Influence of Nanoencapsulation Using High-Pressure Homogenization on the Volatile Constituents and Anticancer and Antioxidant Activities of Algerian Saccocalyx satureioides Coss. et Durieu
<p>Volatile chromatograms for (<b>A</b>) <span class="html-italic">S. satureioides</span> HD oil and (<b>B</b>) nanoemulsions of <span class="html-italic">S. satureioides</span> oil.</p> "> Figure 2
<p>Transmission electron microscope (TEM) image of <span class="html-italic">S. satureioides</span> oil nanoemulsions.</p> "> Figure 3
<p>Evaluation of cell viability percentage of liver cancer cell line (Hep G2) posttreatment: (<b>A</b>) <span class="html-italic">S. satureioides</span> HD oil and (<b>B</b>) nanoemulsions of <span class="html-italic">S. satureioides</span> oil compared with reference drug (<b>C</b>) 5-flurouracil using MTT(tetrazolium bromide solution) assay.</p> "> Figure 4
<p>Evaluation of cell viability percentage of Healthy human hepatic cells(THLE2) posttreatment: (<b>A</b>) <span class="html-italic">S. satureioides</span> HD oil and (<b>B</b>) nanoemulsions of <span class="html-italic">S. satureioides</span> oil compared with reference drug (<b>C</b>) 5-flurouracil using MTT assay.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Encapsulation Using HPH on the Volatile Oil of S. satureioides Coss. et Durieu
2.2. Nanoemulsion Particle Morphology
2.3. Effect of Encapsulation Using HPH on the Antioxidant Activity of S. satureioides Coss. et Durieu HD Oil
2.4. Effect of Encapsulation Using HPH on the Anticancer Activity of S. satureioides Coss. et Durieu HD Oil
3. Materials and Methods
3.1. Plant Material and Chemicals
3.2. Extraction of Essential Oil
3.3. Preparation of S. satureioides Coss. et DurieuEssential Oil Nanoemulsions
3.4. Gas Chromatography–Mass Spectrometry (GC–MS)
3.5. Transmission Electron Microscopy (TEM)
3.6. Antioxidant Activity Measurements
3.7. Evaluation of the Cytotoxicity of the S. satureioides Coss. et Durieu Essential Oil and Its Nanoemulsions Against HepG2 and THLE2 Cells by the MTT Assay
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Herak Ćustić, M.; Satovic, Z. Medicinal plants of the family Lamiaceae as functional foods—A review. Czech J. Food Sci. 2016, 34, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Nirmala, M.J.; Nagarajan, R. Recent Research Trends in Fabrication and Applications of Plant Essential Oil Based Nanoemulsions. J. Nanomed. Nanotechnol. 2017, 8, 434. [Google Scholar] [CrossRef]
- Souadia, A.; Gourine, N.; Yousfi, M. Variability in phytochemical composition and antioxidant activity of Saccocalyx satureioides essential oils due to harvest period. J. Herbs Spices Med. Plants 2020, 26, 435–446. [Google Scholar] [CrossRef]
- Biondi, D.M.; Sari, M.; Ghani, Z.A.; Ruberto, G. Essential oil of Algerian Saccocalyx satureioides Coss. et Durieu. Flav. Fragr. J. 2006, 21, 546–548. [Google Scholar] [CrossRef]
- Bendahou, M.; Benyoucef, M.; Muselli, A.; Desjobert, J.M.; Paolini, J.; Bernardini, A.F.; Costa, J. Antimicrobial Activity and Chemical Composition of Saccocalyx Satureioides Coss. Et Dur. Essential Oil and Extract Obtained by Microwave Extraction. Comparison with Hydrodistillation. J. Essent. Oil Res. 2008, 20, 174–178. [Google Scholar] [CrossRef]
