Antibacterial Effects and Mechanism of Mandarin (Citrus reticulata L.) Essential Oil against Staphylococcus aureus
<p>Scanning electron micrographs of <span class="html-italic">S. aureus</span> (untreated, treated with MEO at MIC and 2MIC, respectively).</p> "> Figure 2
<p>Effect of MEO on membrane potential of <span class="html-italic">S. aureus.</span> Difference letters means statistical difference.</p> "> Figure 3
<p>Effect of the MEO on the release of <span class="html-italic">S. aureus</span> cells constituents. (<b>A</b>) Leakage of protein from the membrane of <span class="html-italic">S. aureus</span> treated with MEO; (<b>B</b>) Release of intracellular nucleic acids from <span class="html-italic">S. aureus</span> treated with MEO. Difference letters means statistical difference.</p> "> Figure 4
<p>The effect of MEO on the protein of <span class="html-italic">S. aureus.</span> (<b>A</b>) The effect of MEO on the intracellular protein of <span class="html-italic">S. aureus</span>; (<b>B</b>) SDS-PAGE profile of intracellular proteins of <span class="html-italic">S. aureus</span> cells treated with MEO. Difference letters means statistical difference.</p> "> Figure 5
<p>Effect of MEO on the intracellular ATP concentration of <span class="html-italic">S. aureus.</span> Difference letters means statistical difference.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Chemical Compounds in MEO
2.2. Antibacterial Effect of MEO on Planktonic S. aureus
2.3. Antibacterial Mechanism of MEO Against Planktonic S. aureus
2.3.1. Effect of MEO on S. aureus Cell Morphology
2.3.2. Effect of MEO on S. aureus Cell Membrane Potential
2.3.3. Effect of MEO on S. aureus Cell Constituents
2.3.4. Effect of MEO on S. aureus Cell Proteins
2.3.5. Effect of MEO on Intracellular ATP Concentrations of S. aureus
3. Materials and Methods
3.1. Materials and Culture
3.2. Chemical Compounds for the MEO Analysis
3.3. Determination of Minimal Inhibitory Concentration (MIC)
3.4. Antibacterial Mechanism of MEO Against S. aureus
3.4.1. Scanning Electron Microscopy (SEM) Analysis
3.4.2. Determination of S. aureus Cell Membrane Potentials
3.4.3. Determination of Extracellular Nucleic Acid and Protein Concentrations
3.4.4. Determination of Intracellular Protein Concentrations
3.4.5. Determination of S. aureus Cell Whole-Cell Proteins
3.4.6. Determination of Intracellular Adenosine Triphosphate (ATP) Concentrations
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.; Heying, E.; Tanumihardjo, S.A. History, Global Distribution, and Nutritional Importance of Citrus Fruits. Compr. Rev. Food Sci. Food Saf. 2012, 11, 530–545. [Google Scholar] [CrossRef]
- Javed, S.; Javaid, A.; Mahmood, Z.; Javaid, Z.; Nasim, F. Biocidal activity of citrus peel essential oils against some food spoilage bacteria. J. Med. Plants Res. 2011, 5, 3697–3701. [Google Scholar]
- Cristani, M.; d’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. Agric. Food Chem. 2007, 55, 6300–6308. [Google Scholar] [CrossRef] [PubMed]
- Adrar, N.; Oukil, N.; Bedjou, F. Antioxidant and antibacterial activities of Thymus numidicus and Salvia officinalis essential oils alone or in combination. Ind. Crop. Prod. 2016, 88, 112–119. [Google Scholar] [CrossRef]
- Said, Z.B.O.S.; Haddadi-Guemghar, H.; Boulekbache-Makhlouf, L.; Rigou, P.; Remini, H.; Adjaoud, A.; Khoudja, N.K.; Madani, K. Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits. Ind. Crop. Prod. 2016, 89, 167–175. [Google Scholar] [CrossRef]
