Design, Synthesis, Biological Evaluation and Silico Prediction of Novel Sinomenine Derivatives
<p>The structures of sionmenine, morphine and codeine.</p> "> Figure 2
<p>Anticancer activity of compounds <b>5a</b>–<b>5k</b> against MCF-7, Hela, and HepG2 cell lines at 2, 20, and 200 μM concentrations. (<b>A</b>) Human breast cancer cell lines, (<b>B</b>) human cervical cancer cells lines, (<b>C</b>) human hepatocellular carcinoma cell lines.</p> "> Figure 2 Cont.
<p>Anticancer activity of compounds <b>5a</b>–<b>5k</b> against MCF-7, Hela, and HepG2 cell lines at 2, 20, and 200 μM concentrations. (<b>A</b>) Human breast cancer cell lines, (<b>B</b>) human cervical cancer cells lines, (<b>C</b>) human hepatocellular carcinoma cell lines.</p> "> Figure 3
<p>Heat map representation of the primary cytotoxic effects of novel sinomenine derivatives on different cell lines (concentration = 2.5 and 25 μM; incubation time = 60 h).</p> "> Figure 4
<p>The number of genes collected in each database and the total number of genes after duplicates removed for each cancer cell.</p> "> Figure 5
<p>Five cancer disease-related protein interaction networks constructed by Cytoscape. Each network has 10 nodes with the top 10 degrees. (<b>A</b>) Breast cancer-related genes, (<b>B</b>) cervical cancer-related genes, (<b>C</b>) hepatocellular cancer-related genes, (<b>D)</b> colonic cancer-related genes, and (<b>E</b>) lung adenocarcinoma-related genes.</p> "> Figure 6
<p>Gene ontology terms of top 10 targets of five cancer diseases (<span class="html-italic">p</span>-value < 0.05). BP, MF, and CC represent Biological Process, Molecular Function, and Cellular Component groups of GO, respectively. (<b>A</b>) Breast cancer, (<b>B</b>) cervical cancer, (<b>C</b>) hepatocellular cancer, (<b>D</b>) colonic cancer, and (<b>E</b>) lung adenocarcinoma.</p> "> Figure 7
<p>Bubble plot of KEGG pathway enrichment analysis of the genes related to the five cancer diseases. Bubble plot: letters on the left are KEGG names, numbers on the bottom are the proportions of genes, sizes of the circles indicate the numbers of enriched genes, and colors reflect <span class="html-italic">p</span>-values. The redder the colors are, the more enriched the genes, and the smaller the <span class="html-italic">p</span> values. (<span class="html-italic">p</span> is normalized according to −log10). (<b>A</b>) Breast cancer, (<b>B</b>) cervical cancer, (<b>C</b>) hepatocellular cancer, (<b>D</b>) colonic cancer and (<b>E</b>) lung adenocarcinoma.</p> "> Figure 8
<p>The total energy of molecular docking between compounds <b>5a</b>–<b>5k</b> and 11 potential targets.</p> "> Figure 9
<p>The total energy of molecular docking between compounds <b>6a</b>–<b>6l</b> and 13 potential targets.</p> "> Figure 10
<p>The binding pose of the selected ligands. (<b>A</b>) <b>5g</b> docked into the binding cavity of the protein AKT1; (<b>B</b>) <b>5j</b> docked into the binding cavity of the protein EGFR; (<b>C</b>) <b>5i</b> docked into the binding cavity of the protein HRAS; (<b>D</b>) <b>5g</b> docked into the binding cavity of the protein HRAS.</p> "> Figure 11
