Synthesis and Photophysical Properties of Tumor-Targeted Water-Soluble BODIPY Photosensitizers for Photodynamic Therapy
<p>(<b>a</b>) absorption and (<b>b</b>) emission spectra of the water-soluble BODIPY-based photosensitizers BLa, BILa, and BDILa in aqueous solution. Solutions were excited at their corresponding absorption maxima.</p> "> Figure 2
<p>Highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) transition energies and wave function of BLa, BILa, and BDILa calculated using the density functional theory (DFT) method with the CAM-B3LYP functional and 6-31G(d,p) basis set (LanL2DZ basis for I atoms).</p> "> Figure 3
<p>The simulated UV-Vis spectrum of BLa, BILa, and BDILa in water solution.</p> "> Figure 4
<p>Time-dependent absorption spectra of 1,3-diphenylisobenzofuran (DPBF) in EtOH with (<b>a</b>) BILa and (<b>b</b>) BDILa after LED light excitation at 500 nm.</p> "> Figure 5
<p>The fluorescence-activated cell sorting (FACS) analysis of the BODIPY dyes BLa, BILa, and BDILa in Huh7 cells.</p> "> Figure 6
<p>Dose-dependent cytotoxicities of synthesized BODIPYs. Cell survival rates of (<b>a</b>) HeLa, (<b>b</b>) MCF-7, and (<b>c</b>) Huh7 cells after treatment with BILa; (<b>d</b>) HeLa, (<b>e</b>) MCF-7, and (<b>f</b>) Huh7 cells after treatment with BDILa under LED light irradiation at 530 nm. * <span class="html-italic">p</span> < 0.05 compared to control (0 μM).</p> "> Scheme 1
<p>Synthesis of the tumor-targeting, lactose-modified, and water-soluble 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Synthesis of Water-Soluble BODIPY Derivatives
2.2. Photophysical and Theoretical Characterizations of Water-Soluble BODIPY Derivatives
2.3. Singlet Oxygen Generation of Water-Soluble BODIPY Derivatives
2.4. Assessment of Cytotoxicity of the Water-Soluble BODIPY Derivatives
2.5. Cellular Uptake by Flow Cytometry
2.6. Photodynamic Anticancer Activity of the Water-Soluble BODIPY Derivatives
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Lactose-Modified Water-Soluble BODIPY Derivatives
3.2.1. Synthesis of the BODIPY Core
3.2.2. Synthesis of Dye 1
3.2.3. Synthesis of BODIPY Dyes 2a and 2b
3.2.4. General Procedure for the Preparation of Water-Soluble BODIPY Dyes BLa, BILa, and BDILa
3.3. Measurement of Photophysical Properties
3.4. Fluorescence Quantum Yield Measurements
3.5. Singlet Oxygen Quantum Yield Measurements
3.6. Cells and Cell Cultures
3.7. Cell Proliferation Assay
3.8. Photodynamic Anticancer Activity Assessment
3.9. Cellular Uptake by Flow Cytometry
3.10. Theoretical Calculations
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Atilgan, S.; Ekmekci, Z.; Dogan, A.L.; Guc, D.; Akkaya, E.U. Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy. Chem. Commun. 2006, 42, 4398–4400. [Google Scholar] [CrossRef] [PubMed]
- Kamkaew, A.; Lim, S.H.; Lee, H.B.; Kiew, L.V.; Chung, L.Y.; Burgess, K. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 2013, 42, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cheung, Y.K.; Ma, C.; Zhao, S.; Gao, D.; Lo, P.C.; Fong, W.P.; Wong, K.S.; Ng, D.K. Endoplasmic reticulum-localized two-photon-absorbing boron dipyrromethenes as advanced photosensitizers for photodynamic therapy. J. Med. Chem. 2018, 61, 3952–3961. [Google Scholar] [CrossRef] [PubMed]
