Performance of Waterborne Polyurethanes in Inhibition of Gas Hydrate Formation and Corrosion: Influence of Hydrophobic Fragments
<p>(<b>a</b>) Typical result of ramping experiment for a polyurethane solution (0.5 wt% WPU-3); color-filled areas correspond to <span class="html-italic">P</span>,<span class="html-italic">T</span>-conditions outside the thermodynamic stability of gas hydrate, white area matches hydrate stability zone; (<b>b</b>) <span class="html-italic">P</span>,<span class="html-italic">T</span>-curve illustrating the determination of hydrate onset subcooling (Δ<span class="html-italic">T<sub>o</sub></span>); dashed line—experimental data for the equilibrium conditions of hydrate formation for the gas mixture [<a href="#B40-molecules-25-05664" class="html-bibr">40</a>].</p> "> Figure 2
<p>The gas consumption in the absence and presence of polyurethanes and P(VCap-VP) at concentrations of 0.25 wt% (<b>a</b>) and 0.5 wt% (<b>b</b>); color-filled areas correspond to <span class="html-italic">P</span>,<span class="html-italic">T</span>-conditions outside the thermodynamic stability of gas hydrate, white area matches hydrate stability zone; red dashed lines are temperature plots; markers are mean values of relative pressure decrease for each sample; vertical color dashed lines show moment when a mean value for each sample becomes more than 0.07%.</p> "> Figure 3
<p>Mean hydrate onset subcooling Δ<span class="html-italic">T<sub>o</sub></span> for samples of synthesized polyurethanes at concentrations of 0.25 wt% (<b>a</b>) and 0.5 wt% (<b>b</b>). Error bars are standard deviations of Δ<span class="html-italic">T<sub>o</sub></span>.</p> "> Figure 4
<p>Interfacial tension (IFT) results for polyurethanes and P(VCap-VP) solutions.</p> "> Figure 5
<p>Dependence of the hydrate onset subcooling Δ<span class="html-italic">T<sub>o</sub></span> on the interfacial tension IFT for the samples at 0.25 wt%.</p> "> Figure 6
<p>Variation of open circuit potential with time for CS in 2M HCl solution without and with inhibitors (500 ppm); SCE—silver chloride electrode.</p> "> Figure 7
<p>Tafel slopes for CS in 2M HCl solution without and with inhibitors (500 ppm).</p> "> Figure 8
<p>Biodegradation trends for WPU-6, WPU-7, and P(VCap-VP).</p> "> Scheme 1
<p>Synthesis of waterborne polyurethanes (WPU).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Gas Hydrate Experiments
2.3. Interfacial Tension Study
2.4. Electrochemical Corrosion Study
2.5. Weight-Loss Corrosion Study
2.6. Biodegradability of WPU
3. Materials and Methods
3.1. Materials
3.2. Preparation of Waterborne Polyurethanes
3.3. Characterization Methods
3.4. Sapphire Rocking Cells (RCS6)
3.5. The Study of Interfacial Tension
3.6. Electrochemical Measurements
3.7. Corrosion Weight-Loss Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sloan, E.D., Jr. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353. [Google Scholar] [CrossRef] [PubMed]
