Improved Deep Learning Based Method for Molecular Similarity Searching Using Stack of Deep Belief Networks
<p>Deep belief networks (DBN) Architecture.</p> "> Figure 2
<p>Gibbs Sampling to update all associated weights.</p> "> Figure 3
<p>Combine multi descriptors based on SDBN.</p> "> Figure 4
<p>Reconstruction of features weight steps.</p> "> Figure 5
<p>Dimensionality reduction and feature filtering processes.</p> "> Figure 6
<p>Stages of Proposed methodology.</p> "> Figure 7
<p>Principal component analysis (PCA) based reconstruction features error.</p> "> Figure 8
<p>Reconstruction features’ error rates.</p> ">
Abstract
:1. Introduction
- An improved deep learning method for molecular similarity searching that utilizes feature selection.
- An introduced Stack of DBN method for features reweighting is proposed by emphasizing more weights to the important features.
- The proposed method showed promising results in terms of overall performances in comparison to the benchmark methods.
2. Related Works
3. Materials and Methods
3.1. General Structure of the DBN
3.2. The Proposed SDBN Model
- (1)
- All stages combine two descriptors (i.e., (ECFC4, ECFP4), (ECFC4, EPFP4), (ECFC4, Grapgh),....)
- (2)
- All stages combine three descriptors ((ECFC4, ECFP4, ECFC4), (ECFC4, ECFP4, Graph), ….)
- (3)
- All stages combine four descriptors ((ECFC4, ECFP4, EPFP4, Graph), (ECFC4, ECFP4, EPFP4,CDK), )
- (4)
- Then, combine five descriptors (ECFC4, ECFP4, EPFP4, Graph, CDK).
3.3. Reconstruction of Features’ Weights
3.4. Principal Component Analysis (PCA)
4. Experimental Design
4.1. Dataset
4.2. Evaluation Measures
4.3. Comparison Methods
- SQB: This is a molecular similarity method that utilizes a quantum mechanics approach. The method specifically relies on the complex pure Hilbert space of molecules for improving the model’s performance.
- ASMTP: This is a similarity measure based on ligand-based virtual screening. The method was designed to utilize a textual database, p, for processing chemical structure databases.
- TAN [88]: This method is widely used in both binary and distance similarity coefficients. Generally, there are two formulae for binary and continuous data, one of which is known as the main molecular similarity method.
- BIN [51]: This serves as an alternative form of calculation used for finding the similarity of molecular fingerprints in ligand-based virtual screening.
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sirci, F.; Goracci, L.; Rodríguez, D.; van Muijlwijk-Koezen, J.; Gutiérrez-de-Terán, H.; Mannhold, R. Ligand-, structure-and pharmacophore-based molecular fingerprints: A case study on adenosine A1, A2A, A2B, and A3 receptor antagonists. J. Comput. Aided Mol. Des. 2012, 26, 1247–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, W.P.; Stahl, M.T.; Murcko, M.A. Virtual screening—An overview. Drug Discov. Today 1998, 3, 160–178. [Google Scholar] [CrossRef]
- Chen, C.; Wang, T.; Wu, F.; Huang, W.; He, G.; Ouyang, L.; Xiang, M.; Peng, C.; Jiang, Q. Combining structure-based pharmacophore modeling, virtual screening, and in silico ADMET analysis to discover novel tetrahydro-quinoline based pyruvate kinase isozyme M2 activators with antitumor activity. Drug Des. Dev. Ther. 2014, 8, 1195. [Google Scholar]
- Drwal, M.N.; Griffith, R. Combination of ligand-and structure-based methods in virtual screening. Drug Discov. Today Technol. 2013, 10, e395–e401. [Google Scholar] [CrossRef] [PubMed]
- Willett, P. Similarity methods in chemoinformatics. Annu. Rev. Inf. Sci. Technol. 2009, 43, 3–71. [Google Scholar] [CrossRef] [Green Version]
- Willett, P. Combination of similarity rankings using data fusion. J. Chem. Inf. Model. 2013, 53, 1–10. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 41. [Google Scholar]
- Hall, D.L.; McMullen, S.A. Mathematical Techniques in Multisensor Data Fusion; Artech House: Norwood, MA, USA, 2004. [Google Scholar]
- Liggins, M., II; Hall, D.; Llinas, J. Handbook of Multisensor Data Fusion: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Brey, R.L.; Holliday, S.; Saklad, A.; Navarrete, M.; Hermosillo–Romo, D.; Stallworth, C.; Valdez, C.; Escalante, A.; del Rincon, I.; Gronseth, G. Neuropsychiatric syndromes in lupus: Prevalence using standardized definitions. Neurology 2002, 58, 1214–1220. [Google Scholar] [CrossRef]