- Kacem, N.; Roumy, V.; Duhal, N.; Merouane, F.; Neut, C.; Christen, P.; Hostettmann, K.; Rhouati, S. Chemical composition of the essential oil from Algerian Genista quadriflora Munby and determination of its antibacterial and antifungal activities. Ind. Crop. Prod. 2016, 90, 87–93. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Biological Activities and Safety of Citrus spp. Essential Oils. Int. J. Mol. Sci. 2018, 19, 1966. [Google Scholar] [CrossRef] [Green Version]
- Lou, Z.; Chen, J.; Yu, F.; Wang, H.; Kou, X.; Ma, C.; Zhu, S. The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion. LWT 2017, 80, 371–377. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernandez-Lopez, J.; Pérez-Álvarez, J. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control 2008, 19, 1130–1138. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J. Antibacterial activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisiL.) and orange (Citrus sinensis L.) essential oils. J. Food Saf. 2008, 28, 567–576. [Google Scholar] [CrossRef]
- Qian, J.; Zhu, M.; Lu, Z.; Lv, F.; Zhao, H.; Bie, X. The antibiotics resistance mechanism and pathogenicity of cold stressed and pathogeniciyt of cold stressed Staphylococcus aureus. LWT 2020, 126, 109274. [Google Scholar]
- Li, Z.; Shi, C.; Song, M.; Shi, X. Distribution status of food-borne Staphylococcus aureus in Shanghai. Food Sci. 2013, 34, 268–271. [Google Scholar]
- Tao, N.; Jia, L.; Zhou, H. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum. Food Chem. 2014, 153, 265–271. [Google Scholar] [CrossRef]
- Espina, L.; Somolinos, M.; Lorán, S.; Conchello, P.; García, D.; Pagán, R. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control 2011, 22, 896–902. [Google Scholar] [CrossRef]
- Simas, D.L.R.; de Amorim, S.H.; Goulart, F.R.V.; Alviano, C.S.; Alviano, D.S.; da Silva, A.J.R. Citrus species essential oils and their components can inhibit or stimulate fungal growth in fruit. Ind. Crops Prod. 2017, 97, 108–115. [Google Scholar] [CrossRef]
- Torres-Alvarez, C.; González, A.N.; Rodríguez, J.; Castillo, S.L.; Leos-Rivas, C.; Báez-González, J. Chemical composition, antimicrobial, and antioxidant activities of orange essential oil and its concentrated oils. CyTA J. Food 2017, 15, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Torres-Álvarez, C.; Núñez González, A.; Rodríguez, J.; Castillo, S.; Leos-Rivas, C.; Báez-González, J.G. Antilisterial effect of citrus essential oils and their performance inedible film formulations. Food Control 2016, 59, 750–758. [Google Scholar]
- Fisher, K.; Phillips, C. Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends Food Sci. Technol. 2008, 19, 156–164. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Hu, Q.; Hao, D.; Xu, J. Chemical composition, antibacterial activity of Cyperus rotundus rhizomes essential oil against Staphylococcus aureus via membrane disruption and apoptosis pathway. Food Control 2017, 80, 290–296. [Google Scholar] [CrossRef]
- Kang, J.; Jin, W.; Wang, J.; Sun, Y.; Wu, X.; Liu, L. Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus. LWT 2019, 101, 639–645. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, T.; Yuan, Y.; Lin, S.; Xu, J.; Ye, H. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 2015, 47, 196–202. [Google Scholar] [CrossRef]