<p>The binding pose of the selected ligands. (<b>A</b>) <b>6e</b> docked into the binding cavity of the protein AKT1; (<b>B</b>) <b>6d</b> docked into the binding cavity of the protein EGFR; (<b>C</b>) <b>6a</b> docked into the binding cavity of the protein HRAS; (<b>D</b>) <b>6e</b> docked into the binding cavity of the protein HRAS; (<b>E</b>) <b>6g</b> docked into the binding cavity of the protein HRAS; (<b>F</b>) <b>6a</b> docked into the binding cavity of the protein KRAS. The ligand is represented by orange sticks. The active site residues are shown as blue sticks. The main atoms involving hydrogen bonds are indicated by blue lines. The main atoms involving hydrophobic bonds are indicated by grey dashes. The main atoms involving halogen bonds are indicated by green lines. The main atoms involving salt bridges are indicated by yellow dotted lines. The main atoms involving π-stacking are indicated by green dotted lines. The key residues participating in hydrogen bonds and hydrophobic interactions are labeled.</p> "> Scheme 1
<p>Synthetic scheme of compounds <b>2</b>–<b>6</b> (R′ = Compound <b>4</b>, the red gradient circle represents the ester substitution R.)</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Anticancer Activity of the Synthesized Compounds 5a–5k
2.3. Anticancer Activity of the Synthesized Compounds 6a–6l
2.4. Computer-Aided Evaluation
2.4.1. Number of Gene Screens
2.4.2. PPI Interaction Network Construction
2.4.3. GO and KEGG Enrichment Analysis
2.4.4. Molecular Docking
3. Materials and Methods
3.1. Chemistry
3.1.1. General Procedure for the Synthesis of Compounds 5a–5k
3.1.2. General Procedure for the Synthesis of Compounds 6a–6l
3.2. Biological Activity
3.2.1. Drugs and Drug Treatments
3.2.2. Cell Lines
3.2.3. Anticancer Evaluation
MTT Assay
CCK8 Assay
3.3. In Silico Study
3.3.1. Collection of Related Genes
3.3.2. Pharmacology Network Analysis
3.3.3. Enrichment Analysis of Five Cancer Diseases Targets
3.3.4. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Li, J.W.H.; Vederas, J.C. Drug discovery and natural products: End of an era or an endless frontier? Science 2009, 325, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.T.; Yi, T. Natural Product Biosynthesis: Chemical Logic and Enzymatic Machinery; Royal Society of Chemistry Publishing: Cambridge, UK, 2017; p. 765. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Wink, M. Alkaloids: Properties and determination. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 97–105. [Google Scholar]
- Castilla-Fernandez, D.; Moreno-Gonzalez, D.; Garcia-Reyes, J.F.; Ballesteros, E.; Molina-Diaz, A. Determination of atropine and scopolamine in spinach-based products contaminated with genus Datura by UHPLC-MS/MS. Food Chem. 2021, 347, 129020. [Google Scholar] [CrossRef] [PubMed]
- Ibis, E.; Hayme, S.; Baysal, E.; Gul, N.; Ozkavukcu, S. Efficacy and safety of papaverine as an in vitro motility enhancer on human spermatozoa. J. Assist. Reprod. Genet. 2021, 2, 1–15. [Google Scholar]
- Gaba, S.; Saini, A.; Singh, G.; Monga, V. An insight into the medicinal attributes of berberine derivatives: A review. Bioorg. Med. Chem. 2021, 38, 116143. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Wang, X.L.; Ou, S.Q.; Hou, D.X.; He, J.H. Sanguinarine modulate gut microbiome and intestinal morphology to enhance growth performance in broilers. PLoS ONE 2020, 15, e0234920. [Google Scholar] [CrossRef]
- Ng, J.P.L.; Coghi, P.; Law, B.Y.K.; Liu, L.; Wong, V.K.W. The present and future synthetic strategies of structural modifications of sinomenine. Org. Chem. Front. 2020, 7, 4089–4107. [Google Scholar] [CrossRef]
- Zhao, S.; Guo, Y.; Wang, Q.; An, B. Antifungal effects of lycorine on Botrytis cinerea and possible mechanisms. Biotechnol. Lett. 2021. [Google Scholar] [CrossRef]