- Hassanpouryouzband, A.; Joonaki, E.; Farahani, M.V.; Takeya, S.; Ruppel, C.; Yang, J.; English, N.J.; Schicks, J.M.; Edlmann, K.; Mehrabian, H.; et al. Gas hydrates in sustainable chemistry. Chem. Soc. Rev. 2020, 49, 5225–5309. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Eaton, M.W.; Koh, C.A.; Zerpa, L.E. Quantitative Framework for Hydrate Bedding and Transient Particle Agglomeration. Ind. Eng. Chem. Res. 2020, 59, 12580–12589. [Google Scholar] [CrossRef]
- Raja, P.B.; Ismail, M.; Ghoreishiamiri, S.; Mirza, J.; Ismail, M.C.; Kakooei, S.; Rahim, A.A. Reviews on corrosion inhibitors: A short view. Chem. Eng. Commun. 2016, 203, 1145–1156. [Google Scholar] [CrossRef]
- Zhu, Y.; Free, M.L.; Woollam, R.; Durnie, W. A review of surfactants as corrosion inhibitors and associated modeling. Prog. Mater. Sci. 2017, 90, 159–223. [Google Scholar] [CrossRef]
- Brustad, S.; Løken, K.-P.; Waalmann, J.G. Hydrate Prevention using MEG instead of MeOH: Impact of experience from major Norwegian developments on technology selection for injection and recovery of MEG. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2005. [Google Scholar]
- Moore, J.; Ver Vers, L.; Conrad, P. Understanding Kinetic Hydrate Inhibitor and Corrosion Inhibitor Interactions. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2009. [Google Scholar]
- Webber, P.A.; Jones, R.; Morales, N.; Anthony, J.; Harrington, R. Development of a Novel Kinetic Hydrate Inhibitor and Corrosion Inhibitor Package for Wet Gas Application. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2013. [Google Scholar]
- Nešić, S. Key issues related to modelling of internal corrosion of oil and gas pipelines–A review. Corros. Sci. Elsevier 2007, 49, 4308–4338. [Google Scholar] [CrossRef]
- Seo, Y. Hydrate Inhibitors and Their Interferences in Corrosion Inhibition. Corros. Inhib. Oil Gas Ind. 2020, 407–419. [Google Scholar] [CrossRef]
- Qasim, A.; Lal, B.; Shariff, A.M.; Ismail, M.C. Role of Ionic Liquid-Based Multipurpose Gas Hydrate and Corrosion Inhibitors in Gas Transmission Pipeline. In Nanotechnology-Based Industrial Applications of Ionic Liquids; Inamuddin, Asiri, A.M., Eds.; Springer International Publishing: Basel, Switzerland, 2020; pp. 221–244. [Google Scholar]
- Qasim, A.; Khan, M.S.; Lal, B.; Shariff, A.M. A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance. J. Pet. Sci. Eng. 2019, 183, 106418. [Google Scholar] [CrossRef]
- Umoren, S.A.; Obot, I.B. Polyvinylpyrollidone and polyacrylamide as corrosion inhibitors for mild steel in acidic medium. Surf. Rev. Lett. 2008, 15, 277–286. [Google Scholar] [CrossRef]
- Sheng, Q.; Silveira, K.C.D.; Tian, W.; Fong, C.; Maeda, N.; Gubner, R.; Wood, C.D. Simultaneous hydrate and corrosion inhibition with modified poly (vinyl caprolactam) polymers. Energy Fuels 2017, 31, 6724–6731. [Google Scholar] [CrossRef]
