Green Tea Quality Evaluation Based on Its Catechins and Metals Composition in Combination with Chemometric Analysis
<p>Biplots of Principal Component Analysis for tea dataset. This plot is discussed as loading values plot, scores are represented only as small dots to visualize shape of the dataset. The score plot without loadings, but with annotated teas is presented as <a href="#molecules-23-01689-f002" class="html-fig">Figure 2</a>. GA—gallic acid; C—catechin; EGC—epigallocatechin; EGCG—epigallocatechin-3-gallate; ECG—epicatechin gallate; EC—epicatechin.</p> "> Figure 1 Cont.
<p>Biplots of Principal Component Analysis for tea dataset. This plot is discussed as loading values plot, scores are represented only as small dots to visualize shape of the dataset. The score plot without loadings, but with annotated teas is presented as <a href="#molecules-23-01689-f002" class="html-fig">Figure 2</a>. GA—gallic acid; C—catechin; EGC—epigallocatechin; EGCG—epigallocatechin-3-gallate; ECG—epicatechin gallate; EC—epicatechin.</p> "> Figure 2
<p>Principal Component Analysis Scores for tea dataset. A—CH (China, original); B—CH1 (China, blended); C—I (India); D—SL (Sri Lanka); E—N (Nepal); F—SKJ (Jeoncha, South Korea); G—JA (Agari, Japan); H—JM (Matcha, Japan); I—JS (Sencha, Japan).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Macro- and Trace Elements Content in the Green Tea Samples
2.2. Toxic Heavy Metals Content in Green Tea Samples
2.3. Estimation of Daily Dietary Intake of Metals with Green Tea
2.4. LC-MS Determination of Catechins and Gallic Acid in Green Tea Samples
2.5. Antioxidant Activity of the Investigated Green Tea Samples
2.6. Chemometric Elaboration of the Obtained Data
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals
3.3. Metal Analysis of the Samples
3.3.1. Sample Preparation
3.3.2. Digestion Process
3.3.3. Analytical Determinations Using Flame—(FAAS) and Electrothermal Atomic Absorption Spectrometry (ETAAS) Methods
3.4. Preparation of Green Tea Infusions
3.5. LC-ESI-Q-TOF-MS Analysis of Green Tea Infusions
3.6. Evaluation of Antioxidant Activity of Green Tea Infusions
3.6.1. DPPH Test
3.6.2. ABTS Test
3.6.3. TPC
3.6.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization (WHO). Noncommunicable Diseases Country Profiles 2014; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Egger, G.; Dixon, J. Beyond obesity and lifestyle: A review of 21st century chronic diseases determinants. BioMed Res. Int. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Nicholas, L.; Roberts, D.; Pond, D. The role of the general practitioner and the dietitian in patient nutrition management. Asia Pac. J. Clin. Nutr. 2003, 12, 3–8. [Google Scholar] [PubMed]
- Galland, L. Diet and inflammation. Nutr. Clin. Pract. 2010, 25, 634–664. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Kinkade, K.; Streeter, J.; Miller, F.J., Jr. Inhibition of NADPH oxidase by apocynin attenuates progression of atherosclerosis. Int. J. Mol. Sci. 2013, 14, 17017–17028. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.M.; Briones, A.M. Reactive oxygen species and vascular biology: Implications in human hypertension. Hypertens. Res. 2011, 34, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Huxley, R.R.; Neil, H.A. The relation between dietary flavonol intake and coronary heart disease mortality: A meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 2003, 57, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Baj, T.; Kukula-Koch, W.; Marzec, Z. Dietary intake of specific phenolic compounds and their effect on the antioxidant activity of daily food rations. Open Chem. 2015, 13, 869–876. [Google Scholar] [CrossRef]