- Ferreira, C.D.; Nunes, I.L. Oil nanoencapsulation: Development, application, and incorporation into the food market. Nanoscale Res. Lett. 2019, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Leong, T.S.H.; Wooster, T.J.; Kentish, S.E.; Ashokkumar, M. Minimizing oil droplet size using ultrasonic emulsification. Ultrason. Sonochem. 2009, 16, 721–727. [Google Scholar] [CrossRef] [Green Version]
- Bendimerad, N.; Bekhechi, C.; Belmekki, N.; Fernandez, X. Chemical analysis and antimicrobial activity of Saccocalyx satureioides Coss. et Dur. essential oil from southwestern Algeria. Int. J. Essent. Oil Ther. 2009, 3, 1–5. [Google Scholar]
- Laouer, H.; Akkal, S.; Debarnot, C.; Canard, B.; Meierhenrich, U.J.; Baldovini, N. Chemical Composition and Antimicrobial Activity of the Essential Oil of Saccocalyx satureioides Coss. Et Dur. Nat. Prod. Commun. 2006, 1, 645–650. [Google Scholar] [CrossRef]
- Khaldi, A.; Meddah, B.; Moussaoui, A.; Sonnet, P.; Benmehdi, H. In Vitro Antifungal Activities of Essential Oil of Saccocalyx Satureioides Coss. Et Dur. On Fungal Species Development. Appl. Biolo. Sahar. Areas 2017, 1, 8–15. [Google Scholar]
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Farouk, A.; Ali, H.; Al-Khalifa, A.R.; Mohsen, M.; Fikry, R. Aroma volatile compounds of parsley cultivated in the Kingdom of Saudi Arabia and Egypt extracted by hydrodistillation and headspace solid-phase microextraction. Int. J. Food Prop. 2018, 20, 2866–2877. [Google Scholar] [CrossRef]
- Chang, Y.; McLandsborough, L.; McClements, D.J. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: Influence of ripening inhibitors. J. Agric. Food Chem. 2012, 60, 12056–12063. [Google Scholar] [CrossRef] [PubMed]
- Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT–Food Sci. Technol. 2011, 44, 1908–1914. [Google Scholar] [CrossRef]
- Ali, H.; Al-Khalifa, A.R.; Aouf, A.; Boukhebti, H.; Farouk, A. The effect of nanoencapsulation and nanoemulsion on the chemical structure and biological activity of Algerian Origanum glandulosum. Sci. Rep. 2020, 10, 2812. [Google Scholar] [CrossRef] [Green Version]
- Adams, R. Identification of Essential Oil Componentsby Gas. Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004, 108, 303–318. [Google Scholar] [CrossRef]
- Shaaban, H.; El-Ghorab, A.; Shibamoto, T. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil Res. 2012, 24, 203–212. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.; Rahman, S.H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Moreno, C. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. 2002, 8, 121–137. [Google Scholar] [CrossRef]
- Ozkan, A.; Erdogan, A. A comparative evaluation of antioxidant and anticancer activity of essential oil from Origanum onites (Lamiaceae) and its two major phenolic components. Turk. J. Biol. 2011, 35, 735–742. [Google Scholar] [CrossRef]
- Barbieri, N.; Costamagna, M.; Gilabert, M.; Perotti, M.; Schuff, C.; Isla, M.I.; Benavente, A. Antioxidant activity and chemical composition of essential oils of three aromatic plants from La Rioja province. Pharm. Biol. 2016, 54, 168–173. [Google Scholar] [CrossRef]
