | Leaves, Aerial parts | [1,5,11] |
Triterpenoids | ||||
68. | Ursolic acid | C30H48O3 | Leaves | [14,15] |
69. | Corosolic acid | C30H48O4 | Leaves | [15,16] |
70. | 3-epicorosolic acid | C30H48O4 | Leaves | [15] |
71. | Pomolic acid | C30H48O4 | Leaves | [15] |
72. | Tormentic acid | C30H48O5 | Leaves | [15,16] |
73. | Hyptadienic acid | C30H46O4 | Leaves | [15] |
74. | Oleanolic acid | C30H48O3 | Leaves | [15] |
75. | Augustic acid | C30H48O4 | Leaves | [15] |
76. | 3-epimaslinic acid | C30H48O4 | Leaves | [15] |
77. | Sericoside | C36H58O11 | Leaves | [17] |
Phenyl propanoids | ||||
78. | Elemicin | C12H16O3 | Aerial parts Leaves | [8,18] |
79. | Isoelemicin | C12H16O3 | Aerial parts | [8] |
80. | Myristicin | C11H12O3 | Aerial parts Leaves | [8,18] |
81. | Eugenol | C10H12O2 | Leaves Aerial parts | [1,2] |
82. | Isoeugenol | C10H12O2 | Leaves | [3,4] |
83. | Perilloside E | C17H22O9 | Leaves | [19] |
84. | Dillapiole | C12H14O4 | Leaves | [18] |
85. | Nothoapiole | C13H16O5 | Leaves | [18] |
86. | Allyltetramethoxy benzene | Leaves | [18] | |
87. | α-Asarone | C12H16O3 | Leaves, Aerial Parts | [3,10] |
88. | Estragole | C10H12O | Leaves | [1] |
Alkaloids | ||||
89. | Neoechinulin A | C19H21N3O2 | Aerial parts | [8] |
90. | 1H-indole-3-carboxylic acid | C9H7NO2 | Aerial parts | [8] |
91. | Indole-3-carboxaldehyde | C9H7NO | Aerial parts | [8] |
Phenolic compounds | ||||
92. | Rosmarinic acid | C18H16O8 | Leaves, Fruits Seeds | [20,21,22,23] |
93. | Methyl rosmarinic acid | C19H18O8 | Leaves Seeds | [24,25] |
94. | Rosmarinic acid-3-O-glucoside | C24H26O13 | Seeds | [22,23,24] |
95. | 3′-dehydroxyl-rosmar inicacid-3-O-glucoside | C24H25O12 | Seeds | [24] |
96. | Caffeic acid | C9H8O4 | Leaves, Seeds | [22,24,26] |
97. | Ethyl caffeate | C11H12O4 | Aerial parts (leaves and stems) | [8] |
98. | Methyl caffeate | C10H10O4 | Aerial parts (leaves and stems) | [27] |
99. | Vinyl caffeate | C11H10O4 | Aerial parts (leaves and stems) | [27] |
100. | Trans-p-menthenyl caffeate | leaves | [27] | |
101. | Caffeic acid-3-O-glucoside | C15H18O9 | Seeds | [23,24] |
102. | Protocatechuic acid | C7H6O4 | Leaves | [25,28,29] |
103. | Protocatechuic aldehyde | C7H6O3 | Aerial parts (leaves and stems) | [27] |
104. | Chlorogenic acid | C16H18O9 | Leaves | [25,29] |
105. | Vanillic acid | C8H8O4 | Seeds | [24] |
106. | Isovanillic acid | C8H8O4 | Leaves | [29] |
107. | Sinapic acid | C11H12O5 | Leaves | [29] |
108. | Gallic acid | C7H6O5 | Leaves | [29,30] |
109. | Ferulic acid | C10H10O4 | Leaves Seeds | [29,31] |
110. | 4-coumaric acid | C9H8O3 | Leaves | [32] |
111. | Coumaroyl tartaric acid | C13H12O8 | Leaves | [30] |
112. | 4-hydroxyphenyl lactic acid | C9H10O4 | Leaves | [33] |
113 | Sagerinic acid | C36H32O16 | Leaves | [16] |
114. | Cimidahurinine | C14H20O8 | Seeds | [24] |
115. | p-Hydroxybenzoic acid | C7H6O3 | Leaves | [29] |