- Sezer, E.N.S.; Uysal, T. Anti-Proliferative and apoptotic effects of vincristine and vinblastine on multiple myeloma. Fresenius Environ. Bull. 2019, 28, 4001–4006. [Google Scholar]
- Liu, J.; Han, X.; Wu, D.; Jia, Z. 2D NMR studies on sesquiterpene alkaloids from celastrus angulatus (in Chinese). Chin. J. Magn. Reson. 1992, 9, 289–295. [Google Scholar]
- Zhou, W.; Liu, H.; Qiu, L.Z.; Yue, L.X.; Zhang, G.J.; Deng, H.F.; Ni, Y.H.; Gao, Y. Cardiac efficacy and toxicity of aconitine: A new frontier for the ancient poison. Med. Res. Rev. 2021, 41, 1798–1811. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, L.; Li, R. Study progress in Sinomenium acutum (Thunb.) Rehd. et Wils. J. Chin. Med. Mater. 2002, 25, 209–211. [Google Scholar]
- Ishiwari, N. An alkaloid of sinomeium diversifolius. J. Chem. Soc. Abstr. 1921, 1, 354. [Google Scholar]
- Tang, J.; Raza, A.; Chen, J.; Xu, H. A systematic review on the sinomenine derivatives. Mini-Rev. Med. Chem. 2018, 18, 906–917. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.J.; Xu, F.; Shi, M.J.; Hu, J.W.; Wang, J.J.; Zhen, B.; Wang, X.; Ji, T.F.; Wang, J.H.; Du, G.H. Synthesis and antitumor activities of sinomenine derivatives on rings A and C. J. Asian Nat. Prod. Res. 2018, 20, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Arend, M.; Westermann, B.; Risch, N. Modern variants of the Mannich reaction. Angew. Chem. Int. Ed. 1998, 37, 1044–1070. [Google Scholar] [CrossRef]
- Liu, J.; Pang, Y.; Chen, J.; Huang, P.; Huang, W.; Zhu, X.; Yan, D. Hyperbranched polydiselenide as a self assembling broad spectrum anticancer agent. Biomaterials 2012, 33, 7765–7774. [Google Scholar] [CrossRef]
- Huang, H.Y.; Liu, J.J.; Xi, R.R.; Xing, X.M.; Yuan, J.H.; Yang, L.Q.; Tao, G.H.; Gong, C.M.; Zhuang, Z.X. An investigation of hormesis of trichloroethylene in L-02 liver cells by differential proteomic analysis. Mol. Biol. Rep. 2009, 36, 2119–2129. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid calorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Gomha, S.M.; Riyadh, S.M.; Mahmmoud, E.A.; Elaasser, M.M. Synthesis and anticancer activities of thiazoles, 1,3-thiazines, and thiazolidine using chitosan-graftedpoly (vinylpyridine) as basic catalyst. Heterocycles 2015, 91, 1227–1243. [Google Scholar]
- Amberger, J.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. McKusick’s Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res. 2009, 37, D793–D796. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Zhao, L.F.; Wang, H.F.; Wen, Y.T.; Jiang, K.K.; Mao, X.M.; Zhou, Z.Y.; Yao, K.T.; Geng, Q.S.; Guo, D.; et al. GenCLiP 3: Mining human genes’ functions and regulatory networks from PubMed based on co-occurrences and natural language processing. Bioinformatics 2020, 36, 1973–1975. [Google Scholar] [CrossRef]
- Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. Comparative Toxicogenomics Database (CTD): Update 2021. Nucleic Acids Res. 2021, 49, D1138–D1143. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinf. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.P.; Smith, B.; McAndrews-Hill, M.S.; Blake, J.A. Gene Ontology annotations: What they mean and where they come from. BMC Bioinform. 2008, 9 (Suppl. 5), S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.M.; Chen, C.C. GEMDOCK: A generic evolutionary method for molecular docking. Proteins Struct. Funct. Bioinform. 2004, 55, 288–304. [Google Scholar] [CrossRef]
- Loncaric, M.; Strelec, I.; Pavic, V.; Subaric, D.; Rastija, V.; Molnar, M. Lipoxygenase inhibition activity of coumarin derivatives-QSAR and molecular docking study. Pharmaceuticals 2020, 13, 154. [Google Scholar] [CrossRef]