- Nyman, E.S.; Hynninen, P.H. Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B Biol. 2004, 73, 1–28. [Google Scholar] [CrossRef]
- Wainwright, M.; Phoenix, D.A.; Rice, L.; Burrow, S.M.; Waring, J. Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation. J. Photochem. Photobiol. B Biol. 1997, 40, 233–239. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Lin, Y.; Wang, L.; Wu, S. Preparation and characterization of protein-resistant hydrogels for soft contact lens applications via radical copolymerization involving a zwitterionic sulfobetaine comonomer. J. Biomater. Sci. Polym. Ed. 2017, 8, 1935–1949. [Google Scholar] [CrossRef]
- Lim, S.H.; Thivierge, C.; Nowak-Sliwinska, P.; Han, J.; Van Den Bergh, H.; Wagnieres, G.; Burgess, K.; Lee, H.B. In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy. J. Med. Chem. 2010, 53, 2865–2874. [Google Scholar] [CrossRef]
- Lissi, E.A.; Encinas, M.V.; Lemp, E.; Rubio, M.A. Singlet oxygen O2(1.DELTA.g) bimolecular processes. Solvent and compartmentalization effects. Chem. Rev. 1993, 93, 699–723. [Google Scholar] [CrossRef]
- Uzdensky, A.B.; Iani, V.; Ma, L.; Moan, J. Photobleaching of hypericin bound to human serum albumin, cultured adenocarcinoma cells and nude mice skin. Photochem. Photobiol. 2002, 76, 320–328. [Google Scholar] [CrossRef]
- Robert Sjoback, J.N.; Kubista, M. Absorption and fluorescence properties of fluorescein. Spectrochim. Acta Part. A 1995, 51, 7–21. [Google Scholar] [CrossRef]
- Yogo, T.; Urano, Y.; Ishitsuka, Y.; Maniwa, F.; Nagano, T. Highly efficient and photostable photosensitizer based on BODIPY chromophore. J. Am. Chem. Soc. 2005, 127, 12162–12163. [Google Scholar] [CrossRef]
- Verwilst, P.; David, C.C.; Leen, V.; Hofkens, J.; de Witte, P.A.M.; De Borggraeve, W.M. Synthesis and in vitro evaluation of a PDT active BODIPY-NLS conjugate. Bioorg. Med. Chem. Lett. 2013, 23, 3204–3207. [Google Scholar] [CrossRef] [PubMed]
- Awuah, S.G.; Polreis, J.; Biradar, V.; You, Y. Singlet oxygen generation by novel NIR BODIPY dyes. Org. Lett. 2011, 13, 3884–3887. [Google Scholar] [CrossRef] [PubMed]
- Kowada, T.; Maeda, H.; Kikuchi, K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev. 2015, 44, 4953–4972. [Google Scholar] [CrossRef] [PubMed]
- Gorman, A.; Killoran, J.; O’Shea, C.; Kenna, T.; Gallagher, W.M.; O’Shea, D.F. In vitro demonstration of the heavy-atom effect for photodynamic therapy. J. Am. Chem. Soc. 2004, 126, 10619–10631. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, Y.; Li, Q.Y.; Hao, L.N.; Ma, Z.; Wang, X.J.; Yin, J. Targeted delivery of a mannose-conjugated BODIPY photosensitizer by nanomicelles for photodynamic breast cancer therapy. Chem. Eur. J. 2017, 23, 14307–14315. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, M.; Guan, X.; Xie, Z.; Huang, Y.; Jing, X. Unadulterated BODIPY-dimer nanoparticles with high stability and good biocompatibility for cellular imaging. Nanoscale 2014, 6, 5662–5665. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, Y.; Wang, X.J.; Xu, J.L.; Ye, Z.; Wang, S.; Seeberger, P.H.; Yin, J. Targeted photodynamic killing of breast cancer cells employing heptamannosylated β-cyclodextrin-mediated nanoparticle formation of an adamantane-functionalized BODIPY photosensitizer. ACS Appl. Mater. Interfaces 2016, 8, 33405–33411. [Google Scholar] [CrossRef]