- Jarząb, A.; Kukula-Koch, W. Recent advances in obesity: The role of turmeric tuber and its metabolites in the prophylaxis and therapeutical strategies. Curr. Med. Chem. 2016, 24, 1–17. [Google Scholar] [CrossRef]
- Chang, Y.J.; Myung, S.-K.; Chung, S.T.; Lee, Y.K.; Jeon, Y.-J.; Park, C.-H.; Seo, H.G.; Huh, B.Y. Effects of vitamin treatment or supplements with purported antioxidant properties on skin cancer prevention: A meta-analysis of randomized controlled trials. Dermatology 2011, 223, 36–44. [Google Scholar] [CrossRef] [PubMed]
- González-Sarrías, A.; Combet, E.; Pinto, P.; Mena, P.; Dall’Asta, M.; Garcia-Aloy, M.; Rodríguez-Mateos, A.; Gibney, E.R.; Dumont, J.; Massaro, M.; et al. A systemic review and meta-analysis of the effects of flavonol-containing tea, cocoa and apple products on body composition and blood lipids: Exploring the factors responsible for variability in their efficacy. Nutrients 2017, 9, 746. [Google Scholar] [CrossRef]
- Koch, W.; Kukula-Koch, W.; Glowniak, K. Catechin composition and antioxidant activity of black teas in relation to brewing time. J. AOAC Int. 2017, 100, 1694–1699. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Kukula-Koch, W.; Komsta, Ł. Black tea samples origin discrimination using analytical investigation of secondary metabolites, antiradical scavenging activity and chemometric approach. Molecules 2018, 23, 513. [Google Scholar] [CrossRef] [PubMed]
- Ilow, R.; Regulska-Ilow, R.; Różańska, D.; Misiewicz, D.; Grajeta, H.; Walkiewicz, G.; Kowalisko, A.; Biernat, J. Assesment of dietary flavonoid intake among 50-year-old inhibitants of Wroclaw in 2008. Adv. Clin. Exp. Med. 2012, 21, 353–362. [Google Scholar] [PubMed]
- De Mejia, E.G.; Ramirez-Mares, M.V.; Puangpraphant, S. Bioactive components of tea: Cancer, inflammation and behavior. Brain Behav. Immun. 2009, 23, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Pauli, E.D.; Scarminio, I.S.; Tauler, R. Analytical investigation of secondary metabolites extracted from Camellia sinensis L. leaves using a HPLC-DAD-ESI/MS data fusion strategy and chemometric methods. J. Chemom. 2016, 30, 75–85. [Google Scholar] [CrossRef]
- Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial effects of green tea: A literature review. Chin. Med. 2010, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Song, Y.; Jing, W.; Wang, Y.; Yang, X.; Liu, D. Simultaneous determination of caffeine, gallic acid, theanine, (−)-epigallocatechin and (−)-epigallocatechin-3-gallate in green tea using quantitative 1HNMR spectroscopy. Anal. Methods 2014, 6, 907–914. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, H.; Deng, Y. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 2002, 57, 307–316. [Google Scholar] [CrossRef]
