Involvement of miR-190b in Xbp1 mRNA Splicing upon Tocotrienol Treatment
<p>In silico analysis for the identification of favorable miRNA–mRNA target complexes induced in HeLa cells treated with γT3: (<b>A</b>) Gibbs free energy decrease was estimated using MiREN software, testing for the 10 most favorable predicted miRNA–mRNA target pairs. The best complex was found in the hsa-miR-190b–Xbp1 pair. (<b>B</b>) Tridimensional model of the ternary complex formed by miR-190b, Xbp1 mRNA, and the T.hermus thermophilus AGO protein (PDB code: 3F73), which is considered an appropriate structural model representative of the eukaryotic members of AGO proteins.</p> "> Figure 2
<p>Xbp1–mRNA alternative splicing. Effects of γT3 (10 or 20 µg/mL for 24 h) and δT3 (5 or 10 µg/mL for 24 h) on HeLa cells transfected with anti-miR-190b (Panel (<b>A</b>), an190b) and pre-miR-190b (Panel (<b>B</b>), pre190b) and on mRNA alternative splicing of Xbp1. CC, control cells. PCR amplicons were digested with PstI. Digested and not digested PCR products were resolved on 2% agarose gels, stained with EtBr. The figure shows 1 of at least 3 representative experiments.</p> "> Figure 3
<p>Effect of anti-miR-190b (an190b) and pre-miR-190b (pre190b) on cell proliferation after treatment with γT3 (20 µg/mL for 12 h) and δT3 (10 µg/mL for 12 h) in HeLa cells. CC, control cells. The figure (10× enlargement) shows 1 of at least 3 representative experiments.</p> "> Figure 4
<p>Effects of γT3 (20 µg/mL for 24 h) and δT3 (10 µg/mL for 24 h) on the proliferation of HeLa cells transfected with pre-miR-190b (pre190b) and anti-miR-190b (an190b). Results are reported as the mean ± SD of data obtained from 5 independent experiments and expressed as arbitrary fluorescence values normalized per 10,000 cells. Bars show a log<sub>2</sub> fold-change (treated vs. control, CC). Data were analyzed by one-way ANOVA with repeated measures, followed by Tukey’s test. Different letters (a, b, c) indicate significant differences (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Results
2.1. miRNA Profiling and Validation of miRNA Expression
2.2. Identification of Target Genes Modulated by miR-190b
2.3. Effects of Modulation of miR-190b on bp1 mRNA
2.4. miR-190b Modulates T3 Antiproliferative Effects
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Cell Lines and Treatments
4.3. TaqMan miRNA Array Profiling
4.4. Identification of Gene Targets
4.5. Real-Time qPCR Validation of Differentially Expressed miRNAs
4.6. Transfections with miRNA Mimics and Inhibitors
4.7. Alternative Splicing Xbp1 mRNA
4.8. Proliferation Assay
4.9. Statistical Analysis and Data Presentation
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bertolotti, A.; Zhang, Y.; Hendershot, L.M.; Harding, H.P.; Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2000, 2, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Matsui, T.; Yamamoto, A.; Okada, T.; Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001, 107, 881–891. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Liang, F.X.; Wang, X. A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol. Cell 2014, 55, 758–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoulders, M.D.; Ryno, L.M.; Genereux, J.C.; Moresco, J.J.; Tu, P.G.; Wu, C.; Yates, J.R., 3rd; Su, A.I.; Kelly, J.W.; Wiseman, R.L. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 2013, 3, 1279–1292. [Google Scholar] [CrossRef] [Green Version]
- Bettigole, S.E.; Glimcher, L.H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol. 2015, 33, 107–138. [Google Scholar] [CrossRef]
- Rasheva, V.I.; Domingos, P.M. Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 2009, 14, 996–1007. [Google Scholar] [CrossRef]
- Allagnat, F.; Christulia, F.; Ortis, F.; Pirot, P.; Lortz, S.; Lenzen, S.; Eizirik, D.L.; Cardozo, A.K. Sustained production of spliced X-box binding protein 1 (XBP1) induces pancreatic beta cell dysfunction and apoptosis. Diabetologia 2010, 53, 1120–1130. [Google Scholar] [CrossRef] [Green Version]