- Holliday, J.D.; Hu, C.; Willett, P. Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2D fragment bit-strings. Comb. Chem. High Throughput Screen. 2002, 5, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Salim, N.; Holliday, J.; Willett, P. Combination of fingerprint-based similarity coefficients using data fusion. J. Chem. Inf. Comput. Sci. 2003, 43, 435–442. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Tharwat, A. Principal component analysis-a tutorial. Int. J. Appl. Pattern Recognit. 2016, 3, 197–240. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Bengio, Y. Learning deep architectures for AI. Found. Trends® Mach. Learn. 2009, 2, 1–127. [Google Scholar] [CrossRef]
- Coates, A.; Ng, A.; Lee, H. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, PMLR. Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 215–223. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Curran Associates Inc.: Lake Tahoe, NV, USA, 2012; pp. 1097–1105. [Google Scholar]
- Le, Q.V. Building high-level features using large scale unsupervised learning. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 8595–8598. [Google Scholar]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; ACM: New York, NY, USA, 2014; pp. 675–678. [Google Scholar]
- Jaitly, N.; Nguyen, P.; Senior, A.; Vanhoucke, V. Application of pretrained deep neural networks to large vocabulary speech recognition. In Proceedings of the Thirteenth Annual Conference of the International Speech Communication Association, Portland, OR, USA, 9–13 September 2012. [Google Scholar]
- Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 2012, 20, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.-R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Graves, A.; Mohamed, A.-r.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 6645–6649. [Google Scholar]
- Noda, K.; Yamaguchi, Y.; Nakadai, K.; Okuno, H.G.; Ogata, T. Audio-visual speech recognition using deep learning. Appl. Intell. 2015, 42, 722–737. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Yu, D.; Dahl, G.E. Deep Belief Network for Large Vocabulary Continuous Speech Recognition. U.S. Patent 8972253B2, 2015. [Google Scholar]
- Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; ACM: New York, NY, USA, 2008; pp. 160–167. [Google Scholar]
- Yu, D.; Deng, L. Deep learning and its applications to signal and information processing [exploratory dsp]. IEEE Signal Process. Mag. 2011, 28, 145–154. [Google Scholar] [CrossRef]
- Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing (almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537. [Google Scholar]
- Socher, R.; Lin, C.C.; Manning, C.; Ng, A.Y. Parsing natural scenes and natural language with recursive neural networks. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011; pp. 129–136. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119. [Google Scholar]
- Gao, J.; He, X.; Deng, L. Deep Learning for Web Search and Natural Language Processing; Microsoch Technical Report; Microsoft Corporation: Redmond, WA, USA, 2015; MSR-TR-2015-7. [Google Scholar]
- Brooks, R.A. Intelligence without representation. Artif. Intell. 1991, 47, 139–159. [Google Scholar] [CrossRef]
- Ciregan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3642–3649. [Google Scholar]
- Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321–2325. [Google Scholar] [CrossRef]
- Ruangkanokmas, P.; Achalakul, T.; Akkarajitsakul, K. Deep belief networks with feature selection for sentiment classification. In Proceedings of the 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Bangkok, Thailand, 25–27 January 2016; pp. 9–14. [Google Scholar]
- Azizi, S.; Imani, F.; Zhuang, B.; Tahmasebi, A.; Kwak, J.T.; Xu, S.; Uniyal, N.; Turkbey, B.; Choyke, P.; Pinto, P. Ultrasound-based detection of prostate cancer using automatic feature selection with deep belief networks. In International Conference on Medical Image Computing and Computer-Assisted Intervention, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 70–77. [Google Scholar]