- Javadian, S.; Yousefi, A.; Neshati, J. Synergistic effect of mixed cationic and anionic surfactants on the corrosion inhibitor behavior of mild steel in 3.5% NaCl. Appl. Surf. Sci. 2013, 285, 674–681. [Google Scholar] [CrossRef]
- Haidera, J.; Saeed, S.; Qyyum, M.A.; Kazmi, B.; Ahmad, R.; Muhammad, A.; Lee, M. Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects. Renew. Sustain. Energy Rev. 2020, 123, 109771. [Google Scholar] [CrossRef]
- Pretti, C.; Chiappe, C.; Pieraccini, D.; Gregori, M.; Abramo, F.; Monnia, G.; Intorrec, L. Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem. 2006, 8, 238–240. [Google Scholar] [CrossRef]
- Gathergood, N.; Garcia, M.T.; Scammells, P.J. Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chem. 2004, 6, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.T.; Gathergood, N.; Scammells, P.J. Biodegradable ionic liquids Part II. Effect of the anion and toxicology. Green Chem. 2005, 7, 9–14. [Google Scholar] [CrossRef]
- Kelland, M.A. A review of kinetic hydrate inhibitors from an environmental perspective. Energy Fuels 2018, 32, 12001–12012. [Google Scholar] [CrossRef]
- Bavoh, C.B.; Lal, B.; Osei, H.; Sabil, K.M.; Mukhtar, H. A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage. J. Nat. Gas Sci. Eng. 2019, 64, 52–71. [Google Scholar] [CrossRef]
- Otake, T.; Taniguchi, T.; Furukawa, Y.; Kawamura, F.; Nakazawa, H.; Kakegawa, T. Stability of Amino Acids and Their Oligomerization under High-Pressure Conditions: Implications for Prebiotic Chemistry. Astrobiology 2011, 11, 799–813. [Google Scholar] [CrossRef]
- Parr, M.D.; Bertch, K.E.; Rapp, R.P. Amino acid stability and microbial growth in total parenteral nutrient solutions. Am. J. Hosp. Pharm. 1985, 42, 2688–2691. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.; Sheng, Q.; Wood, C.D.; Seo, Y. Kinetic hydrate inhibition performance of poly (vinyl caprolactam) modified with corrosion inhibitor groups. Energy Fuels 2017, 31, 9363–9373. [Google Scholar] [CrossRef]
- Farhadian, A.; Kudbanov, A.; Varfolomeev, M.A.; Dalmazzone, D. Waterborne Polyurethanes as a New and Promising Class of Kinetic Inhibitors for Methane Hydrate Formation. Sci. Rep. 2019, 9, 9797. [Google Scholar] [CrossRef] [PubMed]
- Farhadian, A.; Varfolomeev, M.A.; Kudbanov, A.; Gallyamova, S.R. A new class of promising biodegradable kinetic/anti-agglomerant methane hydrate inhibitors based on castor oil. Chem. Eng. Sci. 2019, 206, 507–517. [Google Scholar] [CrossRef]
- Farhadian, A.; Varfolomeev, M.A.; Rezaeisadat, M.; Semenov, A.P.; Stoporev, A.S. Toward a bio-based hybrid inhibition of gas hydrate and corrosion for flow assurance. Energy 2020, 210, 118549. [Google Scholar] [CrossRef]
- Farhadian, A.; Varfolomeev, M.A.; Shaabani, A.; Nasiri, S.; Vakhitov, I.; Zaripova, Y.F.; Yarkovoi, V.V.; Sukhov, A.V. Sulfonated chitosan as green and high cloud point kinetic methane hydrate and corrosion inhibitor: Experimental and theoretical studies. Carbohydr. Polym. 2020, 236, 116035. [Google Scholar] [CrossRef]