116. | 3,4-DHPEA (Hydroxy tyrosol) | C8H10O6S | Leaves | [30] |
Flavonoids | ||||
Flavones | ||||
117. | Luteolin | C15H10O6 | Leaves seeds, fruits | [21,22,23] |
118. | Luteolin-7-O-glucuronide | C21H18O12 | Leaves | [34] |
119. | Luteolin-7-O-diglucuronide | C27H26O18 | Leaves | [32,34] |
120. | Luteolin 7-O- glucuronide -6”-methyl ester | C22H20O12 | Leaves | [35] |
121. | Luteolin-5-O-glucoside | C21H20O11 | Seeds | [24] |
122. | Luteolin-7-O-glucoside | C21H20O11 | Leaves, Seeds | [36,37] |
123. | Apigenin | C15H10O5 | Leaves, seeds, fruits | [21,22,23,28] |
124. | Apigenin-7-O-glucuronide | C21H18O11 | Leaves | [32] |
125. | Apigenin-7-O-diglucuronide | C27H26O17 | Leaves | [32,34] |
126. | Apigenin-7-O-glucoside | C21H20O10 | Seeds | [37] |
127. | Apigenin 7-O-caffeoylglucoside | C30H26O13 | Leaves | [34] |
128. | Diosmetin | C16H12O6 | Seeds | [38] |
129. | Chrysoeriol | C16H12O6 | Fruits, seeds | [21,22] |
130. | Scutellarin | C21H18O12 | Leaves | [17] |
131. | Scutellarein | C15H10O6 | Leaves | [17] |
132. | Scutellarein -7-O-glucuronide | C21H18O12 | Leaves | [32,34,39] |
133. | Scutellarein 7-O-diglucuronide | C27H26O18 | Leaves | [32,34,39] |
134. | Negletein | C16H12O5 | Leaves | [17,28] |
135. | Vicenin-2 | C27H30O15 | Leaves | [40] |
136. | Catechin | C15H14O6 | Leaves Seeds | [31] |
Flavanones | ||||
137. | Shisoflavanone A | C17H16O5 | Leaves | [28] |
138. | Liquiritigenin | Leaves | [16] | |
139. | 5,8-dihydroxy-7-methoxyflavanone | C16H14O5 | Leaves | [28] |
140. | (2S)-5,7-dimethoxy-8,4′-dihydroxy flavanone | C17H16O6 | Leaves | [41] |
141. | 8-hydroxy-5,7-dimethoxyflavanone | C17H16O5 | Leaves | [42] |
Chalcones | ||||
142. | 2′,4′-dimethoxy-4,5′,6′-trihydroxychalcone | C17H16O6 | Leaves | [41] |
143. | 2′,3′-dihydroxy-4′,6′-dimethoxychalcone | C17H16O5 | Leaves | [43] |
Aurones | ||||
144. | (Z)-4,6-dimethoxy-7,4′-dihydroxyaurone | C17H14O6 | Leaves | [41] |
Anthocyanins | ||||
145. | Shisonin (Perillanin) (cyanidin 3-coumaroyl-glucoside- 5-glucoside) | C36H37O18+ | Leaves | [39,44] |
146. | Cis-Shisonin | [Cl-]C36H37O17[O+] | Leaves | [44] |
147. | Cis-malonyl shisonin | C39H39O21+ | Leaves | [44] |
148. | Cyanidin 3-O-feruloyl glucoside-5-O-glucoside | C43H49O24 | Leaves | [44] |
149. | Cyanidin 3-O-caffeoyl glucoside-5-Oglucoside | C36H37O19+ | Leaves | [44] |
150. | Cyanidin 3-O-caffeoyl glucoside-5-O-malonyl glucoside | C30H27O14+ | Leaves | [44] |
151. | Peonidin 3-O-malonyl glucoside-5-O-p-coumarylglucoside | C38H41O17+ | Leaves | [45] |
Coumarins | ||||
152. | Esculetin | C9H6O4 | Leaves | [17,28] |
153. | 6,7-dihydroxycoumarin | C9H6O4 | Leaves and stems | [27] |
Carotenoids | ||||
154. | Loliolide | C11H16O3 | Leaves | [17] |
155. | Isololiolide | C11H16O3 | Leaves | [17] |
Neolignans | ||||
156. | Magnosalin | C24H32O6 | Leaves | [46] |
157. | Andamanicin | C24H36O6 | Leaves | [46] |