- Rumelhart, D.; McClelland, J.L. Parallel Distributed Processing; MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Zou, Q.; Cao, Y.; Li, Q.; Huang, C.; Wang, S. Chronological classification of ancient paintings using appearance and shape features. Pattern Recognit. Lett. 2014, 49, 146–154. [Google Scholar] [CrossRef]
- Klon, A.E.; Glick, M.; Thoma, M.; Acklin, P.; Davies, J.W. Finding more needles in the haystack: A simple and efficient method for improving high-throughput docking results. J. Med. Chem. 2004, 47, 2743–2749. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Reynolds, C.H. Performance of similarity measures in 2D fragment-based similarity searching: Comparison of structural descriptors and similarity coefficients. J. Chem. Inf. Comput. Sci. 2002, 42, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Sakkiah, S.; Arooj, M.; Lee, K.W.; Torres, J.Z. Theoretical approaches to identify the potent scaffold for human sirtuin1 activator: Bayesian modeling and density functional theory. Med. Chem. Res. 2014, 23, 3998–4010. [Google Scholar] [CrossRef]
- Blum, A.L.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997, 97, 245–271. [Google Scholar] [CrossRef] [Green Version]
- Beltrán, N.H.; Duarte-Mermoud, M.; Salah, S.; Bustos, M.; Peña-Neira, A.I.; Loyola, E.; Jalocha, J. Feature selection algorithms using Chilean wine chromatograms as examples. J. Food Eng. 2005, 67, 483–490. [Google Scholar] [CrossRef]
- Vogt, M.; Wassermann, A.M.; Bajorath, J. Application of information—Theoretic concepts in chemoinformatics. Information 2010, 1, 60–73. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Motoda, H. Computational Methods of Feature Selection; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Abdo, A.; Salim, N. New fragment weighting scheme for the bayesian inference network in ligand-based virtual screening. J. Chem. Inf. Modeling 2010, 51, 25–32. [Google Scholar] [CrossRef]
- Ahmed, A.; Abdo, A.; Salim, N. Ligand-based Virtual screening using Bayesian inference network and reweighted fragments. Sci. World J. 2012, 2012, 410914. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.; Saeed, F.; Hamza, H.; Ahmed, A.; Salim, N. Ligand expansion in ligand-based virtual screening using relevance feedback. J. Comput. Aided Mol. Des. 2012, 26, 279–287. [Google Scholar] [CrossRef]
- Abdo, A.; Salim, N.; Ahmed, A. Implementing relevance feedback in ligand-based virtual screening using Bayesian inference network. J. of Biomol. Screen. 2011, 16, 1081–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdo, A.; Chen, B.; Mueller, C.; Salim, N.; Willett, P. Ligand-based virtual screening using bayesian networks. J. Chem. Inf. Modeling 2010, 50, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Abdo, A.; Salim, N. Similarity-based virtual screening using bayesian inference network. Chem. Cent. J. 2009, 3, P44. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.; Leclère, V.; Jacques, P.; Salim, N.; Pupin, M. Prediction of new bioactive molecules using a bayesian belief network. J. Chem. Inf. Modeling 2014, 54, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Katzer, J.; McGill, M.J.; Tessier, J.A.; Frakes, W.; DasGupta, P. A study of the overlap among document representations. Inf. Technol. Res. Dev. 1982, 1, 261–274. [Google Scholar] [CrossRef]
- Turtle, H.; Croft, W.B. Evaluation of an inference network-based retrieval model. ACM Trans. Inf. Syst. (TOIS) 1991, 9, 187–222. [Google Scholar] [CrossRef]
- Bartell, B.T.; Cottrell, G.W.; Belew, R.K. Automatic Combination of Multiple Ranked Retrieval Systems. In SIGIR’94; Springer: Berlin/Heidelberg, Germany, 1994; pp. 173–181. [Google Scholar]
- Belkin, H.E.; Kilburn, C.R.; de Vivo, B. Chemistry of the Lavas and Tephra from the Recent (AD 1631–1944) Vesuvius (Italy) Volcanic Activity; US Department of the Interior, US Geological Survey: Reston, VA, USA, 1993. [Google Scholar]
- Hull, D.A.; Pedersen, J.O.; Schütze, H. Method combination for document filtering. In Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Zurich, Switzerland, 18–22 August 1996; Citeseer: New York, NY, USA; pp. 279–287. [Google Scholar]