- Howard, G.T. Biodegradation of polyurethane: A review. Int. Biodeterior. Biodegrad. 2002, 49, 245–252. [Google Scholar] [CrossRef]
- Luo, S.; Yang, K.; Zhong, Z.; Wu, X.; Ren, T. Facile preparation of degradable multi-arm-starbranched waterborne polyurethane with bio-based tannic acid. Rsc Adv. 2018, 8, 37765–37773. [Google Scholar] [CrossRef] [Green Version]
- Kelland, M.A.; Dirdal, E.G.; Zhang, Q. High cloud point polyvinylaminals as non-amide-based kinetic gas hydrate inhibitors. Energy Fuels 2020, 34, 8301–8307. [Google Scholar] [CrossRef]
- Dirdal, E.G.; Kelland, M.A. Does the Cloud Point Temperature of a Polymer Correlate with Its Kinetic Hydrate Inhibitor Performance? Energy Fuels 2019, 33, 7127–7137. [Google Scholar] [CrossRef]
- Kelland, M.A.; Moi, N.; Howarth, M. Breakthrough in synergists for kinetic hydrate inhibitor polymers, hexaalkylguanidinium salts: Tetrahydrofuran hydrate crystal growth inhibition and synergism with polyvinylcaprolactam. Energy Fuels 2013, 27, 711–716. [Google Scholar] [CrossRef]
- Kelland, M.A. History of the Development of Low Dosage Hydrate Inhibitors. Energy Fuels 2006, 20, 825–847. [Google Scholar] [CrossRef]
- Kelland, M.A. A Review of Kinetic Hydrate Inhibitors: Tailor-Made Water-Soluble Polymers for Oil and Gas Industry Applications. Adv. Mater. Sci. Res. 2011, 8, 171–210. [Google Scholar]
- Zhang, Q.; Kelland, M.A.; Ajiro, H. Polyvinylsulfonamides as Kinetic Hydrate Inhibitors. Energy Fuels 2020, 34, 2230–2237. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Guo, J.; Chen, G.; Zhong, J.; Yan, Y.; Zhang, J. Molecular insights into the kinetic hydrate inhibition performance of Poly (N-vinyl lactam) polymers. J. Nat. Gas Sci. Eng. 2020, 83, 103504. [Google Scholar] [CrossRef]
- Zanota, M.L.; Dicharry, C.; Graciaa, A. Hydrate plug prevention by quaternary ammonium salts. Energy Fuels 2005, 19, 584–590. [Google Scholar] [CrossRef]
- Bui, T.; Phan, A.; Monteiro, D.; Lan, Q.; Ceglio, M.; Acosta, E.; Krishnamurthy, P.; Striolo, A. Evidence of structure-performance relation for surfactants used as antiagglomerants for hydrate management. Langmuir 2017, 33, 2263–2274. [Google Scholar] [CrossRef]
- Semenov, A.P.; Mendgaziev, R.I.; Stoporev, A.S.; Kuchierskaya, A.A.; Novikov, A.A.; Vinokurov, V.A. Gas hydrate nucleation and growth in the presence of water-soluble polymer, nonionic surfactants, and their mixtures. J. Nat. Gas Sci. Eng. 2020, 82, 103491. [Google Scholar] [CrossRef]
- Moon, C.; Hawtin, R.W.; Rodger, P.M. Nucleation and control of clathrate hydrates: Insights from simulation. Faraday Discuss. 2007, 136, 367–382. [Google Scholar] [CrossRef]
- Del Villano, L.; Kelland, M.A. Tetrahydrofuran hydrate crystal growth inhibition by hyperbranched poly (ester amide)s. Chem. Eng. Sci. 2009, 64, 3197–3200. [Google Scholar] [CrossRef]
- Sa, J.H.; Kwak, G.H.; Lee, B.R.; Park, D.H.; Han, K.; Lee, K.H. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Sci. Rep. 2013, 3, 2428. [Google Scholar] [CrossRef]