Glucosides | ||||
158. | Perillanolide A | C16H26O7 | Leaves | [17] |
159. | Perillanolide B | C16H26O7 | Leaves | [17] |
160. | Perilloside A | C16H26O6 | Leaves | [19] |
161. | Perilloside B | C16H24O7 | Leaves | [19] |
162. | Perilloside C | C16H28O6 | Leaves | [19] |
163. | Perilloside E | C17H22O9 | Leaves | [19] |
164. | Loganin(Iridoid glucoside) | C17H26O10 | Leaves | [16] |
165. | 5’-β-d-glucopyranosyl oxyjasrnonic acid; | C18H28O9 | Leaves | [16,19] |
166. | 3-β-d-glucopyrano syl-3-epi-2-isocucur bic acid | C18H30O8 | Leaves | [19] |
167. | 3-β-d-glucopyranosyl oxy-5-phenylvaleric acid | C17H24O8 | Leaves | [19] |
168. | N-octanoyl-β-d-fructofuranosyl-α-d-glucopyranoside | C20H36O12 | Leaves | [16] |
169. | Eugenyl-β-d-glucoside | C16H22O7 | Leaves | [19] |
170. | Benzyl-β-d-glucoside | C13H18O6 | Leaves | [19] |
171. | β-sitosteryl β-d-glucoside | C35H60O6 | Leaves | [19] |
172. | Prunasin | C14H17NO6 | Leaves | [19] |
173. | Sambunigrin | C14H17NO6 | Leaves | [19] |
Benzoxepin derivatives | ||||
174. | Perilloxin | C16H18O4 | Stems | [47] |
175. | Dehydroperilloxin | C16H16O4 | Stems | [47] |
Policosanols | ||||
176. | Eicosnaol | C20H42O | Seeds | [48,49,50] |
177. | Heneicosanol | C21H44O | Seeds | |
178. | Docosanol | C22H46O | Seeds | |
179. | Tricosanol | C23H48O | Seeds | |
180. | Tetracosanol | C24H50O | Seeds | |
181. | Pentacosanol | C25H52O | Seeds | |
182. | Hexacosanol | C26H54O | Seeds | |
183. | Heptacosanol | C27H56O | Seeds | |
184. | Octacosanol | C28H58O | Seeds | |
185. | Nonacosanol | C29H60O | Seeds | |
186. | Triacontanol | C30H62O | Seeds | |
Phytosterols | ||||
187. | Stigmasterol | C29H48O | Seeds | [50,51] |
188. | β-sitosterol | C31H52O2 | Seeds | [50,51] |
189. | Campesterol | C28H48O | Seeds | [50] |
190. | β-amyrin | C30H50O | Seeds | [50] |
191. | β-cholestanol | C27H48O | Seeds | [50] |
192. | 5α-cholestane | C27H48 | Seeds | [50,52] |
Tocopherols | ||||
193. | δ-tocopherol | C27H46O2 | Seeds | [50,51] |
194. | γ-tocopherol | C28H48O2 | Seeds | |
195. | β-tocopherol | C28H48O2 | Seeds | |
196. | α-tocopherol | C29H50O2 | Seeds | |
Fatty acids | ||||
197. | Lauric acid | C12H24O2 | Seeds | [53] |
198. | Myristic acid | C14H28O2 | Seeds | [53] |
199. | Pentadecanoic acid | C15H30O2 | Seeds | [50] |
200. | Palmitic acid | C16H32O2 | Seeds | [50] |
201. | Palmitoleic acid | C16H30O2 | Seeds | [53] |
202. | Heptadecanoic acid | C17H34O2 | Seeds | [53] |
203. | Stearic acid | C18H36O2 | Seeds | [50] |
204. | Oleic acid | C18H34O2 | Seeds | [50] |
205. | Linoleic acid | C18H32O2 | Seeds | [50] |
206. | Linolenic acid | C18H30O2 | Seeds | [50] |
207. | Arachidic acid | C20H40O2 | Seeds | [50] |
208. | Eicosenoic acid | C20H38O2 | Seeds | [50] |
209. | Eicosadienoic acid | C20H36O2 | Seeds | [53] |
210. | Eicosatrienoic acid | C20H34O2 | Seeds | [53] |