- Comitato, R.; Guantario, B.; Leoni, G.; Nesaretnam, K.; Ronci, M.B.; Canali, R.; Virgili, F. Tocotrienols induce endoplasmic reticulum stress and apoptosis in cervical cancer cells. Genes Nutr. 2016, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Sen, C.K.; Khanna, S.; Roy, S. Tocotrienols: Vitamin E beyond tocopherols. Life Sci. 2006, 78, 2088–2098. [Google Scholar] [CrossRef] [Green Version]
- Comitato, R.; Ambra, R.; Virgili, F. Tocotrienols: A Family of Molecules with Specific Biological Activities. Antioxidants 2017, 6, 93. [Google Scholar] [CrossRef] [Green Version]
- Comitato, R.; Leoni, G.; Canali, R.; Ambra, R.; Nesaretnam, K.; Virgili, F. Tocotrienols activity in MCF-7 breast cancer cells: Involvement of ERbeta signal transduction. Mol. Nutr. Food Res. 2010, 54, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Tham, S.Y.; Loh, H.S.; Mai, C.W.; Fu, J.Y. Tocotrienols Modulate a Life or Death Decision in Cancers. Int. J. Mol. Sci. 2019, 20, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrd, A.E.; Brewer, J.W. Micro(RNA)managing endoplasmic reticulum stress. IUBMB Life 2013, 65, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Sun, Y.; Zhou, Y.; Zhang, Y.; Zhang, T.; Li, Y.; You, W.; Chang, X.; Yuan, L.; Han, X. MicroRNA-24 promotes pancreatic beta cells toward dedifferentiation to avoid endoplasmic reticulum stress-induced apoptosis. J. Mol. Cell Biol. 2019, 11, 747–760. [Google Scholar] [CrossRef]
- Grieco, F.A.; Schiavo, A.A.; Brozzi, F.; Juan-Mateu, J.; Bugliani, M.; Marchetti, P.; Eizirik, D.L. The miRNAs miR-211-5p and miR-204-5p modulate ER stress in human beta cells. J. Mol. Endocrinol. 2019, 63, 139–149. [Google Scholar] [CrossRef]
- Ebert, M.S.; Neilson, J.R.; Sharp, P.A. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 2007, 4, 721–726. [Google Scholar] [CrossRef]
- Ameyar-Zazoua, M.; Rachez, C.; Souidi, M.; Robin, P.; Fritsch, L.; Young, R. Argonaute proteins couple chromatin silencing to alternative splicing. Nat. Struct. Mol. Biol. 2012, 19, 998–1004. [Google Scholar] [CrossRef]
- Cui, J.; Zhou, B.; Ross, S.A.; Zempleni, J. Nutrition, microRNAs, and Human Health. Adv. Nutr. 2017, 8, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Gaedicke, S.; Zhang, X.; Schmelzer, C.; Lou, Y.; Doering, F.; Frank, J.; Rimbach, G. Vitamin E dependent microRNA regulation in rat liver. FEBS Lett. 2008, 582, 3542–3546. [Google Scholar] [CrossRef] [Green Version]
- Gee, H.E.; Buffa, F.M.; Camps, C.; Ramachandran, A.; Leek, R.; Taylor, M.; Patil, M.; Sheldon, H.; Betts, G.; Homer, J.; et al. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br. J. Cancer 2011, 104, 1168–1177. [Google Scholar] [CrossRef] [Green Version]
- Tétreault, N.; De Guire, V. miRNAs: Their discovery, biogenesis and mechanism of action. Clin. Biochem. 2013, 46, 842–845. [Google Scholar] [CrossRef] [PubMed]
- Almanza, A.; Carlesso, A.; Chintha, C.; Creedican, S.; Doultsinos, D.; Leuzzi, B.; Luís, A.; McCarthy, N.; Montibeller, L.; More, S.; et al. Endoplasmic reticulum stress signaling—From basic mechanisms to clinical applications. FEBS J. 2019, 286, 241–278. [Google Scholar] [CrossRef] [PubMed]
- Peschek, J.; Acosta-Alvear, D.; Mendez, A.S.; Walter, P. A conformational RNA zipper promotes intron ejection during non-conventional XBP1 mRNA splicing. EMBO Rep. 2015, 16, 1688–1698. [Google Scholar] [CrossRef]
- Yoshida, H. Unconventional splicing of XBP-1 mRNA in the unfolded protein response. Antioxid. Redox Signal. 2007, 9, 2323–2333. [Google Scholar] [CrossRef]
- Lee, K.; Tirasophon, W.; Shen, X.; Michalak, M.; Prywes, R.; Okada, T.; Yoshida, H.; Mori, K.; Kaufman, R.J. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 2002, 16, 452–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sriburi, R.; Jackowski, S.; Mori, K.; Brewer, J.W. XBP1: A link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell Biol. 2004, 167, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Gardner, B.M.; Pincus, D.; Gotthardt, K.; Gallagher, C.M.; Walter, P. Endoplasmic reticulum stress sensing in the unfolded protein response. CSH Perspect. Biol. 2013, 5, a013169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagos-Quintana, M.; Rauhut, R.; Yalcin, A.; Meyer, J.; Lendeckel, W.; Tuschl, T. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 2002, 12, 735–739. [Google Scholar] [CrossRef] [Green Version]