- Reddington, M.V. Synthesis and properties of phosphonic acid containing cyanine and squaraine dyes for use as fluorescent labels. Bioconjug. Chem. 2007, 18, 2178–2190. [Google Scholar] [CrossRef]
- Niu, S.L.; Ulrich, G.; Ziessel, R.; Kiss, A.; Renard, P.-Y.; Romieu, A. Water-soluble BODIPY derivatives. Org. Lett. 2009, 11, 2049–2052. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Cusido, J.; Narindoshvili, T. Monosaccharide-based water-soluble fluorescent tags. Bioconjug. Chem. 2008, 19, 1471–1475. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Opatz, T.; Landfester, K.; Wurm, F.R. Carbohydrate nanocarriers in biomedical applications: Functionalization and construction. Chem. Soc. Rev. 2015, 44, 8301–8325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.-P.; Zeng, Y.-L.; Zang, Y.; Li, J.; Field, R.A.; Chen, G.-R. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr. Res. 2016, 429, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Pandey, R.K. Porphyrin-carbohydrate conjugates: Impact of carbohydrate moieties in photodynamic therapy (PDT). Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chem. Agents) 2008, 8, 241–268. [Google Scholar] [CrossRef]
- Hao, E.; Jensen, T.J.; Vicente, M.G.H. Synthesis of porphyrin-carbohydrate conjugates using “click” chemistry and their preliminary evaluation in human HEp2 cells. J. Porphyr. Phthalocyanines 2009, 13, 51–59. [Google Scholar] [CrossRef]
- Li, M.; Zhang, W.; Wang, B.; Gao, Y.; Song, Z.; Zheng, Q.C. Ligand-based targeted therapy: A novel strategy for hepatocellular carcinoma. Int. J. Nanomedicine 2016, 11, 5645. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.F.; Chen, C.T.; Chen, S.C.; Kulkarni, A.R.; Chiu, Y.L.; Chen, M.C.; Sung, H.W. Paclitaxel-loaded poly (γ-glutamic acid)-poly (lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 2006, 27, 2051–2059. [Google Scholar] [CrossRef]
- Zheng, G.; Graham, A.; Shibata, M.; Missert, J.R.; Oseroff, A.R.; Dougherty, T.J.; Pandey, R.K. Synthesis of β-galactose-conjugated chlorins derived by enyne metathesis as galectin-specific photosensitizers for photodynamic therapy. J. Org. Chem. 2001, 66, 8709–8716. [Google Scholar] [CrossRef]
- Li, G.; Pandey, S.K.; Graham, A.; Dobhal, M.P.; Mehta, R.; Chen, Y.; Gryshuk, A.; Rittenhouse-Olson, K.; Oseroff, A.; Pandey, R.K. Functionalization of OEP-based benzochlorins to develop carbohydrate-conjugated photosensitizers. Attempt to target β-galactoside-recognized proteins. J. Org. Chem. 2004, 69, 158–172. [Google Scholar] [CrossRef]
- Hirohara, S.; Obata, M.; Ogata, S.I.; Ohtsuki, C.; Higashida, S.; Ogura, S.I.; Takenaka, M.; Ono, H.; Sugai, Y. Cellular uptake and photocytotoxicity of glycoconjugated chlorins in HeLa cells. J. Photochem. Photobiol. B Biol. 2005, 78, 7–15. [Google Scholar] [CrossRef]
- Yu, B.; Sun, J. Glycosylation with glycosyl N-phenyltrifluoroacetimidates (PTFAI) and a perspective of the future development of new glycosylation methods. Chem. Commun. 2010, 46, 4668–4679. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Sun, J.; Yang, X. Assembly of naturally occurring glycosides, evolved tactics, and glycosylation methods. Acc. Chem. Res. 2012, 45, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Yalagala, R.S.; Mazinani, S.A.; Maddalena, L.A.; Stuart, J.A.; Yan, F.; Yan, H. Microwave-assisted syntheses of BODIPY-sugar conjugates through click chemistry and conjugate assembly into liposomes. Carbohydr. Res. 2016, 424, 15–20. [Google Scholar] [CrossRef]