211. | Behenic acid | C22H44O2 | Seeds | [53] |
Other important compounds | ||||
212. | p-Hydroxybenzaldehyde | C7H6O2 | Leaves | [17] |
213. | p-Hydroxyacetophenone | C8H8O2 | Leaves | [17] |
214. | trans-p-Hydroxycinnamic acid | C9H8O3 | Leaves | [17] |
215. | 3′,4′,5′-trimethoxycinnamyl alcohol | C12H16O4 | Aerial parts | [8] |
S. No. | Component | Mol. Formula | Parts | Reference |
---|---|---|---|---|
1. | α-Farnesene | C15H24 | Leaves, Aerial parts | [3,5,11] |
2. | β -Farnesene | C15H24 | Leaves, Aerial parts | [3,10] |
3. | α-Caryophyllene | C15H24 | Leaves, Aerial parts | [3,7] |
4. | β-Caryophyllene | C15H24 | Leaves, Aerial parts | [5,11] |
5. | Isocaryophyllene | C15H24 | Leaves, Aerial parts | [3,10] |
6. | Caryophyllene oxide | C15H24O | Leaves, Aerial parts | [1,3,5] |
7. | Phytol | C20H40O | Leaves, Aerial parts | [1,5,11] |
8. | Alloaromadendrene | C15H24 | Leaves | [3] |
9. | Thymoquinone | C10H12O2 | Leaves | [11,57] |
10. | Bergamotene | C16H24 | Leaves, Aerial parts | [4,11] |
11. | Diisooctyl adipate | C22H42O4 | Leaves | [11] |
12. | α-pinene | C10H16 | Leaves, Aerial parts | [1,5] |
13. | β-pinene | C10H16 | Leaves, Aerial parts | [1,5] |
14. | Eugenol | C10H12O2 | Leaves, Aerial parts | [1,2,7] |
15. | Isoeugenol | C10H12O2 | Leaves | [3,4] |
16. | Methyl eugenol | C11H14O2 | Leaves | [3] |
17. | Methyl isoeugenol | C11H14O2 | Leaves, Aerial parts | [3,8] |
18. | Spathulenol | C15H24O | Leaves, Aerial parts | [1,5,13] |
19. | Viridiflorene | C15H24 | Leaves | [3] |
20. | Viridiflorol | C15H26O | Leaves | [3] |
21. | ε-Muurolene | C15H24 | Leaves | [3] |
22. | γ-Terpinene | C10H16 | Leaves | [2] |
23. | β-Terpinene | C10H16 | Leaves | [3] |
24. | Terpinen-4-ol | C10H18O | Leaves | [3] |
25. | Nerolidol | C15H26O | Leaves, Aerial parts | [2,5] |
26. | α-Cadinene | C15H24 | Leaves | [2] |
27. | β-Cadinene | C15H24 | Leaves | [3] |
28. | δ-Cadinene | C15H24 | Leaves, Aerial parts | [3,5] |
29. | α-Asarone | C12H16O3 | Leaves, Aerial parts | [3,10] |
30. | Linalool | C10H18O | Leaves, Aerial parts | [4,5] |
31. | Linalool propanoate | C14H24O2 | Leaves | [1] |
32. | Linalool formate | C11H18O2 | Leaves | [1] |
33. | Linalool oxide | C10H18O2 | Leaves | [58] |
34. | Carvacrol | C10H14O | Leaves, Aerial parts | [1,5] |
35. | α-Santalol | C15H24O | Leaves | [3] |
36. | α-Bulnesene | C15H24 | Leaves | [3] |
37. | β-Gurjunene | C15H24 | Leaves | [3] |
38. | β-Selinene | C15H24 | Leaves | [3] |
39. | Germacrene A | C15H24 | Leaves | [1] |
40. | Germacrene B | C15H24 | Leaves | [1] |
41. | Germacrene D | C15H24 | Leaves, Aerial parts | [7,12] |
42. | Bicyclogermacrene | C15H24 | Leaves | [2] |
43. | Estragole | C10H12O | Leaves | [1] |
44. | α-Cubebene | C15H24 | Leaves | [2] |
45. | β-Cubebene | C15H24 | Leaves | [2] |
46. | Carvone | C10H14O | Leaves, Aerial parts | [4,7] |
47. | Shisofuran | C10H12O | Leaves | [1,4] |