- Teng, D.; Wang, X.; Xi, D.; Mao, R.; Zhang, Y.; Guan, Q.; Zhang, J.; Wang, J. A dual mechanism involved in membrane and nucleic acid disruption of AvBD103b, a new avian defensin from the king penguin, against Salmonella enteritidis CVCC3377. Appl. Microbiol. Biotechnol. 2014, 98, 8313–8325. [Google Scholar] [CrossRef]
- Xu, K.; Li, J.; Yang, L.; Fang, S.; Liu, Y.; Ye, M. Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food Control 2017, 73, 1445–1451. [Google Scholar] [CrossRef]
- Li, G.; Xu, Y.; Wang, X.; Zhang, B.; Shi, C.; Zhang, W.; Xia, X. Tannin-Rich Fraction from Pomegranate Rind Damages Membrane of Listeria monocytogenes. Foodborne Pathog. Dis. 2014, 11, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Genet. 2010, 8, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Chang, T.; Yang, H.; Cui, M. Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes. Food Control 2015, 47, 231–236. [Google Scholar] [CrossRef]
- Sanchez, E.; Garcia, S.; Heredia, N. Extracts of edible and medicinal plants damage membranes of Vibrio cholerae. Appl. Environ. Microbiol. 2010, 76, 6888–6894. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Liu, L.; Wu, X.; Sun, Y.; Liu, Z. Effect of thyme essential oil against Bacillus cereus planktonic growth and biofilm formation. Appl. Microbiol. Biotechnol. 2018, 102, 10209–10218. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Antimicrobial mechanism of clove oil on Listeria monocytogenes. Food Control 2018, 94, 140–146. [Google Scholar] [CrossRef]
- Bajpai, V.; Sharma, A.; Baek, K. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 2013, 32, 582–590. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, H.; Lin, L.; Zhao, C.; Zhang, X.; Xiao, Z.; Li, C. Antibacterial activity and mechanism of cinnamon essential oil and its application in milk. J. Anim Plant. Sci. 2016, 26, 533–541. [Google Scholar]
- Kang, J.; Liu, L.; Liu, Y.; Wang, X. Ferulic Acid Inactivates Shigella flexneri through Cell Membrane Destructieon, Biofilm Retardation, and Altered Gene Expression. J. Agric. Food Chem. 2020, 68, 7121–7131. [Google Scholar] [CrossRef] [PubMed]
Peak No. | RT (min) | Compounds | CAS No. | Percentage (%) |
---|---|---|---|---|
1 | 5.121 | b-thujene | 28634-89-1 | 0.7 |
2 | 5.287 | α-pinene | 80-56-8 | 2.09 |
3 | 6.336 | β-pinene | 127-91-3 | 1.51 |
4 | 6.636 | β-myrcene | 123-35-3 | 1.24 |
5 | 7.57 | o-cymene | 527-84-4 | 1.11 |
6 | 7.685 | (−)-limonene | 5989-54-8 | 78.79 |
7 | 8.485 | γ-terpinene | 99-85-4 | 14.56 |
Sample Availability: Samples of the compounds are not available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Liu, T.; Wang, L.; Liu, L.; Li, X.; Wu, X. Antibacterial Effects and Mechanism of Mandarin (Citrus reticulata L.) Essential Oil against Staphylococcus aureus. Molecules 2020, 25, 4956. https://doi.org/10.3390/molecules25214956
Song X, Liu T, Wang L, Liu L, Li X, Wu X. Antibacterial Effects and Mechanism of Mandarin (Citrus reticulata L.) Essential Oil against Staphylococcus aureus. Molecules. 2020; 25(21):4956. https://doi.org/10.3390/molecules25214956
Chicago/Turabian StyleSong, Xueying, Ting Liu, Lei Wang, Liu Liu, Xiaoping Li, and Xiaoxia Wu. 2020. "Antibacterial Effects and Mechanism of Mandarin (Citrus reticulata L.) Essential Oil against Staphylococcus aureus" Molecules 25, no. 21: 4956. https://doi.org/10.3390/molecules25214956
APA StyleSong, X., Liu, T., Wang, L., Liu, L., Li, X., & Wu, X. (2020). Antibacterial Effects and Mechanism of Mandarin (Citrus reticulata L.) Essential Oil against Staphylococcus aureus. Molecules, 25(21), 4956. https://doi.org/10.3390/molecules25214956