- Ginn, C.M.; Willett, P.; Bradshaw, J. Combination of molecular similarity measures using data fusion. In Virtual Screening: An Alternative or Complement to High Throughput Screening? Springer: Dordrecht, The Netherlands, 2000; pp. 1–16. [Google Scholar]
- Croft, W.B.; Turtle, H.R.; Lewis, D.D. The use of phrases and structured queries in information retrieval. In Proceedings of the 14th Annual International ACM SIGIR Conference on Research and Development in Information retrieval, Chicago, IL, USA, 13–16 October 1991; ACM: New York, NY, USA, 1991; pp. 32–45. [Google Scholar]
- Cao, X.; Wang, X.; Zhang, B.; Liu, F.; Luo, J.; Bai, J. Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction. Biomed. Optics Express 2013, 4, 1–14. [Google Scholar] [CrossRef]
- Yoo, C.; Shahlaei, M. The applications of PCA in QSAR studies: A case study on CCR5 antagonists. Chem. Biol. Drug Des. 2018, 91, 137–152. [Google Scholar] [CrossRef]
- Peng, Z.; Li, Y.; Cai, Z.; Lin, L. Deep Boosting: Joint feature selection and analysis dictionary learning in hierarchy. Neurocomputing 2016, 178, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Semwal, V.B.; Mondal, K.; Nandi, G.C. Robust and accurate feature selection for humanoid push recovery and classification: Deep learning approach. Neural Comput. Appl. 2017, 28, 565–574. [Google Scholar] [CrossRef]
- Suk, H.-I.; Lee, S.-W.; Shen, D. The Alzheimer’s Disease Neuroimaging Initiative. Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct. Funct. 2016, 221, 2569–2587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, R.; Yousri, N.A.; Ismail, M.A.; El-Makky, N.M. Multi-level gene/MiRNA feature selection using deep belief nets and active learning. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3957–3960. [Google Scholar]
- Chen, Z.; Li, W. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network. IEEE Trans. Instrum. Meas. 2017, 66, 1693–1702. [Google Scholar] [CrossRef]
- Klinger, S.; Austin, J. Weighted superstructures for chemical similarity searching. In Proceedings of the 9th Joint Conference on Information Sciences, Kaohsiung, Taiwan, 8–11 October 2006. [Google Scholar]
- Arif, S.M.; Holliday, J.D.; Willett, P. The Use of Weighted 2D Fingerprints in Similarity-Based Virtual Screening; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Unler, A.; Murat, A.; Chinnam, R.B. mr2PSO: A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf. Sci. 2011, 181, 4625–4641. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Freund, Y.; Haussler, D. Unsupervised learning of distributions on binary vectors using two layer networks. Adv. Neural Inf. Process. Syst. 1992, 4, 912–919. [Google Scholar]
- Hinton, G.E. Training products of experts by minimizing contrastive divergence. Neural Comput. 2006, 14, 1771–1800. [Google Scholar] [CrossRef]
- Smolensky, P. Parallel distributed processing: Explorations in the microstructure of cognition. In Information Processing in Dynamical Systems: Foundations of Harmony Theory; MIT Press: Cambridge, MA, USA, 1986; Chapter 1; Volume 15, p. 18. [Google Scholar]
- Ackley, D.H.; Hinton, G.E.; Sejnowski, T.J. A learning algorithm for Boltzmann machines. Cogn. Sci. 1985, 9, 147–169. [Google Scholar] [CrossRef]
- Darroch, J.N.; Lauritzen, S.L.; Speed, T.P. Markov fields and log-linear interaction models for contingency tables. Ann. Stat. 1980, 8, 522–539. [Google Scholar] [CrossRef]
- Lauritzen, S.L. Graphical Models; Clarendon Press: Oxford, UK, 1996; Volume 17. [Google Scholar]
- Hinton, G. A practical guide to training restricted Boltzmann machines. Momentum 2010, 9, 926. [Google Scholar]
- Hinton, G.E. A practical guide to training restricted Boltzmann machines. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 599–619. [Google Scholar]
- Breuleux, O.; Bengio, Y.; Vincent, P. Quickly generating representative samples from an rbm-derived process. Neural Comput. 2011, 23, 2058–2073. [Google Scholar] [CrossRef]
- Pipeline Pilot Software: SciTegic Accelrys Inc. Available online: http://www.accelrys.com/ (accessed on 5 January 2020).