- Zhang, Q.; Kelland, M.A.; Lewoczko, E.M.; Bohannon, C.A.; Zhao, B. Non-amide based zwitterionic poly (sulfobetaine methacrylate) s as kinetic hydrate inhibitors. Chem. Eng. Sci. 2021, 229, 116031. [Google Scholar] [CrossRef]
- Anklam, M.R.; York, J.D.; Helmerich, L.; Firoozabadi, A. Effects of antiagglomerants on the interactions between hydrate particles. Aiche J. 2008, 54, 565–574. [Google Scholar] [CrossRef]
- Zerpa, L.E.; Salager, J.L.; Koh, C.A.; Sloan, E.D.; Sum, A.K. Surface chemistry and gas hydrates in flow assurance. Ind. Eng. Chem. Res. 2011, 50, 188–197. [Google Scholar] [CrossRef]
- Nwankwo, H.U.; Akpan, E.D.; Olasunkanmi, L.O.; Verma, C.; Al-Mohaimeed, A.M.; Al Farraj, D.A.; Ebenso, E.E. N-substituted carbazoles as corrosion inhibitors in microbiologically influenced and acidic corrosion of mild steel: Gravimetric, electrochemical, surface and computational studies. J. Mol. Struct. 2021, 1223, 129328. [Google Scholar] [CrossRef]
- Aldana-Gonzales, J.; Cervantes-Cuevas, H.; Alfaro-Romo, C.; Rodriguez-Clemente, E.; Uruchurtu-Chavarin, J.; Romero-Romo, M.; Montes de Oca-Yemha, M.G.; Morales-Gil, P.; Mendoza-Huizar, L.H.; Palomar-Pardave, M. Experimental and theoretical study on the corrosion inhibition of API 5L X52 steel in acid media by a new quinazoline derivative. J. Mol. Liq. 2020, 320, 114449. [Google Scholar] [CrossRef]
- Haque, J.; Jafar Mazumder, M.A.; Quraishi, M.A.; Ali, A.S.; Aljeaban, N.A. Pyrrolidine-based quaternary ammonium salts containing propargyl and hydrophobic C-12 and C-16 alkyl chains as corrosion inhibitors in aqueous acidic media. J. Mol. Liq. 2020, 320, 114473. [Google Scholar] [CrossRef]
- Hassan, H.H.; Abdelghani, E.; Amin, M.A. Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Part I. Polarization and EIS studies. Electrochim. Acta 2007, 52, 6359–6366. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Nasser, N.M.; Farag, A.A.; Migahed, M.A.; Eissa, A.M.F.; Mahmoud, T. Structure effect of some amine derivatives on corrosion inhibition efficiency for carbon steel in acidic media using electrochemical and quantum theory methods. Egypt. J. Pet. 2013, 22, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Martínez, D.; Gonzalez, R.; Montemayor, K.; Juarez-Hernandez, A.; Fajardo, G.; Hernandez-Rodriguez, M.A.L. Amine type inhibitor effect on corrosion-erosion wear in oil gas pipes. Wear 2009, 267, 255–258. [Google Scholar] [CrossRef]
- Aman, Z.M.; Pfeiffer, K.; Vogt, S.J.; Johns, M.L.; May, E.F. Corrosion inhibitor interaction at hydrate-oil interfaces from differential scanning calorimetry measurements. Colloids Surf. A Phys. Eng. Asp. 2014, 448, 81–87. [Google Scholar] [CrossRef]
- Kelland, M.A. Production Chemicals for the Oil and Gas Industry, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Mansfeld, F.; Tsai, S. Laboratory studies of atmospheric corrosion—I. Weight loss and electrochemical measurements. Corros. Sci. 1980, 20, 853–872. [Google Scholar] [CrossRef]