- Cabrera, C.; Artacho, R.; Giménez, R. Beneficial effects of green tea—A review. J. Am. Coll. Nutr. 2006, 25, 79–99. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Ye, H.; Sun, Y.; Tu, Y.; Zeng, X. Preparation, preliminary characterization, antioxidant, hepatoprotective and antitumor activities of polysaccharides from the flower of tea plant. (Camellia sinensis). Food Chem. Toxicol. 2012, 50, 2473–2480. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-S.; Lambert, J.D.; Sang, S. Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch. Toxicol. 2009, 83, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Stangl, V.; Dreger, H.; Stangl, K.; Lorenz, M. Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc. Res. 2007, 73, 348–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzezicha-Cirocka, J.; Grembecka, M.; Szefer, P. Analytical assessment of bio- and toxic elements distribution in Pu-erh and fruit teas in view of chemometric approach. Biol. Trace Elem. Res. 2016, 174, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Brzezicha-Cirocka, J.; Grembecka, M.; Szefer, P. Monitoring of essential and heavy metals in green tea from different geographical origins. Environ. Monit. Assess. 2016, 188, 183. [Google Scholar] [CrossRef] [PubMed]
- Herrador, M.A.; González, A.G. Pattern recognition procedures for differentiation of green, black and oolong teas according to their metal content from inductively coupled plasma atomic emission spectrometry. Talanta 2001, 53, 1249–1257. [Google Scholar] [CrossRef]
- Masoum, S.; Heshamt, S. Photoluminescence quantitative analysis of gallic acid and caffeine in green tea using multi-way chemometric approaches. Iran. J. Math. Chem. 2015, 6, 109–119. [Google Scholar]
- Koch, W.; Kukuła-Koch, W.; Marzec, Z.; Kasperek, E.; Wyszogrodzka-Koma, L.; Szwerc, W.; Asakawa, Y. Application of chromatographic and spectroscopic methods towards the quality assessment of ginger (Zingiber officinalis) rhizomes from ecological plantations. Int. J. Mol. Sci. 2017, 18, 452. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.C.; Juneja, L.R. General chemical composition of green tea and its infusion. In Chemistry and Applications of Green Tea; CRC Press: Boca Roton, FL, USA; New York, NY, USA, 1997; pp. 13–22. [Google Scholar]
- Xie, M.; von Bohlen, A.; Klockenamper, R.; Jian, X.; Gunther, K. Multielement analysis of Chinese tea (Camellia sinensis) by total-reflection X-ray fluorescence. Z. Lebensm. Unters. Forsch. 1998, 207, 31–38. [Google Scholar] [CrossRef]
- Konieczynski, P.; Viapiana, A.; Wesolowski, M. Comparison of infusions from black and green teas (Camellia sinensis L. Kuntze) and erva-mate (Ilex paraguariensis A. St.-Hil.) based on the content of essential elements, secondary metabolites, and antioxidant activity. Food Anal. Methods 2017, 10, 3063–3070. [Google Scholar] [CrossRef]
- Wong, M.H.; Zhang, Z.Q.; Wong, J.W.C.; Lan, C.Y. Trace metal contents (Al, Cu and Zn) of tea: Tea and soil from 2 tea plantations, and tea products from different provinces of China. Environ. Geochem. Health 1998, 20, 87–94. [Google Scholar] [CrossRef]
- Peng, C.Y.; Zhu, X.H.; Hou, R.Y.; Ge, G.F.; Hua, R.M.; Wan, X.C.; Cai, H.M. Aluminum and heavy metal accumulation in tea leaves: An interplay of environmental and plant factors and an assessment of exposure risks to consumers. J. Food Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- National Health and Family Planning Commission. Maximum Levels of Contaminants in Foods; National Health and Family Planning Commission: Beijing, China, 2017.
- Karimi, G.; Hasanzadeh, M.K.; Nili, A.; Khashayarmanesh, Z.; Samiei, Z.; Nazari, F.; Teimuri, M. Concentrations and health risk of heavy metals in tea samples marketed in Iran. Pharmacologyonline 2008, 3, 164–174. [Google Scholar]
- PFA (Prevention of Food Adulteration). The Prevention of Food Adulteration Rules, 1955. Gazette of India, Extraordinary, 12 September 1955. [Google Scholar]