- Yuan, C.; Sun, X.; Lv, R. Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun. 2016, 13, 60–65. [Google Scholar] [CrossRef]
- Bartenhagen, C.; Klein, H.-U.; Ruckert, C.; Jiang, X.; Dugas, M. Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data. BMC Bioinform. 2010, 11, 567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Accelrys Inc: San Diego, CA, USA. MDL Drug Data Report (MDDR). Available online: http://www.accelrys.com (accessed on 15 January 2020).
- Al-Dabbagh, M.M.; Salim, N.; Himmat, M.; Ahmed, A.; Saeed, F. A quantum-based similarity method in virtual screening. Molecules 2015, 20, 18107–18127. [Google Scholar] [CrossRef]
- Himmat, M.; Salim, N.; Al-Dabbagh, M.M.; Saeed, F.; Ahmed, A. Adapting document similarity measures for ligand-based virtual screening. Molecules 2016, 21, 476. [Google Scholar] [CrossRef] [Green Version]
- Legendre, P. Species associations: The Kendall coefficient of concordance revisited. J. Agric. Biol. Environ. Stat. 2005, 10, 226. [Google Scholar] [CrossRef]
- Ellis, D.; Furner-Hines, J.; Willett, P. Measuring the degree of similarity between objects in text retrieval systems. Perspect. Inf. Manag. Annu. Rev. 1993, 3, 128. [Google Scholar]
Activity Class | Active Molecules | Activity Index |
---|---|---|
Renin inhibitors | 1130 | 31,420 |
HIV protease inhibitors | 750 | 71,523 |
Thrombin inhibitors | 803 | 37,110 |
Angiotensin II AT1 antagonists | 943 | 31,432 |
Substance P antagonists | 1246 | 42,731 |
5HT3 antagonist | 752 | 06,233 |
5HT reuptake inhibitors | 359 | 06,245 |
D2 antagonists | 395 | 07,701 |
5HT1A agonists | 827 | 06,235 |
Protein kinase C inhibitors | 453 | 78,374 |
Cyclooxygenase inhibitors | 636 | 78,331 |
Activity Class | Active Molecules | Activity Index |
---|---|---|
Adenosine (A1) agonists | 207 | 07,707 |
Adenosine (A2) agonists | 156 | 07,708 |
Renin inhibitors | 1130 | 31,420 |
CCK agonists | 111 | 42,710 |
Monocyclic β-lactams | 1346 | 64,100 |
Cephalosporins | 113 | 64,200 |
Carbacephems | 1051 | 64,220 |
Carbapenems | 126 | 64,500 |
Tribactams | 388 | 64,350 |
Vitamin D analogous | 455 | 75,755 |
Activity Class | Active Molecules | Activity Index |
---|---|---|
Muscarinic (M1) agonists | 900 | 09,249 |
NMDA receptor antagonists | 1400 | 12,455 |
Nitric oxide synthase inhibitors | 505 | 12,464 |
Dopamine β-hydroxylase inhibitors | 106 | 31,281 |
Aldose reductase inhibitors | 957 | 43,210 |
Reverse transcriptase inhibitors | 700 | 71,522 |
Aromatase inhibitors | 636 | 75,721 |
Cyclooxygenase inhibitors | 636 | 78,331 |
Phospholipase A2 inhibitors | 617 | 78,348 |
Lipoxygenase inhibitors | 2111 | 78,351 |
