Nanoparticles Based on Novel Carbohydrate-Functionalized Polymers
<p>Scanning Electron Microscopy (SEM) micrographs of PEG derivatives after oil-in-water emulsification method to form nanoparticles. (<b>A</b>,<b>B</b>) correspond to galactoconjugate <b>20</b>; (<b>C</b>,<b>D</b>) correspond to galactoconjugate <b>24</b>; and (<b>E</b>,<b>F</b>) account for mannoconjugate <b>25</b>. Left images have a magnification of 20,000 times, with the bar corresponding to 1 μm, with the exception of (<b>A</b>), where magnification is 10,000 times. Right images have a magnification of 40,000 times, with the bar corresponding to 100 nm.</p> "> Figure 2
<p>Size profiles of nanoparticles from PEG derivatives, measured by DLS. (<b>A</b>) Galactoconjugate <b>20</b>. (<b>B</b>) Galactoconjugate <b>24</b>. (<b>C</b>) Mannoconjugate <b>25</b>.</p> "> Figure 3
<p>SEM micrographs of PLGA derivatives after oil-in-water emulsification method to form nanoparticles. (<b>A</b>,<b>B</b>) correspond to glucoconjugate <b>28</b> and (<b>C</b>,<b>D</b>) correspond to coumarin-containing PLGA derivative <b>29</b>. Left images have a magnification of 10,000 times, with the bar corresponding to 1 μm. Right images have a magnification of 40,000 times, with the bar corresponding to 100 nm.</p> "> Figure 4
<p>Size profiles of nanoparticles from PLGA derivatives, measured by DLS. (<b>A</b>) Glucoconjugate <b>28</b>. (<b>B</b>) Coumarin-containing derivative <b>29</b>.</p> "> Scheme 1
<p>Pechmman condensation between 2-methylresorcinol and diethyl-2-acetylglutarate affording coumarin <b>1</b>.</p> "> Scheme 2
<p>Propargylation of <b>1</b>, umbelliferone, 3-carboxylic acid, and 4-methyl-7-hydroxy coumarin, affording the corresponding alkynes. Reaction conditions for ester formation: i) propargyl alcohol, <span class="html-italic">N</span>,<span class="html-italic">N</span>-dicyclohexylcarbodiimide (DCC), 4-dimethylaminepyridine (DMAP), CH<sub>2</sub>Cl<sub>2</sub> (DCM), 18 h. Conditions for ether formation, and ii) propargyl bromide, KI, K<sub>2</sub>CO<sub>3</sub>, dimethylformamide (DMF), 80 °C, 2 h 30 min.</p> "> Scheme 3
<p>Triazole linker <b>8</b> was prepared by the substitution of bromide in 2-bromoethylamine hydrobromide using sodium azide, followed by cycloaddition to form the 1,2,3-triazole ring.</p> "> Scheme 4
<p>Propargylation reaction of D-glucose, D-galactose, and D-mannose using sulfuric acid immobilized on silica, affording the alkynes <b>9</b>, <b>10</b>, and <b>11</b>, respectively.</p> "> Scheme 5
<p>Preparation of glycosyl amine <b>14</b> from propargyl glucoside <b>9</b>.</p> "> Scheme 6
<p>Synthesis of thymidine azide <b>16</b> by regioselective tosylation, followed by azide substitution, either using microwave or conventional heating.</p> "> Scheme 7
<p>Synthesis of glycoconjugate <b>20</b>.</p> "> Scheme 8
<p>Synthesis of glycoconjugates <b>24</b> and <b>25</b> from poly(ethylene glycol) (PEG).</p> "> Scheme 9
<p>Synthesis of a double thymidine-containing fluorescent PEG derivative, <b>27</b>, starting by PEG di-esterification with coumarin <b>3</b>, followed by double triazole ring formation with thymidine derivative <b>16</b>.</p> "> Scheme 10