- Uppal, T.; Bhupathiraju, N.V.S.D.K.; Vicente, M.G.H. Synthesis and cellular properties of Near-IR BODIPY-PEG and carbohydrate conjugates. Tetrahedron 2013, 69, 4687–4693. [Google Scholar] [CrossRef]
- Shivran, N.; Tyagi, M.; Mula, S.; Gupta, P.; Saha, B.; Patro, B.S.; Chattopadhyay, S. Syntheses and photodynamic activity of some glucose-conjugated BODIPY dyes. Eur. J. Med. Chem. 2016, 122, 352–365. [Google Scholar] [CrossRef]
- Gao, T.; He, H.; Huang, R.; Zheng, M.; Wang, F.F.; Hu, Y.J.; Jiang, F.L.; Liu, Y. BODIPY-based fluorescent probes for mitochondria-targeted cell imaging with superior brightness, low cytotoxicity and high photostability. Dye Pigment 2017, 141, 530–535. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, J.; Vegesna, G.; Luo, F.-T.; Green, S.A.; Liu, H. Highly water-soluble neutral BODIPY dyes with controllable fluorescence quantum yields. Org. Lett. 2011, 13, 438–441. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.T.; Dvorko, M.; Schmidt, E.Y.; Audibert, J.F.; Retailleau, P.; Trofimov, B.A.; Pansu, R.B.; Clavier, G.; Méallet-Renault, R. Understanding the spectroscopic properties and aggregation process of a new emitting boron dipyrromethene (BODIPY). J. Phys. Chem. C 2013, 117, 5373–5385. [Google Scholar] [CrossRef]
- Sun, H.; Dong, X.; Liu, S.; Zhao, Q.; Mou, X.; Yang, H.Y.; Huang, W. Excellent BODIPY dye containing dimesitylboryl groups as PeT-based fluorescent probes for fluoride. J. Phys. Chem. C. 2011, 115, 19947–19954. [Google Scholar] [CrossRef]
- Sun, Y.; Qu, Z.; Zhou, Z.; Gai, L.; Lu, H. Thieno [3,2-b] thiophene fused BODIPYs: Synthesis, near-infrared luminescence and photosensitive properties. Org. Biomol. Chem. 2019, 17, 3617–3622. [Google Scholar] [CrossRef]
- Awuah, S.G.; You, Y. Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. Rsc Adv. 2012, 2, 11169–11183. [Google Scholar] [CrossRef]
- Lower, S.K.; El-Sayed, M.A. The triplet state and molecular electronic processes in organic molecules. Chem. Rev. 1966, 66, 199–241. [Google Scholar] [CrossRef]
- Yuster, P.; Weissman, S.I. Effects of perturbations on phosphorescence: Luminescence of metal organic complexes. J. Chem. Phys. 1949, 17, 1182–1188. [Google Scholar] [CrossRef]
- McGlynn, S.P.; Reynolds, M.J.; Daigre, G.W.; Christodoyleas, N.D. The external heavy-atom spin-orbital coupling effect. III. Phosphorescence spectra and lifetimes of externally perturbed naphthalenes1, 2. J. Phys. Chem. 1962, 66, 2499–2505. [Google Scholar] [CrossRef]
- Mayeda, E.A.; Bard, A.J. Production of singlet oxygen in electrogenerated radical ion electron transfer reactions. J. Am. Chem. Soc. 1973, 95, 6223–6226. [Google Scholar] [CrossRef]
- Choi, K.-H.; Wang, K.K.; Shin, E.P.; Oh, S.L.; Jung, J.S.; Kim, H.K.; Kim, Y.R. Water-soluble magnetic nanoparticles functionalized with photosensitizer for photocatalytic application. J. Phys. Chem. C. 2011, 115, 3212–3219. [Google Scholar] [CrossRef]
- Malich, G.; Markovic, B.; Winder, C. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology 1997, 124, 179–192. [Google Scholar] [CrossRef]
- Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part three-photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn. Ther. 2005, 2, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Kessel, D. Subcellular targets for photodynamic therapy: Implications for initiation of apoptosis and autophagy. J. Natl. Compr. Cancer. Netw. 2012, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Laville, I.; Pigaglio, S.; Blais, J.C.; Doz, F.; Loock, B.; Maillard, P.; Grierson, D.S.; Blais, J. Photodynamic efficiency of diethylene glycol-linked glycoconjugated porphyrins in human retinoblastoma cells. J. Med. Chem. 2006, 49, 2558–2567. [Google Scholar] [CrossRef]
- Monsigny, M.; Roche, A.-C.; Kieda, C.; Midoux, P.; Obrénovitch, A. Characterization and biological implications of membrane lectins in tumor, lymphoid and myeloid cells. Biochimie 1988, 70, 1633–1649. [Google Scholar] [CrossRef]
- Sakuma, S.; Yano, T.; Masaoka, Y.; Kataoka, M.; Hiwatari, K.I.; Tachikawa, H.; Shoji, Y.; Kimura, R.; Ma, H.; Yang, Z.; et al. In vitro/in vivo biorecognition of lectin-immobilized fluorescent nanospheres for human colorectal cancer cells. J. Control.release 2009, 134, 2–10. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, P.; He, Z.; He, H.; Rong, W.; Li, J.; Zhou, D.; Huang, Y. Mesoporous silica nanoparticles with lactose-mediated targeting effect to deliver platinum (IV) prodrug for liver cancer therapy. J. Mater. Chem. B. 2017, 5, 7591–7597. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, Y.; Chen, X.; Zhang, L.; Jing, X. Lactose mediated liver-targeting effect observed by ex vivo imaging technology. Biomaterials 2010, 31, 2646–2654. [Google Scholar]
- Hill, E.H.; Pappas, H.C.; Evans, D.G.; Whitten, D.G. Cationic oligo-p-phenylene ethynylenes form complexes with surfactants for long-term light-activated biocidal applications. Photochem. Photobiol. Sci. 2014, 13, 247–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juarranz, Á.; Jaén, P.; Sanz-Rodríguez, F.; Cuevas, J.; González, S. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl. Oncol. 2008, 10, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Brasseur, N.; Ouellet, R.; La Madeleine, C.; Van Lier, J.E. Water-soluble aluminium phthalocyanine-polymer conjugates for PDT: Photodynamic activities and pharmacokinetics in tumour-bearing mice. Br. J. Cancer 1999, 80, 1533–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricchelli, F.; Franchi, L.; Miotto, G.; Borsetto, L.; Gobbo, S.; Nikolov, P.; Bommer, J.C.; Reddi, E. Meso-substituted tetra-cationic porphyrins photosensitize the death of human fibrosarcoma cells via lysosomal targeting. Int. J. Biochem. Cell Biol. 2005, 37, 306–319. [Google Scholar] [CrossRef]
- Zang, L.; Zhao, H.; Hua, J.; Qin, F.; Zheng, Y.; Zhang, Z.; Cao, W. Water-soluble gadolinium porphyrin as a multifunctional theranostic agent: Phosphorescence-based oxygen sensing and photosensitivity. Dye Pigment 2017, 142, 465–471. [Google Scholar] [CrossRef]
- Makhseed, S.; Machacek, M.; Alfadly, W.; Tuhl, A.; Vinodh, M.; Simunek, T.; Novakova, V.; Kubat, P.; Rudolf, E.; Zimcik, P. Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy. Chem. Commun. 2013, 49, 11149–11151. [Google Scholar] [CrossRef]
- Badon, I.W.; Lee, J.; Vales, T.P.; Cho, B.K.; Kim, H.-J. Synthesis and photophysical characterization of highly water-soluble PEGylated BODIPY derivatives for cellular imaging. J. Photochem. Photobiol. A Chem. 2019, 377, 214–219. [Google Scholar] [CrossRef]