Activity Index | SDBN | BIN | SQB | ASMSC | TAN |
---|---|---|---|---|---|
31,420 | 74.21 | 74.08 | 73.73 | 73.84 | 69.69 |
71,523 | 27.97 | 28.26 | 26.84 | 15.03 | 25.94 |
37,110 | 26.03 | 26.05 | 24.73 | 20.82 | 9.63 |
31,432 | 39.79 | 39.23 | 36.66 | 37.14 | 35.82 |
42,731 | 23.06 | 21.68 | 21.17 | 19.53 | 17.77 |
06,233 | 19.29 | 14.06 | 12.49 | 10.35 | 13.87 |
06,245 | 6.27 | 6.31 | 6.03 | 5.5 | 6.51 |
07,701 | 14.05 | 11.45 | 11.35 | 7.99 | 8.63 |
06,235 | 12.87 | 10.84 | 10.15 | 9.94 | 9.71 |
78,374 | 17.47 | 14.25 | 13.08 | 13.9 | 13.69 |
78,331 | 9.93 | 6.03 | 5.92 | 6.89 | 7.17 |
Mean | 24.63 | 22.93 | 22.01 | 20.08 | 19.86 |
Shaded cells | 8 | 3 | 0 | 0 | 0 |
Activity Index | SDBN | BIN | SQB | ASMSC | TAN |
---|---|---|---|---|---|
31,420 | 89.03 | 87.61 | 87.75 | 86 | 83.49 |
71,523 | 65.17 | 52.72 | 60.16 | 51.33 | 48.92 |
37,110 | 41.25 | 48.2 | 39.81 | 23.87 | 21.01 |
31,432 | 79.87 | 77.57 | 82 | 76.63 | 74.29 |
42,731 | 31.92 | 26.63 | 28.77 | 32.9 | 29.68 |
06,233 | 29.31 | 23.49 | 20.96 | 26.2 | 27.68 |
06,245 | 21.06 | 14.86 | 15.39 | 15.5 | 16.54 |
07,701 | 28.43 | 27.79 | 26.9 | 23.9 | 24.09 |
06,235 | 27.82 | 23.78 | 22.47 | 23.6 | 20.06 |
78,374 | 19.09 | 20.2 | 20.95 | 22.26 | 20.51 |
78,331 | 16.21 | 11.8 | 10.31 | 15 | 16.2 |
Mean | 40.83 | 37.70 | 37.77 | 36.11 | 34.77 |
Shaded cells | 7 | 1 | 1 | 2 | 0 |
Activity Index | SDBN | BIN | SQB | ASMSC | TAN |
---|---|---|---|---|---|
07,707 | 83.19 | 72.18 | 72.09 | 67.86 | 61.84 |
07,708 | 94.82 | 96 | 95.68 | 97.87 | 47.03 |
31,420 | 79.27 | 79.82 | 78.56 | 73.51 | 65.1 |
42,710 | 74.81 | 76.27 | 76.82 | 81.17 | 81.27 |
64,100 | 93.65 | 88.43 | 87.8 | 86.62 | 80.31 |
64,200 | 71.16 | 70.18 | 70.18 | 69.11 | 53.84 |
64,220 | 68.71 | 68.32 | 67.58 | 66.26 | 38.64 |
64,500 | 75.62 | 81.2 | 79.2 | 46.24 | 30.56 |
64,350 | 85.21 | 81.89 | 81.68 | 68.01 | 80.18 |
75,755 | 96.52 | 98.06 | 98.02 | 93.48 | 87.56 |
Mean | 82.30 | 81.24 | 80.76 | 75.01 | 62.63 |
Shaded cells | 5 | 3 | 0 | 1 | 1 |
Activity Index | SDBN | BIN | SQB | ASMSC | TAN |
---|---|---|---|---|---|
07,707 | 73.9 | 74.81 | 74.22 | 76.17 | 70.39 |
07,708 | 98.22 | 99.61 | 100 | 99.99 | 56.58 |
31,420 | 95.64 | 65.46 | 95.24 | 95.75 | 88.19 |
42,710 | 90.12 | 92.55 | 93 | 96.73 | 88.09 |
64,100 | 99.05 | 99.22 | 98.94 | 98.27 | 93.75 |
64,200 | 93.76 | 99.2 | 98.93 | 96.16 | 77.68 |
64,220 | 96.01 | 91.32 | 90.9 | 94.13 | 52.19 |
64,500 | 91.51 | 94.96 | 92.72 | 90.6 | 44.8 |
64,350 | 86.94 | 91.47 | 93.75 | 98.6 | 91.71 |
75,755 | 91.6 | 98.35 | 98.75 | 97.27 | 94.82 |
Mean | 91.68 | 90.70 | 93.61 | 94.36 | 75.82 |
Shaded cells | 1 | 3 | 2 | 4 | 0 |