- Mohamadi, S.; Zhao, M.; Amrani, A.; Marchioni, E.; Zama, D.; Benayache, F.; Benayache, S. On-line screening and identification of antioxidant phenolic compounds of Saccocalyx satureioides Coss. et Dur. Ind. Crops Ind. 2015, 76, 910–919. [Google Scholar] [CrossRef]
- Sobral, M.V.; Xavier, A.L.; Lima, T.C.; de Sousa, D.P. Antitumor Activity of Monoterpenes Found in Essential Oils. Sci. World J. 2014, 2014, 953451. [Google Scholar] [CrossRef]
- Ambrož, M.; Matoušková, P.; Skarka, A.; Zajdlová, M.; Áková, K.; Skálová, L. The Effects of Selected Sesquiterpenes from Myrica rubra Essential Oil on the Efficacy of Doxorubicin in Sensitive and Resistant Cancer Cell Lines. Molecules 2017, 22, 1021. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Armentano, M.F.; Carmosino, M.; Bufo, S.A.; De Feo, V.; Camele, I. Cytotoxic Activity of Origanum Vulgare L. on Hepatocellular Carcinoma cell Line HepG2 and Evaluation of its Biological Activity. Molecules 2017, 22, 1435–1450. [Google Scholar] [CrossRef] [Green Version]
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Sokeng, A.J.T.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef]
- Mubarak, E.E.; Ali, L.Z.; Ahmed, I.F.A.; Ahmed, A.B.A.; Taha, R.M. Essential oil compositions and cytotoxicity from various organs of Eucalyptus camaldulensis. Int. J. Agric. Biol. 2015, 17, 320–326. [Google Scholar]
- Lam, L.K.T.; Zheng, B. Effects of essential oils of glutathione S-transferase activity in mice. J. Agric. Food Chem. 1991, 39, 660–662. [Google Scholar] [CrossRef]
- Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Pichardo, S.; Moreno, F.J.; Bermúdez, J.M.; Aucejo, S.; Cameán, A.M. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. Food Chem. Toxicol. 2014, 64, 281–290. [Google Scholar] [CrossRef]
- Fan, K.; Li, X.; Cao, Y.; Qi, H.; Li, L.; Zhang, Q.; Sun, H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drug. 2015, 26, 813–823. [Google Scholar] [CrossRef]
- Abd-Elsalam, K.A.; Alexei, R.K. Eugenol oil nanoemulsion: Antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cotton seeds. Appl. Nanosci. 2015, 5, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 1988, 36, 2090–2097. [Google Scholar] [CrossRef] [Green Version]
- Bouratoua, A.; Khalfallah, A.; Bensouici, C.; Kabouche, Z.; Alabdul Magid, A.; Harakat, D.; Voutquenne-Nazabadioko, L.; Ahmed Kabouche, A. Chemical composition and antioxidant activity of aerial parts of Ferula longipes Coss. ex Bonnier and Maury. Nat. Prod. Res. 2017, 32, 1873–1880. [Google Scholar] [CrossRef]
- Singleton, V.; Orthofer, R.; Lamuela-Raventos, R. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
S/N | Compound | KI a | % Area b S. satureioides Oil | Identification Method c,d | |
---|---|---|---|---|---|
HD | Nanoemulsions | ||||
1 | Tricyclene | 921 | 0.46 ± 0.03 | n.d. | MS & KI |
2 | α-Thujene | 928 | 0.56 ± 0.05 | n.d. | MS & KI |
3 | α-Pinene | 932 | 5.68 ± 0.06 | n.d. | MS, KI& ST |
4 | Camphene | 971 | 10.26 ± 0.11 | n.d. | MS, KI& ST |
5 | β-Pinene | 978 | 0.65 ± 0.12 | 0.97 ± 0.09 | MS & KI |
6 | β-Myrcene | 991 | 0.12 ± 0.02 | 0.89 ± 0.06 | MS & KI |
7 | α-Terpinene | 1004 | 0.72 ± 0.08 | 1.37 ± 0.13 | MS, KI& ST |
8 | p-Cymene | 1008 | 5.61 ± 0.33 | 6.99 ± 0.21 | MS, KI& ST |
9 | Limonene | 1029 | 2.74 ± 0.13 | 0.69 ± 0.04 | MS, KI& ST |