- Bui, H.T.; Mai, D.K.; Kim, B.; Choi, K.H.; Park, B.J.; Kim, H.J.; Cho, S. Effect of substituents on the photophysical properties and bioimaging application of bodipy derivatives with triphenylamine substituents. J. Phys. Chem. B 2019, 123, 5601–5607. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.L.; Kim, H.J.; Cho, B.K. Ionic effects on the self-assembly, molecular dynamics and conduction properties of a 1, 2, 3-triazole-based amphiphile. J. Mater. Chem. 2018, 6, 9802–9810. [Google Scholar] [CrossRef]
- Praveen, L.; Saha, S.; Jewrajka, S.K.; Das, A. Self-assembly of modified rhodamine-6G with tri-block copolymer: Unusual vesicle formation, pH sensing and dye release properties. J. Mater. Chem B 2013, 1, 1150–1155. [Google Scholar] [CrossRef]
- Crosby, G.A.; Demas, J.N. Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 1971, 75, 991–1024. [Google Scholar] [CrossRef]
- Park, B.J.; Choi, K.H.; Nam, K.C.; Ali, A.; Min, J.E.; Son, H.; Uhm, H.S.; Kim, H.J.; Jung, J.S.; Choi, E.H. Photodynamic anticancer activities of multifunctional cobalt ferrite nanoparticles in various cancer cells. J. Biomed. Nanotechnol. 2015, 11, 226–235. [Google Scholar] [CrossRef]
- Ruan, Z.; Zhao, Y.; Yuan, P.; Liu, L.; Wang, Y.; Yan, L. PEG conjugated BODIPY-Br2 as macro-photosensitizer for efficient imaging-guided photodynamic therapy. J. Mater. Chem. B 2018, 6, 753–762. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
BLa | BILa | BDILa | |
---|---|---|---|
λab (nm) a | 498 | 510 | 526 |
λem (nm) a | 510 | 524 | 542 |
ΦF b | 0.64 | 0.06 | 0.02 |
ΦΔ c | 0.01 | 0.27 | 0.47 |
ε (M−1 cm−1) | 56,000 | 51,600 | 41,800 |
Excited State | Energy [eV] | λ [nm] | fa | |
---|---|---|---|---|
BLa b | S1 | 2.995 | 414 | 0.63 |
BILa c | S1 | 2.959 | 419 | 0.70 |
BDILa c | S1 | 2.890 | 429 | 0.79 |
BLa (log) a | BILa (log) a | BDILa (log) a | |
---|---|---|---|
HeLa | 7807 ± 460 | 5102 ± 123 | 2380 ± 100 |
Huh7 | 12083 ± 632 | 7589 ± 84 | 4138 ± 70 |
MCF-7 | 38952 ± 1730 | 5414 ± 447 | 2938 ± 219 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khuong Mai, D.; Kang, B.; Pegarro Vales, T.; Badon, I.W.; Cho, S.; Lee, J.; Kim, E.; Kim, H.-J. Synthesis and Photophysical Properties of Tumor-Targeted Water-Soluble BODIPY Photosensitizers for Photodynamic Therapy. Molecules 2020, 25, 3340. https://doi.org/10.3390/molecules25153340
Khuong Mai D, Kang B, Pegarro Vales T, Badon IW, Cho S, Lee J, Kim E, Kim H-J. Synthesis and Photophysical Properties of Tumor-Targeted Water-Soluble BODIPY Photosensitizers for Photodynamic Therapy. Molecules. 2020; 25(15):3340. https://doi.org/10.3390/molecules25153340
Chicago/Turabian StyleKhuong Mai, Duy, Byungman Kang, Temmy Pegarro Vales, Isabel Wen Badon, Sung Cho, Joomin Lee, Eunae Kim, and Ho-Joong Kim. 2020. "Synthesis and Photophysical Properties of Tumor-Targeted Water-Soluble BODIPY Photosensitizers for Photodynamic Therapy" Molecules 25, no. 15: 3340. https://doi.org/10.3390/molecules25153340
APA StyleKhuong Mai, D., Kang, B., Pegarro Vales, T., Badon, I. W., Cho, S., Lee, J., Kim, E., & Kim, H.-J. (2020). Synthesis and Photophysical Properties of Tumor-Targeted Water-Soluble BODIPY Photosensitizers for Photodynamic Therapy. Molecules, 25(15), 3340. https://doi.org/10.3390/molecules25153340