- Xu, S.; Fan, S.; Fang, S.; Lang, X.; Wang, Y.; Chen, J. Pectin as an extraordinary natural kinetic hydrate inhibitor. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Guo, J.; Zhang, Y.; Zhao, Q.; Fu, S.; Han, T.; Zhang, S.; Wu, Y. Chitosan oligosaccharide derivatives as green corrosion inhibitors for P110 steel in a carbon-dioxidesaturated chloride solution. Carbohydr. Polym. 2019, 203, 386–395. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Sample | Concentration (wt%) | To * (°C) | Standard Deviation of To (°C) | ΔTo (°C) | Standard Deviation of ΔTo (°C) | α ** (%) | Standard Deviation of α (%) |
---|---|---|---|---|---|---|---|
Distilled water | - | 12.4 | 0.7 | 5.2 | 0.7 | 13.9 | 2.8 |
P(VCap-VP) | 0.25 | 5.0 | 0.7 | 12.3 | 0.7 | 11.2 | 2.7 |
0.5 | 3.7 | 1.1 | 13.6 | 1.1 | 2.0 | 1.0 | |
WPU-1 | 0.25 | n/a *** | |||||
0.5 | 9.5 | 0.5 | 8.0 | 0.5 | 29.5 | 2.3 | |
WPU-2 | 0.25 | 8.6 | 0.4 | 8.9 | 0.4 | 16.1 | 10.2 |
0.5 | 7.6 | 0.1 | 9.8 | 0.1 | 26.8 | 1.8 | |
WPU-3 | 0.25 | 7.4 | 0.4 | 10.0 | 0.4 | 15.2 | 11.8 |
0.5 | 6.7 | 0.4 | 10.6 | 0.3 | 21.1 | 7.9 | |
WPU-4 | 0.25 | 6.3 | 0.4 | 11.0 | 0.4 | 6.7 | 3.1 |
0.5 | n/a *** | ||||||
WPU-5 | 0.25 | 7.2 | 0.2 | 10.2 | 0.1 | 19.5 | 10.5 |
0.5 | n/a *** | ||||||
WPU-6 | 0.25 | 5.7 | 0.5 | 11.6 | 0.5 | 5.1 | 2.4 |
0.5 | 6.2 | 0.4 | 11.2 | 0.4 | 6.6 | 4.6 | |
WPU-7 | 0.25 | 5.7 | 0.2 | 11.6 | 0.2 | 6.3 | 1.8 |
0.5 | n/a *** |
Inhibitor Concentration (ppm) | Eocp (mV vs. SCE) | βa (V/div) | βc (V/div) | Ecorr (mV vs. SCE) | Icorr (mA cm−2) | Rp [Ohm] (mΩ) | %IE |
---|---|---|---|---|---|---|---|
WPU-4 * | |||||||
500 | −472.7 | 0.106 | 0.192 | −478.035 | 0.3195 | 9.25 | 7.8 |
100 | −462.3 | 0.187 | 0.206 | −518.553 | 0.7718 | 5.52 | - |
50 | −463.2 | 0.171 | 0.210 | −512 | 0.8586 | 4.76 | - |
0 | −511.5 | 0.118 | 0.192 | −504.618 | 0.3467 | 9.12 | - |
WPU-5 | |||||||
1000 | −470.6 | 0.098 | 0.209 | −459.867 | 0.213 | 13.62 | 38.6 |
500 | −471.5 | 0.133 | 0.143 | −482.371 | 0.2943 | 10.17 | 15.1 |
100 | −469.1 | 0.140 | 0.188 | −497.662 | 0.4293 | 8.12 | - |
50 | −477.6 | 0.115 | 0.167 | −490.414 | 0.4333 | 7.2 | - |
0 | −511.5 | 0.118 | 0.192 | −504.618 | 0.3467 | 9.12 | - |
WPU-6 | |||||||
1000 | −487.1 | 0.101 | 0.259 | −440.457 | 0.1468 | 10.85 | 57.7 |
500 | −470.8 | 0.097 | 0.167 | −478.511 | 0.2916 | 18.16 | 15.9 |
100 | −454.7 | 0.108 | 0.189 | −476.808 | 0.3738 | 8.004 | - |
50 | −457.7 | 0.087 | 0.128 | −488.887 | 0.4590 | 49.16 | - |
0 | −511.5 | 0.118 | 0.192 | −504.618 | 0.3467 | 9.12 | - |
WPU-7 | |||||||
1000 | −487.1 | 0.088 | 0.177 | −464.927 | 0.0587 | 43.38 | 83.1 |
500 | −460.8 | 0.090 | 0.205 | −459.099 | 0.1024 | 11.42 | 70.5 |
100 | −462.6 | 0.138 | 0.179 | −497.252 | 0.1473 | 9.52 | 57.5 |
50 | −464.2 | 0.090 | 0.154 | −486.421 | 0.1668 | 12.91 | 51.9 |
0 | −511.5 | 0.118 | 0.192 | −504.618 | 0.3467 | 9.12 | - |
P(VCap-VP) | |||||||
1000 | −493.2 | 0.072 | 0.111 | −491.581 | 0.0374 | 50.9 | 89.2 |