- Delano, W.L. The PyMol molecular graphics system. Proteins Struct. Funct. Bioinform. 2002, 30, 442–454. [Google Scholar]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021. [Google Scholar] [CrossRef] [PubMed]
NO. | Compounds | R1 | R2 | R3 | Product | Yield (%) |
---|---|---|---|---|---|---|
1 | 5a | H | H | Cl | 90 | |
2 | 5b | H | H | H | 64 | |
3 | 5c | H | OMe | OMe | 90 | |
4 | 5d | Me | H | H | 85 | |
5 | 5e | H | H | H | 55 | |
6 | 5f | Cl | H | H | 77 | |
7 | 5g | H | Cl | H | 72 | |
8 | 5h | H | H | OMe | 81 | |
9 | 5i | Cl | H | Cl | 90 | |
10 | 5j | H | Cl | Cl | 52 | |
11 | 5k | H | H | F | 90 | |
12 | 6a | H | H | Cl | 23 | |
13 | 6b | H | OMe | OMe | 37 | |
14 | 6c | Cl | H | H | 29 | |
15 | 6d | Cl | H | Cl | 22 | |
16 | 6e | H | Cl | H | 51 | |
17 | 6f | Me | H | H | 42 | |
18 | 6g | H | Cl | Cl | 57 | |
19 | 6h | H | H | H | 27 | |
20 | 6i | H | H | OMe | 36 | |
21 | 6j | H | H | NO2 | 7 | |
22 | 6k | OMe | H | H | 19 | |
23 | 6l | F | H | H | 21 |
Compounds | MCF-7 | Hela | SW480 | A549 | Hek293 |
---|---|---|---|---|---|
6a | 14.34 ± 0.83 | 11.52 ± 1.04 | 14.94 ± 0.06 | >25 | 12.98 ± 0.62 |
6c | >25 | >25 | >25 | 18.72 ± 0.70 | 6.52 ± 0.19 |
6d | 5.73 ± 0.36 | 8.20 ± 0.52 | 6.08 ± 0.28 | 11.57 ± 1.61 | 3.46 ± 0.02 |
6e | 14.86 ± 0.15 | 13.28 ± 0.95 | >25 | 17.91 ± 0.74 | 16.57 ± 0.64 |
6f | >25 | >25 | >25 | 25.05 ± 1.72 | 10.11 ± 0.42 |
6g | >25 | 11.88 ± 0.60 | >25 | >25 | 4.71 ± 0.48 |
Cisplatin | 3.45 ± 0.82 | 4.57 ± 0.43 | 1.98 ± 0.15 | 14.35 ± 0.70 | 3.19 ± 0.60 |
No. | Genes | Uniprot ID | Name |
---|---|---|---|
1 | AKT1 | Q96B36 | Proline-rich AKT1 substrate 1 |
2 | CCND1 | Q64HP0 | G1/S-specific cyclin-D1 |
3 | CDH1 | P12830 | Cadherin-1 |
4 | EGF | P01133 | Proepidermal growth factor |
5 | EGFR | P00533 | Epidermal growth factor receptor |
6 | ERBB2 | P04626 | Receptor tyrosine-protein kinase erbB-2 |
7 | GAPDH | P04406 | Glyceraldehyde-3-phosphate dehydrogenase |
8 | HRAS | P01112 | GTPase HRas |
9 | IL6 | P05231 | Interleukin-6 |
10 | INS | P01308 | Insulin |
11 | KRAS | P01116 | GTPase KRas |
12 | MYC | P01106 | Mycproto-oncogene protein |
13 | PTEN | P60484 | Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN |
14 | STAT3 | P40763 | Signal transducer and activator of transcription 3 |
15 | TP53 | P04637 | Cellular tumor antigen p53 |
16 | VEGFA | P15692 | Vascular endothelial growth factor A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Gao, M.; Nian, X.; Zhang, L.; Li, J.; Cui, D.; Zhang, C.; Zhao, C. Design, Synthesis, Biological Evaluation and Silico Prediction of Novel Sinomenine Derivatives. Molecules 2021, 26, 3466. https://doi.org/10.3390/molecules26113466
Li S, Gao M, Nian X, Zhang L, Li J, Cui D, Zhang C, Zhao C. Design, Synthesis, Biological Evaluation and Silico Prediction of Novel Sinomenine Derivatives. Molecules. 2021; 26(11):3466. https://doi.org/10.3390/molecules26113466
Chicago/Turabian StyleLi, Shoujie, Mingjie Gao, Xin Nian, Liyu Zhang, Jinjie Li, Dongmei Cui, Chen Zhang, and Changqi Zhao. 2021. "Design, Synthesis, Biological Evaluation and Silico Prediction of Novel Sinomenine Derivatives" Molecules 26, no. 11: 3466. https://doi.org/10.3390/molecules26113466
APA StyleLi, S., Gao, M., Nian, X., Zhang, L., Li, J., Cui, D., Zhang, C., & Zhao, C. (2021). Design, Synthesis, Biological Evaluation and Silico Prediction of Novel Sinomenine Derivatives. Molecules, 26(11), 3466. https://doi.org/10.3390/molecules26113466