- Christian, P.; Su, Q. MicroRNA regulation of mitochondrial and ER stress signaling pathways: Implications for lipoprotein metabolism in metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 2014, 307, E729–E737. [Google Scholar] [CrossRef]
- Byrd, A.E.; Aragon, I.V.; Brewer, J.W. MicroRNA-30c-2* limits expression of proadaptive factor XBP1 in the unfolded protein response. J. Cell Biol. 2012, 196, 689–698. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Wang, X.; Gong, W.; Ni, L.; Chen, C.; He, X.; Chen, F.; Yang, L.; Wang, P.; Wang, D.W. ER stress negatively modulates the expression of the miR-199a/214 cluster to regulates tumor survival and progression in human hepatocellular cancer. PLoS ONE 2012, 7, e31518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestdagh, P.; Van Vlierberghe, P.; De Weer, A.; Muth, D.; Westermann, F.; Speleman, F.; Vandesompele, J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009, 10, R64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betel, D.; Koppal, A.; Agius, P.; Sander, C.; Leslie, C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010, 11, R90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths-Jones, S.; Saini, H.K.; van Dongen, S.; Enright, A.J. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 2008, 36, D154–D158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kertesz, M.; Iovino, N.; Unnerstall, U.; Gaul, U.; Segal, E. The role of site accessibility in microRNA target recognition. Nat. Genet. 2007, 39, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Leoni, G.; Tramontano, A. A structural view of microRNA-target recognition. Nucleic Acids Res. 2016, 44, e82. [Google Scholar] [CrossRef] [Green Version]
Downregulated | Upregulated | ||
---|---|---|---|
miR-372 | −3.97 | miR-215 | 3.66 |
miR-10a * | −3.29 | miR-148a | 3.18 |
miR-26a-1 * | −1.95 | miR-29b-1 * | 2.73 |
miR-522 | −1.51 | miR-190b | 2.72 |
miR-329 | −1.49 | miR-517a | 2.69 |
miR-27b * | −1.38 | miR-25 * | 2.69 |
miR-125a-3p | −1.27 | miR-616 * | 2.34 |
miR-551b * | −1.27 | miR-296-3p | 2.21 |
miR-369-3p | −1.14 | miR-517c | 1.86 |
miR-769-5p | −1.11 | miR-886-5p | 1.69 |
miR-565 | −1.01 | miR-132 * | 1.67 |
miR-409-5p | 1.56 | ||
miR-632 | 1.49 | ||
miR-320 | 1.47 | ||
miR-212 | 1.42 | ||
miR-801 | 1.38 | ||
miR-9 * | 1.33 | ||
miR-29b | 1.31 | ||
miR-424 * | 1.31 | ||
miR-132 | 1.24 | ||
miR-106b * | 1.19 | ||
miR-219-1-3p | 1.16 | ||
miR-645 | 1.16 | ||
miR-516a-3p | 1.13 | ||
miR-624 * | 1.12 | ||
miR-768-3p | 1.1 | ||
miR-200a | 1.09 | ||
miR-29a * | 1.08 | ||
let-7c | 1.07 | ||
miR-29a | 1.07 | ||
miR-374b * | 1.06 | ||
miR-184 | 1.05 | ||
miR-638 | 1.01 | ||
miR-221 * | 1.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambra, R.; Manca, S.; Leoni, G.; Guantario, B.; Canali, R.; Comitato, R. Involvement of miR-190b in Xbp1 mRNA Splicing upon Tocotrienol Treatment. Molecules 2021, 26, 163. https://doi.org/10.3390/molecules26010163
Ambra R, Manca S, Leoni G, Guantario B, Canali R, Comitato R. Involvement of miR-190b in Xbp1 mRNA Splicing upon Tocotrienol Treatment. Molecules. 2021; 26(1):163. https://doi.org/10.3390/molecules26010163
Chicago/Turabian StyleAmbra, Roberto, Sonia Manca, Guido Leoni, Barbara Guantario, Raffaella Canali, and Raffaella Comitato. 2021. "Involvement of miR-190b in Xbp1 mRNA Splicing upon Tocotrienol Treatment" Molecules 26, no. 1: 163. https://doi.org/10.3390/molecules26010163
APA StyleAmbra, R., Manca, S., Leoni, G., Guantario, B., Canali, R., & Comitato, R. (2021). Involvement of miR-190b in Xbp1 mRNA Splicing upon Tocotrienol Treatment. Molecules, 26(1), 163. https://doi.org/10.3390/molecules26010163