500 | −491.6 | 0.075 | 0.114 | −487.208 | 0.0519 | 37.7 | 85.0 |
100 | −494.7 | 0.079 | 0.118 | −483.531 | 0.0889 | 23.2 | 74.4 |
50 | −497.7 | 0.074 | 0.107 | −492.829 | 0.0539 | 32.2 | 84.5 |
0 | −511.5 | 0.118 | 0.192 | −504.618 | 0.3467 | 9.12 | - |
Armohib CI-28 | |||||||
1000 | −458.1 | 0.076 | 0.243 | −449.846 | 0.0313 | 80.3 | 91.0 |
500 | −483.1 | 0.09 | 0.208 | −478.083 | 0.0138 | 198.5 | 96.0 |
100 | −484 | 0.095 | 0.204 | −471.736 | 0.0235 | 119.5 | 93.2 |
50 | −491 | 0.091 | 0.10 | −484.843 | 0.0289 | 89.1 | 91.7 |
0 | −511.5 | 0.118 | 0.192 | −504.618 | 0.3467 | 9.12 | - |
Concentration (ppm) | Weight Loss (g) | Corrosion Rate (mm/y) | Surface Coverage (θ) | Inhibition Efficiency (%IEw) |
---|---|---|---|---|
Blank | 0.5581 | 9.19 | - | - |
50 | 0.0266 | 0.44 | 0.90 | 90.1 |
100 | 0.0251 | 0.41 | 0.91 | 90.6 |
Armohib CI-28 100 ppm | 0.0035 | 0.058 | 0.99 | 98.7 |
Inhibitor | Time (Days) | BODt (mg L−1) | CODcr (mg L−1) | Degradation (%) |
---|---|---|---|---|
P(VCap-VP) | 5 | 105 ± 23 | 690 ± 7 | 15.2 ± 3.5 |
15 | 166 ± 22 | 23.7 ± 3.3 | ||
30 | 173 ± 21 | 25.1 ± 3.3 | ||
WPU-6 | 5 | 68 ± 23 | 700 ± 6 | 9.6 ± 3.4 |
15 | 138 ± 22 | 19.7 ± 3.3 | ||
30 | 164± 20 | 23.4 ± 3.1 | ||
WPU-7 | 5 | 109 ± 22 | 678 ± 7 | 16.1 ± 3.4 |
15 | 182 ± 21 | 26.8 ± 3.3 | ||
30 | 199 ± 20 | 29.4 ± 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavelyev, R.S.; Zaripova, Y.F.; Yarkovoi, V.V.; Vinogradova, S.S.; Razhabov, S.; Khayarov, K.R.; Nazarychev, S.A.; Stoporev, A.S.; Mendgaziev, R.I.; Semenov, A.P.; et al. Performance of Waterborne Polyurethanes in Inhibition of Gas Hydrate Formation and Corrosion: Influence of Hydrophobic Fragments. Molecules 2020, 25, 5664. https://doi.org/10.3390/molecules25235664
Pavelyev RS, Zaripova YF, Yarkovoi VV, Vinogradova SS, Razhabov S, Khayarov KR, Nazarychev SA, Stoporev AS, Mendgaziev RI, Semenov AP, et al. Performance of Waterborne Polyurethanes in Inhibition of Gas Hydrate Formation and Corrosion: Influence of Hydrophobic Fragments. Molecules. 2020; 25(23):5664. https://doi.org/10.3390/molecules25235664
Chicago/Turabian StylePavelyev, Roman S., Yulia F. Zaripova, Vladimir V. Yarkovoi, Svetlana S. Vinogradova, Sherzod Razhabov, Khasan R. Khayarov, Sergei A. Nazarychev, Andrey S. Stoporev, Rais I. Mendgaziev, Anton P. Semenov, and et al. 2020. "Performance of Waterborne Polyurethanes in Inhibition of Gas Hydrate Formation and Corrosion: Influence of Hydrophobic Fragments" Molecules 25, no. 23: 5664. https://doi.org/10.3390/molecules25235664
APA StylePavelyev, R. S., Zaripova, Y. F., Yarkovoi, V. V., Vinogradova, S. S., Razhabov, S., Khayarov, K. R., Nazarychev, S. A., Stoporev, A. S., Mendgaziev, R. I., Semenov, A. P., Valiullin, L. R., Varfolomeev, M. A., & Kelland, M. A. (2020). Performance of Waterborne Polyurethanes in Inhibition of Gas Hydrate Formation and Corrosion: Influence of Hydrophobic Fragments. Molecules, 25(23), 5664. https://doi.org/10.3390/molecules25235664