- World Health Organization (WHO). National Policy on Traditional Medicine and Regulations of Herbal Medicines; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- Barone, G.; Giacominelli-Stuffler, R.; Storelli, M.M. Evaluation of trace metal and polychlorinated biphenyl levels in tea brands of different origin commercialized in Italy. Food Chem. Toxicol. 2016, 87, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Mandiwana, K.L.; Panichev, N.; Pancheva, S. Determination of chromium (VI) in black, green and herbal teas. Food Chem. 2011, 129, 1839–1843. [Google Scholar] [CrossRef]
- Gasser, U.; Klier, B.; Kühn, A.V.; Steinhoff, B. Current findings on the heavy metal content in herbal drugs. Pharmeur. Sci. Notes 2009, 1, 37–50. [Google Scholar]
- Street, R.A. Heavy metals in medicinal plant products—An African perspective. S. Afr. J. Bot. 2012, 82, 67–74. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Quality Control Methods for Medicinal Plant Materials; World Health Organization: Geneva, Switzerland, 1998; p. 1e122. [Google Scholar]
- Desideri, D.; Meli, M.A.; Roselli, C.; Feduzi, L. Polarized X-ray fluorescence spectrometer (EDPXRF) for the determination of essential and non essential elements in tea. Microchem. J. 2011, 98, 186–189. [Google Scholar] [CrossRef]
- Salahinejad, M.; Aflaki, F. Toxic and essential mineral elements content of black tea leaves and their tea infusions consumed in Iran. Biol. Trace Elem. Res. 2010, 134, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Karim, R.M.; Marzec, Z.; Miyataka, H.; Himeno, S.; Asakawa, Y. Dietary intake of metals by the young adult population of Eastern Poland: Results from a market basket study. J. Trace Elem. Med. Biol. 2016, 35, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Yang, D.; Zhu, J.; Liu, Z.; Jiang, D.; Xu, H. Estimated assessment of cumulative dietary exposure to organophosphorus residues from tea infusion in China. Environ. Health Prev. Med. 2018, 23, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, J.J.; Trevor, J.B.; Thompson, R.P.H. In vitro mineral availability from digested tea: A rich dietary source of manganese. Analyst 1998, 123, 1721–1724. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fu, Q.L.; Achal, V.; Liu, Y. A comparison of the potential health risk of aluminum and heavy metals in tea leaves and tea infusion of commercially available green tea in Jiangxi, China. Environ. Monit. Assess. 2015, 187, 228. [Google Scholar] [CrossRef] [PubMed]
- Perva-Uzunalic, A.; Skerget, M.; Knez, Z.; Weinreich, B.; Otto, F.; Grüner, S. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 2006, 96, 597–605. [Google Scholar] [CrossRef]
- Lin, S.-D.; Liu, E.-H.; Mau, J.-L. Effect of different brewing methods on antioxidant properties of steaming green tea. LWT Food Sci. Technol. 2008, 41, 1616–1623. [Google Scholar] [CrossRef]
- Khokhar, S.; Magnusdottir, S.G.M. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J. Agric. Food Chem. 2002, 50, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, S.; Venema, D.; Hollmann, P.C.H.; Dekker, M.; Jongen, W. A RP-HPLC method for the determination of tea catechins. Cancer Lett. 1997, 114, 171–172. [Google Scholar] [CrossRef]
- Record, I.R.; Lane, J.M. Simulated intestinal digestion of green and black teas. Food Chem. 2001, 73, 481–486. [Google Scholar] [CrossRef]