48. | Piperitone | C10H16O | Leaves | [4] |
49. | Piperitenone | C10H14O | Leaves | [3,4] |
50. | Farnesol | C15H26O | Leaves | [3] |
51. | Phytone | C18H36O | Leaves | [3] |
52. | α-citral | C10H16O | Leaves | [3] |
53. | β-citral | C10H16O | Leaves | [1] |
54. | Ocimene | C10H16 | Leaves | [3] |
55. | Cosmene | C10H14 | Leaves | [3] |
56. | γ-Pyronene | C10H16 | Leaves | [3] |
57. | Perillene | C10H14O | Leaves, Aerial parts | [3,13] |
58. | Perillaldehyde | C10H14O | Leaves, Aerial parts | [1,3,5] |
59. | Perilla ketone | C10H14O2 | Leaves, Aerial parts | [1,13] |
60. | Egoma ketone | C10H12O2 | Leaves, Aerial parts | [5,12] |
61. | Isoegomaketone | C10H12O2 | Leaves, Aerial parts | [12,13] |
62. | Perilla alcohol | C10H16O | Leaves, Aerial parts | [1,2,5] |
63. | Perillic acid | C10H14O2 | Aerial parts | [5] |
64. | Methy perillate | C11H16O2 | Aerial parts | [5] |
65. | Elscholtzia ketone | C10H14O2 | Leaves, Aerial parts | [1,13] |
66. | dehydro-elsholtzia ketone | C10H12O2 | Leaves, Aerial parts | [1] |
67. | Naginata ketone | Leaves | [3] | |
68. | α-Terpineol | C10H18O | Leaves, Aerial parts | [3,5] |
69. | Elemicin | C12H16O3 | Leaves, Aerial parts | [3,10] |
70. | Isoelemicin | C12H16O3 | Leaves, Aerial parts | [3,8] |
71. | Myristicin | C11H12O3 | Leaves, Aerial parts | [10] |
72. | Dillapiol | C12H14O4 | Leaves | [18] |
73. | Nothoapiol | C13H16O5 | Leaves | [18] |
74. | Patchoulane | C15H26 | Leaves | [3] |
75. | α-Patchoulene | C15H24 | Leaves | [3] |
76. | o-Cymene | C10H14 | Aerial parts | [7] |
77. | p-Cymene | C10H14 | Aerial parts | [5] |
78. | Pulegone | C10H16O | Leaves | [2] |
79. | Isopulegone | C10H16O | Leaves | [3] |
80. | β-Bourbonene | C15H24 | Leaves | [3] |
81. | α-Humulene | C15H24 | Leaves, Aerial parts | [2,5] |
82. | Humulene epoxide II | C15H24O | Leaves, Aerial parts | [3,5] |
83. | α-Bisabolene epoxide | C15H24O | Leaves | [3] |
84. | Isoaromadendrene epoxide | C15H24O | Aerial parts | [6] |
85. | Sabinene | C10H16 | Leaves | [2,3] |
86. | Styrene | C8H8 | Leaves | [3] |
87. | Limonene | C10H16 | Leaves, Aerial parts | [2,10] |
88. | Limonene oxide | C10H16O | Leaves | [2] |
89. | Limonene aldehyde | C11H18O | Leaves | [1] |
90. | Isolimonene | C10H16O | Leaves | [3] |
91. | Pseudolimonene | C10H16 | Leaves, Aerial parts | [3,10] |
92. | α-Copaene | C16H26 | Leaves, Aerial parts | [3,10] |
93. | α-Fenchene | C10H16 | Leaves | [3] |
94. | Anisole | C7H8O | stems | [59] |
95. | Eucalyptol | C10H18O | Leaves, Aerial parts | [3,6] |
96. | β-Myrcene | C10H16 | Leaves | [1,2] |
97. | Geranyl acetone | C13H22O | Leaves | [1,2] |
98. | Hexahydrofarnesyl acetone | C18H36O | Leaves, Aerial parts | [5,13] |
99. | Methyl geranate | C11H18O2 | Leaves | [1,2] |
100. | Camphene | C10H16 | Leaves | [1,2] |
101. | Longifolen | C15H24 | Leaves | [3] |