10 | γ-Terpinene | 1088 | 3.89 ± 0.08 | 10.7 ± 0.15 | MS, KI& ST |
11 | Linalool | 1089 | 0.26 ± 0.05 | 1.78 ± 0.30 | MS, KI& ST |
12 | trans-Pinocarveol | 1139 | 0.07 ± 0.01 | n.d. | MS & KI |
13 | Camphor | 1141 | 0.38 ± 0.02 | n.d. | MS & KI |
14 | cis-Chrysanthenol | 1145 | 0.08 ± 0.01 | n.d. | MS & KI |
15 | Borneol | 1148 | 25.71 ± 0.37 | 0.41 ± 0.02 | MS, KI& ST |
16 | Terpinen-4-ol | 1155 | 1.58 ± 0.09 | 1.42 ± 0.11 | MS, KI& ST |
17 | α-Terpineol | 1165 | 25.61 ± 0.27 | 1.60 ± 0.20 | MS, KI& ST |
18 | Isobornyl formate | 1225 | 0.53 ± 0.04 | n.d. | MS & KI |
19 | Bornyl acetate | 1263 | 0.53 ± 0.05 | n.d. | MS & KI |
20 | Thymol | 1267 | 12.8 ± 0.15 | 29.99 ± 0.33 | MS, KI& ST |
21 | Carvacrol | 1276 | 0.62 ± 0.05 | 41.27 ± 0.18 | MS, KI& ST |
22 | α-Gurjunene | 1392 | 0.11 ± 0.01 | n.d. | MS & KI |
23 | β-Caryophyllene | 1414 | 0.21 ± 0.02 | 0.58 ± 0.11 | MS & KI |
24 | Aromadendrene | 1435 | 0.08 ± 0.01 | n.d. | MS & KI |
25 | Alloaromadendrene | 1444 | 0.12 ± 0.03 | n.d. | MS & KI |
26 | γ-Cadinene | 1498 | 0.11 ± 0.07 | n.d. | MS & KI |
27 | δ-Cadinene | 1501 | 0.21 ± 0.08 | n.d. | MS & KI |
28 | Spathulenol | 1561 | 0.1 ± 0.06 | n.d. | MS & KI |
Total | - | 99.80 | 98.65 | - |
Material | IC50 (µg/mL) DPPH * | A0.5 (µg/mL) CUPRAC Assay * | IC50 (µg/mL) ABTS Assay * | Total Flavonoid Content * mg CE/g | Total Phenolic Content * mg RE/g |
---|---|---|---|---|---|
for 1 mg/mL | for 1 mg/mL | ||||
S. satureioides HD oil | 22.14a ± 0.12 | 37.72a ± 0.31 | 11.39a ± 0.05 | 0.401a ± 0.02 | 0.863a ± 0.02 |
Nanoemulsions of S. satureioides oil | 47.87b ± 0.21 | 754.67b ± 3.06 | 257.86b ± 3.71 | 0.302b ± 0.01 | 0.656b ± 0.03 |
TROLOX ** | 5.12c ± 0.21 | 8.69c ± 0.14 | 3.21c ± 0.06 | - | - |
Ascorbic acid ** | 4.39d ± 0.01 | 8.31d ± 0.15 | 3.04d ± 0.05 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aouf, A.; Ali, H.; Al-Khalifa, A.R.; Mahmoud, K.F.; Farouk, A. Influence of Nanoencapsulation Using High-Pressure Homogenization on the Volatile Constituents and Anticancer and Antioxidant Activities of Algerian Saccocalyx satureioides Coss. et Durieu. Molecules 2020, 25, 4756. https://doi.org/10.3390/molecules25204756
Aouf A, Ali H, Al-Khalifa AR, Mahmoud KF, Farouk A. Influence of Nanoencapsulation Using High-Pressure Homogenization on the Volatile Constituents and Anticancer and Antioxidant Activities of Algerian Saccocalyx satureioides Coss. et Durieu. Molecules. 2020; 25(20):4756. https://doi.org/10.3390/molecules25204756
Chicago/Turabian StyleAouf, Abdelhakim, Hatem Ali, Abdel Rahman Al-Khalifa, Khaled Fahmy Mahmoud, and Amr Farouk. 2020. "Influence of Nanoencapsulation Using High-Pressure Homogenization on the Volatile Constituents and Anticancer and Antioxidant Activities of Algerian Saccocalyx satureioides Coss. et Durieu" Molecules 25, no. 20: 4756. https://doi.org/10.3390/molecules25204756
APA StyleAouf, A., Ali, H., Al-Khalifa, A. R., Mahmoud, K. F., & Farouk, A. (2020). Influence of Nanoencapsulation Using High-Pressure Homogenization on the Volatile Constituents and Anticancer and Antioxidant Activities of Algerian Saccocalyx satureioides Coss. et Durieu. Molecules, 25(20), 4756. https://doi.org/10.3390/molecules25204756