<p>Amidation reaction between poly(lactic-co-glycolic acid) (PLGA) and previously prepared glycoside <b>14</b> to afford the PLGA glycoconjugate <b>28</b>.</p> "> Scheme 11
<p>Synthesis of fluorescent PLGA derivative, <b>29</b> by direct PLGA amidation with coumarin <b>8</b> in acidic conditions.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ligand Synthesis and Preparation—Coumarins
2.2. Ligand Preparations—Carbohydrates
2.3. Ligand Preparations—Thymidine
2.4. PEG Derivatives
2.5. PLGA Derivatives
2.6. Nanoparticles Preparation and Characterization
3. Materials and Methods
3.1. Methods for Compounds Characterization
3.2. Nanoparticles Preparation
3.3. Synthetic Procedures
3.3.1. Ethyl 3-(7-Hydroxy-4,8-Dimethyl-2-oxo-2H-Chromen-3-yl)propanoate (1)
3.3.2. Ethyl 3-(4,8-Dimethyl-2-oxo-7-(Prop-2-yn-1-yloxy)-2H-Chromen-3-yl)propanoate (2)
3.3.3. 3-(4,8-Dimethyl-2-oxo-7-(Prop-2-yn-1-yloxy)-2H-Chromen-3-yl)propanoic Acid (3)
3.3.4. 7-(Prop-2-yn-1-yloxy)-2H-Chromen-2-One (4)
3.3.5. Prop-2-yn-1-yl 2-oxo-2H-Chromene-3-Carboxylate (5)
3.3.6. 4-Methyl-7-(Prop-2-yn-1-yloxy)-2H-Chromen-2-One (6)
3.3.7. 2-Azidoethanamine (7)
3.3.8. 7-((1-(2-Aminoethyl)-1H-1,2,3-Triazol-4-yl)methoxy)-4-Methyl-2H-Chromen-2-One (8)
3.3.9. 1-O-Propargyl-D-Glucopyranoside (9)
3.3.10. 1-O-Propargyl-D-Galactopyranoside (10)
3.3.11. 1-O-Propargyl-D-Mannopyranoside (11)
3.3.12. 1-O-Propargyl-2,3,4,6-Tetra-O-Acetyl-D-Glucopyranoside (12)
3.3.13. 1-[1’-Ethylamine-Triazolyl-4]-1-Methyl-2,3,4,6-Tetra-O-Acetyl-D-Glucopyranoside (13)
3.3.14. 1-[1’-Ethylamine-Triazolyl-4]-1-O-Methyl-D-Glucopyranoside (14)
3.3.15. 5’-O-[(4-Methylphenyl)sulfonyl] Thymidine (15)
3.3.16. 5’-Azide-5’-Deoxythymidine (16)
3.3.17. α-Coumarin 3-Carboxylate-ω-Hydroxyl PEG1000 (17)
3.3.18. α-Coumarin 3-Carboxylate-ω-Tosyl PEG1000 (18)
3.3.19. α-Coumarin 3-Carboxylate-ω-Azide PEG1000 (19)
3.3.20. α-Coumarin 3-Carboxylate-ω-[(1H-1,2,3-triazol-4-yl)methoxygalactopyranosyl] PEG1000 (20)
3.3.21. α-Tosyl-ω-Tosyl PEG1000 (21)
3.3.22. α-Azide-ω-Azide PEG1000 (22)
3.3.23. α-Azide-ω-[7-((1H-1,2,3-Triazol-4-yl)methoxy)-2H-Chromen-2-One)] PEG1000 (23)
3.3.24. α–[7-((1H-1,2,3-triazol-4-yl)methoxy)-2H-Chromen-2-One)]–ω–[(1H-1,2,3-triazol-4-yl)methoxygalactopyranosyl] PEG1000 (24)
3.3.25. α–[7-((1H-1,2,3-Triazol-4-yl)methoxy)-2H-Chromen-2-One)]–ω–[(1H-1,2,3-triazol-4-yl)methoxymannopyranosyl] PEG1000 (25)
3.3.26. α-3-[3-(4,8-Dimethyl]-7-(2-Propynyloxy)]-Coumarinyl Propanoate-ω-3-[3-(4,8-dimethyl]-7-(2-propynyloxy)]-coumarinyl propanoate PEG1000 (26)
3.3.27. α-Thymidinyl-5-((1,2,3-Triazol-1-yl)-3-[3-(4,8-Dimethyl)-7-(Methyloxi)-Cumarinyl)propanoate-ω- Thymidinyl-5-((1,2,3-Triazol-1-yl)-3-[3-(4,8-Dimethyl)-7-(Methyloxi)-Cumarinyl)propanoate PEG1000 (27)
3.3.28. 1-[1’-Ethylamide-Triazolyl-4]-1-O-Methyl-D-Glucopyranoside-PLGA Conjugate (28)
3.3.29. 7-((1-(2-Amide-Ethyl)-1H-1,2,3-Triazol-4-yl)methoxy)-4-Methyl-2H-Chromen-2-One-PLGA Conjugate (29)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hulla, J.E.; Sahu, S.C.; Hayes, A.W. Nanotechnology: History and future. Hum. Exp. Toxicol. 2015, 34, 1318–1321. [Google Scholar] [CrossRef] [PubMed]