102. | 1,8-Cineole | C10H18O | Leaves | [1,2] |
103. | Damascenone | C13H18O | Leaves | [4] |
104. | α-Cadinol | C15H26O | Leaves | [12] |
105. | Tau-Cadinol | C15H26O | Leaves | [1] |
106. | α-Terpinolene | C10H16 | Leaves | [1,2] |
107 | Menthol | C10H20O | Leaves | [3] |
108. | Menthone | C10H18O | Leaves | [3] |
109. | Isomenthone | C10H18O | Leaves | [3] |
110. | Eremophilene | C15H24 | Leaves | [3] |
111. | Carveole | C10H16O | Leaves | [4] |
112. | Dihydrocarveol | C10H18O | Leaves, Aerial parts | [3,5] |
113. | Dihydrocarveol acetate | C12H20O2 | Leaves | [1,3] |
114. | Isodihydrocarveol acetate | C12H20O2 | Leaves | [58] |
115. | Geraniol | C10H18O | Leaves | [3,4] |
116. | α-Terpineol | C10H18O | Leaves, Aerial parts | [3,5] |
117. | β-Terpineol | C10H18O | Aerial parts | [6] |
118. | β-Elemene | C15H24 | Leaves | [1,2] |
119. | δ -Elemene | C15H24 | Leaves | [2,3] |
120. | β-Citronellene | C10H18 | Leaves | [3] |
121. | δ -2-Carene | C10H16 | Leaves | [4] |
122. | Calarene | C15H24 | Leaves | [3] |
123. | Camphane | C10H18 | Leaves | [3] |
124. | Ylangene | C15H24 | Leaves, Aerial parts | [4] |
125. | Nerol | C10H18O | Leaves | [2] |
126. | Cadina 3,9-diene | C15H24 | Aerial parts | [7] |
127. | Neophytadiene | C20H38 | Leaves | [12] |
128. | β-Ionone | C13H20O | Leaves, Aerial parts | [1,5] |
129. | α -Fenchene | C10H16 | Leaves | [3] |
130. | Thymol | C10H14O | Leaves, Aerial parts | [1,5] |
131. | α-Phellandrene | C10H16 | Leaves | [1] |
132. | β-Phellandrene | C10H16 | Leaves, Aerial parts | [3,6] |
133. | Santolina triene | C10H16 | Leaves | [3] |
134. | Verbenol | C10H16O | Leaves | [3] |
135. | trans-Shisool | C10H18O | Leaves, Aerial parts | [1,6] |
136. | Thujyl alcohol | C10H18O | Leaves | [3] |
137. | Furfuryl alcohol | C5H6O2 | Leaves | [3] |
138. | 2-Hexanoylfuran | C10H14O2 | Leaves, Aerial parts | [10,11] |
139. | 2-acetylfuran | C6H6O2 | Leaves | [3] |
140. | β-terpinyl acetate | C12H20O2 | Aerial parts | [7] |
141. | trans-Valerenyl acetate | C17H26O2 | Leaves | [11] |
142. | Isomenthyl acetate | C12H22O2 | Leaves | [1] |
143. | Isobornyl acetate | C12H20O2 | Aerial parts | [6] |
144. | Bornyl acetate | C12H20O2 | Leaves | [58] |
145. | Nerol acetate | C12H20O2 | Leaves | [3] |
146. | 2-furyl methyl ketone | C6H6O2 | Aerial parts | [7] |
147. | Valencene | C15H24 | Aerial parts | [10] |
148. | laurolene | C8H14 | Leaves | [3] |
149. | α-curcumene | C15H22 | Stems | [59] |
150. | Elixene | C15H24 | Leaves | [59] |
151. | Curlone | C15H22O | Stems | [59] |
152. | Isopiperitenol | C10H16O | Leaves | [60] |
153. | Isopiperitenone | C10H14O | Leaves | [60] |
154. | Neral | C10H16O | Leaves | [60] |
155. | Geranial | C10H16O | Leaves | [60] |
156. | Geraniol | C10H18O | Leaves | [60] |
157. | α-naginatene | C10H14O | Leaves | [60] |
158. | β -cyclocitral | C10H16O | Leaves | [58] |
159. | Pthalic acid | C8H6O4 | Stems | [59] |