Activity Index | SDBN | BIN | SQB | TAN |
---|---|---|---|---|
09,249 | 19.47 | 15.33 | 10.99 | 12.12 |
12,455 | 13.29 | 9.37 | 7.03 | 6.57 |
12,464 | 12.91 | 8.45 | 6.92 | 8.17 |
31,281 | 23.62 | 18.29 | 18.67 | 16.95 |
43,210 | 14.23 | 7.34 | 6.83 | 6.27 |
71,522 | 11.92 | 4.08 | 6.57 | 3.75 |
75,721 | 29.08 | 20.41 | 20.38 | 17.32 |
78,331 | 11.93 | 7.51 | 6.16 | 6.31 |
78,348 | 9.17 | 9.79 | 8.99 | 10.15 |
78,351 | 18.13 | 13.68 | 12.5 | 9.84 |
Mean | 16.38 | 11.43 | 10.50 | 9.75 |
Shaded cells | 9 | 1 | 0 | 0 |
Activity Index | SDBN | BIN | SQB | TAN |
---|---|---|---|---|
09,249 | 31.61 | 25.72 | 17.8 | 24.17 |
12,455 | 16.29 | 14.65 | 11.42 | 10.29 |
12,464 | 20.9 | 16.55 | 16.79 | 15.22 |
31,281 | 36.13 | 28.29 | 29.05 | 29.62 |
43,210 | 22.09 | 14.41 | 14.12 | 16.07 |
71,522 | 14.68 | 8.44 | 13.82 | 12.37 |
75,721 | 41.07 | 30.02 | 30.61 | 25.21 |
78,331 | 17.13 | 12.03 | 11.97 | 15.01 |
78,348 | 26.93 | 20.76 | 21.14 | 24.67 |
78,351 | 17.87 | 12.94 | 13.3 | 11.71 |
Mean | 24.47 | 18.38 | 18.00 | 18.43 |
Shaded cells | 10 | 0 | 0 | 0 |
Dataset | Recall Type | W | P | SDBN | BIN | SQB | ASMSC | TAN |
---|---|---|---|---|---|---|---|---|
MDDR-DS1 | 1% | 0.321 | 0.021 | 4.727 | 4.091 | 2.273 | 2.000 | 1.909 |
5% | 0.613 | 0.0036 | 4.364 | 2.727 | 2.818 | 2.818 | 2.273 | |
MDDR-DS2 | 1% | 0.521 | 0.0013 | 3.8 | 4.1 | 3.3 | 2.5 | 1.6 |
5% | 0.715 | 0.00016 | 2.7 | 3.5 | 3.7 | 3.8 | 1.3 |
Dataset | Recall Type | W | P | SDBN | BIN | SQB | TAN |
---|---|---|---|---|---|---|---|
MDDR-DS3 | 1% | 0.496 | 0.006 | 3.8 | 2.9 | 1.7 | 1.6 |
5% | 0.318 | 0.004 | 4 | 2 | 2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasser, M.; Salim, N.; Hamza, H.; Saeed, F.; Rabiu, I. Improved Deep Learning Based Method for Molecular Similarity Searching Using Stack of Deep Belief Networks. Molecules 2021, 26, 128. https://doi.org/10.3390/molecules26010128
Nasser M, Salim N, Hamza H, Saeed F, Rabiu I. Improved Deep Learning Based Method for Molecular Similarity Searching Using Stack of Deep Belief Networks. Molecules. 2021; 26(1):128. https://doi.org/10.3390/molecules26010128
Chicago/Turabian StyleNasser, Maged, Naomie Salim, Hentabli Hamza, Faisal Saeed, and Idris Rabiu. 2021. "Improved Deep Learning Based Method for Molecular Similarity Searching Using Stack of Deep Belief Networks" Molecules 26, no. 1: 128. https://doi.org/10.3390/molecules26010128
APA StyleNasser, M., Salim, N., Hamza, H., Saeed, F., & Rabiu, I. (2021). Improved Deep Learning Based Method for Molecular Similarity Searching Using Stack of Deep Belief Networks. Molecules, 26(1), 128. https://doi.org/10.3390/molecules26010128