- Feynman, R.P. There’s Plenty of Room at the Bootom.pdf. J. Microelectromechanical Syst. 1992, 1, 60–66. [Google Scholar] [CrossRef]
- Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010, 10, 3223–3230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niska, K.; Zielinska, E.; Radomski, M.W.; Inkielewicz-Stepniak, I. Metal nanoparticles in dermatology and cosmetology: Interactions with human skin cells. Chem. Biol. Interact. 2018, 295, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, J. Nanoparticles-a historical perspective. Int. J. Pharm. 2007, 331, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Langer, R. Drug delivery and targeting. Nature 1998, 392, 5–10. [Google Scholar]
- Nahar, M.N.S.; Dutta, T.; Murugesan, S.; Asthana, A.; Kumar, D.M.; Rajkumar, V.; Tare, M.; Pachouri, R.; Jain, N.K. Functional polymeric nanoparticles: An efficient and promising tool for active delivery of bioactives. Crit. Rev. Ther. Drug Carrier Syst. 2006, 23, 259–318. [Google Scholar] [CrossRef]
- Mc Carthy, D.J.; Malhotra, M.; O’Mahony, A.M.; Cryan, J.F.; O’Driscoll, C.M. Nanoparticles and the blood-brain barrier: Advancing from in-vitro models towards therapeutic significance. Pharm. Res. 2015, 32, 1161–1185. [Google Scholar] [CrossRef]
- BaoLin, G.; MA, P.X. Synthetic biodegradable functional polymers for tissue engineering: A brief review. Sci. China Chem. 2014, 57, 490–500. [Google Scholar]
- Bhatia, S. Natural Polymer Drug Delivery Systems: Nanoparticles, Plants and Algae; Springer Int. Publishing: Basel, Switzerland, 2016; ISBN 9783319411286. [Google Scholar]
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3, 703–717. [Google Scholar] [CrossRef] [Green Version]
- Caldorera-Moore, M.; Guimard, N.; Shi, L.; Roy, K. Designer nanoparticles: Incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin. Drug Deliv. 2010, 7, 479–495. [Google Scholar] [CrossRef] [PubMed]
- Ilium, L.; Davis, S.S.; Wilson, C.G.; Thomas, N.W.; Frier, M.; Hardy, J.G. Blood clearance and organ deposition of intravenously administered colloidal particles. The effects of particle size, nature and shape. Int. J. Pharm. 1982, 12, 135–146. [Google Scholar] [CrossRef]
- Panyam, J.; Dali, M.M.; Sahoo, S.K.; Ma, W.; Chakravarthi, S.S.; Amidon, G.L.; Levy, R.J.; Labhasetwar, V. Polymer Degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J. Control. Release 2003, 92, 173–187. [Google Scholar] [CrossRef]
- Yoo, J.W.; Doshi, N.; Mitragotri, S. Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 1247–1256. [Google Scholar] [CrossRef]
- Champion, J.A.; Katare, Y.K.; Mitragotri, S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 2007, 121, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Nagasaki, Y.; Kato, Y.; Sugiyama, Y.; Kataoka, K. Long-circulating poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles with modulated surface charge. J. Control. Release 2001, 77, 27–38. [Google Scholar] [CrossRef]
- Wang, A.; Pu, K.; Dong, B.; Liu, Y.; Zhang, L.; Zhang, Z.; Duan, W.; Zhu, Y. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J. Appl. Toxicol. 2013, 33, 1156–1164. [Google Scholar] [CrossRef]
- Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 2008, 5, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Chung, T.H.; Wu, S.H.; Yao, M.; Lu, C.W.; Lin, Y.S.; Hung, Y.; Mou, C.Y.; Chen, Y.C.; Huang, D.M. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 2007, 28, 2959–2966. [Google Scholar] [CrossRef]
- Ahmed, M.; Narain, R. Carbohydrate-based materials for targeted delivery of drugs and genes to the liver. Nanomedicine 2015, 10, 2263–2288. [Google Scholar] [CrossRef]
- Alexis, F.; Rhee, J.W.; Richie, J.P.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. New frontiers in nanotechnology for cancer treatment. Urol. Oncol. Semin. Orig. Investig. 2008, 26, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Shokoohinia, Y.; Sajjadi, S.E.; Gholamzadeh, S.; Fattahi, A.; Behbahani, M. Antiviral and cytotoxic evaluation of coumarins from Prangos ferulacea. Pharm. Biol. 2014, 52, 1543–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, M.H.; Subhedar, D.D.; Shingate, B.B.; Kalam Khan, F.A.; Sangshetti, J.N.; Khedkar, V.M.; Nawale, L.; Sarkar, D.; Navale, G.R.; Shinde, S.S. Synthesis, biological evaluation and molecular docking of novel coumarin incorporated triazoles as antitubercular, antioxidant and antimicrobial agents. Med. Chem. Res. 2016, 25, 790–804. [Google Scholar] [CrossRef]
- Gurrapu, S.; Jonnalagadda, S.K.; Alam, M.A.; Ronayne, C.T.; Nelson, G.L.; Solano, L.N.; Lueth, E.A.; Drewes, L.R.; Mereddy, V.R. Coumarin carboxylic acids as monocarboxylate transporter 1 inhibitors: In vitro and in vivo studies as potential anticancer agents. Bioorg. Med. Chem. Lett. 2016, 26, 3282–3286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawood, D.H.; Batran, R.Z.; Farghaly, T.A.; Khedr, M.A.; Abdulla, M.M. New Coumarin Derivatives as Potent Selective COX-2 Inhibitors: Synthesis, Anti-Inflammatory, QSAR, and Molecular Modeling Studies. Arch. Pharm. (Weinheim) 2015, 348, 875–888. [Google Scholar] [CrossRef]
- Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8, 1128–1137. [Google Scholar] [CrossRef]
- Arslan, M.; Acik, G.; Tasdelen, M.A. The emerging applications of click chemistry reactions in the modification of industrial polymers. Polym. Chem. 2019, 10, 3806–3821. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, L.; Yang, L.; Zhu, F.; Ding, M.; Lin, F.; Wang, Z.; Li, Y. “Click” chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. J. Control. Release 2018, 273, 160–179. [Google Scholar] [CrossRef]
- Pechmann, H.V. Neue Bildungsweise der Cumarine. Synthese des Daphnetins. I. Ber. Dtsch. Chem. Ges. 1884, 17, 926–936. [Google Scholar] [CrossRef] [Green Version]
- Knoevenagel, E. Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine. Ber. Dtsch. Chem. Ges. 1898, 31, 2596–2619. [Google Scholar] [CrossRef] [Green Version]
- Perkin, W.H. On the artificial production of coumarin and formation of its homologues. J. Chem. Soc. 1868, 21, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Fuson, R.C.; Thomas, N. Extension of the reformatsky reaction to new types of compounds. J. Org. Chem. 1953, 18, 1762–1766. [Google Scholar] [CrossRef]
- Fan, G.J.; Mar, W.; Park, M.K.; Wook Choi, E.; Kim, K.; Kim, S. A novel class of inhibitors for steroid 5α-Reductase: Synthesis and evaluation of umbelliferone derivatives. Bioorg. Med. Chem. Lett. 2001, 11, 2361–2363. [Google Scholar] [CrossRef]