160. | 2-Butylamine | C4H11N | Leaves | [3] |
161. | 2-Pyrimidinamine | C4H5N3 | Aerial parts | [10] |
162. | 2-Hydroxypyridine | C5H5NO | Leaves | [3] |
163. | Phenylacetaldehyde | C8H8O | Leaves | [12] |
164. | p-Mentha-3,8-diene | C10H16 | Leaves | [3] |
165. | Methyl thymyl ether | C11H16O | Seeds | [59] |
166. | p-mentha-2,4(8)-diene | C10H16 | Leaves, Aerial parts | [4,7] |
167. | p-Menth-2-en-1-ol | C10H18O | Leaves | [2] |
168. | p-Menth-1-en-8-ol | C10H18O | Leaves, Aerial parts | [2,4,7] |
169. | p-Mentha-1,8-dien-7-ol | C10H16O | Leaves, Aerial parts | [2,7] |
170. | p-Menth-4(8)-en-3-one | C10H16O | Leaves | [2] |
171. | 2-Butanone | C4H8O | Leaves | [2] |
172. | 1-Pentene-3-one | C5H8O | Leaves | [12] |
173. | 3-Pentanone | C5H10O | Leaves | [12] |
174. | 2-Cyclopentenone | C5H6O | Leaves | [3] |
175. | 4,4-Dimethyl-2-cyclopenten-1-one | C7H10O | Leaves | [3] |
176. | 2-Methylcyclopentanone | C6H10O | Leaves | [3] |
177. | 2-Methyl-2-cyclopentenone | Leaves | [3] | |
178. | Cyclohexanone | C6H8O | Leaves | [3] |
179. | Methyl heptenone | C8H14O | Leaves | [3] |
180. | 1-octen-3-one | C8H14O | Leaves | [12] |
181. | 1-Pentene-3-ol | C5H10O | Leaves | [12] |
182. | 2-Pentenol | C5H10O | Leaves | [12] |
183. | 2-Hexenol | C6H12O | Leaves | [12] |
184. | 3-Hexenol | C6H12O | Leaves | [12] |
185. | 1-Hexanol | C6H14O | Leaves | [12] |
186. | 1-Octen-3-ol | C8H16O | Leaves, Aerial parts | [3,4,13] |
187. | 3-Octanol | C8H18O | Leaves, Aerial parts | [4,10] |
188. | Octadienol | C8H14O | Leaves | [2] |
189. | Benzaldehyde | C7H6O | Leaves, Aerial parts | [2,5,13] |
190. | 3-Pentenal | C5H8O | Leaves | [2,12] |
191. | Hexanal | C6H12O | Leaves | [2,12] |
192. | 2-Hexenal | C6H10O | Leaves | [2,12] |
193. | 3-Hexenal | C6H10O | Leaves | [2,12] |
194. | 2,4-Hexadienal | C6H8O | Leaves | [2,12] |
195. | 2,4-Heptadienal | C7H10O | Leaves | [2,12] |
196. | Octanal | C8H16O | Leaves | [2,12] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, T.; Netala, V.R.; Zhang, H.; Xing, Y.; Li, H.; Zhang, Z. Perilla frutescens: A Rich Source of Pharmacological Active Compounds. Molecules 2022, 27, 3578. https://doi.org/10.3390/molecules27113578
Hou T, Netala VR, Zhang H, Xing Y, Li H, Zhang Z. Perilla frutescens: A Rich Source of Pharmacological Active Compounds. Molecules. 2022; 27(11):3578. https://doi.org/10.3390/molecules27113578
Chicago/Turabian StyleHou, Tianyu, Vasudeva Reddy Netala, Hongjiao Zhang, Yun Xing, Huizhen Li, and Zhijun Zhang. 2022. "Perilla frutescens: A Rich Source of Pharmacological Active Compounds" Molecules 27, no. 11: 3578. https://doi.org/10.3390/molecules27113578
APA StyleHou, T., Netala, V. R., Zhang, H., Xing, Y., Li, H., & Zhang, Z. (2022). Perilla frutescens: A Rich Source of Pharmacological Active Compounds. Molecules, 27(11), 3578. https://doi.org/10.3390/molecules27113578