- Pramitha, P.; Bahulayan, D. Stereoselective synthesis of bio-hybrid amphiphiles of coumarin derivatives by Ugi-Mannich triazole randomization using copper catalyzed alkyne azide click chemistry. Bioorg. Med. Chem. Lett. 2012, 22, 2598–2603. [Google Scholar] [CrossRef]
- Roy, B.; Mukhopadhyay, B. Sulfuric acid immobilized on silica: An excellent catalyst for Fischer type glycosylation. Tetrahedron Lett. 2007, 48, 3783–3787. [Google Scholar] [CrossRef]
- Salmaso, S.; Caliceti, P. Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers. J. Drug Deliv. 2013, 2013, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Kim, S.W. Recent Advances in Drug Delivery; Plenum Press: New York, NY, USA, 1984; ISBN 9781420008333. [Google Scholar]
- Guo, F.; Fan, Z.; Yang, J.; Li, Y.; Wang, Y.; Zhao, H.; Xie, L.; Hou, Z. A Comparative Evaluation of Hydroxycamptothecin Drug Nanorods With and Without Methotrexate Prodrug Functionalization for Drug Delivery. Nanoscale Res. Lett. 2016, 11, 384. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gu, X.; Wang, H.; Sun, Y.; Wu, H.; Mao, S. Synthesis, characterization and liver targeting evaluation of self-assembled hyaluronic acid nanoparticles functionalized with glycyrrhetinic acid. Eur. J. Pharm. Sci. 2017, 96, 255–262. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Zhu, P.; Ma, Y.; He, J.; Lei, J. Self-assembled nanoparticles based on poly(ethylene glycol)-oleanolic acid conjugates for co-delivery of anticancer drugs. RSC Adv. 2017, 7, 29591–29598. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.R.; Hilgraf, R.; Sharpless, K.B.; Fokin, V.V. Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org. Lett. 2004, 6, 2853–2855. [Google Scholar] [CrossRef]
- Sharma, S.; Parmar, A.; Kori, S.; Sandhir, R. PLGA-based nanoparticles: A new paradigm in biomedical applications. TrAC—Trends Anal. Chem. 2016, 80, 30–40. [Google Scholar] [CrossRef]
- Lü, J.-M.; Wang, X.; Marin-Muller, C.; Wang, H.; Lin, P.H.; Yao, Q.; Chen, C. Current advances in research and clinical applications of PLGAbased nanotechnology. Expert Rev. Mol. Diagn. 2009, 9, 325–341. [Google Scholar] [CrossRef] [Green Version]
- Armarego, W.L.F.; Perrin, D.D. Purification of Laboratory Chemicals; Butterworth-Heinemann: Oxford, UK, 2000; ISBN 0750637617. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raposo, C.D.; Conceição, C.A.; Barros, M.T. Nanoparticles Based on Novel Carbohydrate-Functionalized Polymers. Molecules 2020, 25, 1744. https://doi.org/10.3390/molecules25071744
Raposo CD, Conceição CA, Barros MT. Nanoparticles Based on Novel Carbohydrate-Functionalized Polymers. Molecules. 2020; 25(7):1744. https://doi.org/10.3390/molecules25071744
Chicago/Turabian StyleRaposo, Cláudia D., Cristiano A. Conceição, and M. Teresa Barros. 2020. "Nanoparticles Based on Novel Carbohydrate-Functionalized Polymers" Molecules 25, no. 7: 1744. https://doi.org/10.3390/molecules25071744
APA StyleRaposo, C. D., Conceição, C. A., & Barros, M. T. (2020). Nanoparticles Based on Novel Carbohydrate-Functionalized Polymers. Molecules, 25(7), 1744. https://doi.org/10.3390/molecules25071744