- Wiseman, S.A.; Balentine, D.A.; Frei, B. Antioxidants in tea. Crit. Rev. Food Sci. Nutr. 1997, 37, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. A thorough study of reactivity of various compound classes towards the Folin-Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [PubMed]
- Andjelkovic, M.; Van Camp, J.; Pedra, M.; Renders, K.; Socaciu, C.; Verhé, R. Correlations of the phenolic compounds and the phenolic content in some Spanish and French olive oils. J. Agric. Food Chem. 2008, 56, 5181–5187. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-Y.; Lin, Y.-R.; Ho, R.-F.; Liu, H.-Y.; Lin, Y.-S. Effects of water solutions on extracting green tea leaves. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidant by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Sample Availability: Tea samples are available from the authors. |
Voucher Specimen Number | Sampling Region/Type | Origin | Form | Number (Representatives) |
---|---|---|---|---|
CH | China | Original | loose | 3 |
I | India | Original | loose | 3 |
SL | Sri Lanka | Original | loose | 3 |
N | Nepal | Original | loose | 3 |
SKJ | South Korea/Jeoncha | Original | loose | 3 |
JA | Japan/Agari | Original | loose | 3 |
JM | Japan/Matcha | Original | loose | 3 |
JS | Japan/Sencha | Original | loose | 3 |
CH1 | China | Blended | bags | 3 |
Parameter | Macroelements (mg/kg) | |||
---|---|---|---|---|
Na | K | Mg | Ca | |
CH (China) * | ||||
Concentration | 49.5 ± 4.34 | 15,483 ± 877 | 2115 ± 121 | 1636 ± 90.3 |
Range | 45.1–57.9 | 13,783–16,335 | 1983–2309 | 1524–1794 |
CH1 (China) * | ||||
Concentration | 66.4 ± 7.68 | 11,504 ± 1370 | 1733 ± 96.0 | 2439 ± 81.3 |
Range | 51.2–74.9 | 9486–13,737 | 1521–1801 | 2314–2542 |
I (India) * | ||||
Concentration | 55.6 ± 4.92 | 11,050 ± 719 | 1536 ± 75.9 | 2440 ± 143 |
Range | 49.1–62.5 | 9658–11,753 | 1467–1703 | 2274–2744 |
SL (Sri Lanka) * | ||||
Concentration | 41.7 ± 1.75 | 12,975 ± 1849 | 1999 ± 103 | 2639 ± 112 |
Range | 38.6–43.7 | 9290–15,408 | 1860–2106 | 2474–2839 |
N (Nepal) * | ||||
Concentration | 18.3 ± 3.08 | 16,922 ± 994 | 1981 ± 153 | 1327 ± 65.8 |
Range | 14.3–22.8 | 15,012–18,182 | 1800–2249 | 1251–1452 |
SKJ (South Korea) * | ||||
Concentration | 119 ± 8.49 | 16,253 ± 483 | 1626 ± 70.0 | 1155 ± 73.1 |
Range | 105–129 | 15,507–16,924 | 1556–1762 | 1066–1289 |
JA (Japan) * | ||||
Concentration | 64.8 ± 5.72 | 15,144 ± 756.4 | 1289 ± 48.2 | 962 ± 61.6 |
Range | 58.6–74.2 | 14,034–16,451 | 1224–1373 | 863–1031 |
JM (Japan) * | ||||
Concentration | 123 ± 9.62 | 10,754 ± 703 | 2084 ± 215 | 1916 ± 142 |
Range | 105–137.6 | 9816–11,989 | 1783–2464 | 1743–2189 |
JS (Japan) * | ||||
Concentration | 81.2 ± 10.8 | 18,576 ± 882 | 1444 ± 78.0 | 817 ± 40.4 |
Range | 62.9–97.2 | 17,375–19,858 | 1332–1533 | 741–873 |
Parameter | Trace Elements (mg/kg) | ||||
---|---|---|---|---|---|
Mn | Zn | Cu | Fe | Cr | |
CH (China) | |||||
Concentration | 405 ± 15.0 | 35.6 ± 1.71 | 14.3 ± 0.11 | 79.1 ± 3.81 | 0.64 ± 0.07 |
Range | 384–423 | 32.9–37.5 | 14.2–14.5 | 75.4–87.0 | 0.52–0.74 |
CH1 (China) | |||||
Concentration | 1461 ± 69.1 | 31.6 ± 4.47 | 17.4 ± 0.58 | 252 ± 18.9 | 1.16 ± 0.15 |
Range | 1359–1547 | 26.9–39.9 | 16.2–17.9 | 231–290 | 0.96–1.34 |
I (India) | |||||
Concentration | 1213 ± 52.8 | 33.6 ± 7.19 | 13.1 ± 0.23 | 176 ± 16.4 | 1.03 ± 0.13 |
Range | 1116–1266 | 25.6–46.1 | 12.9–13.5 | 146–195 | 0.88–1.26 |
SL (Sri Lanka) | |||||
Concentration | 551 ± 28.4 | 29.0 ± 4.46 | 11.4 ± 0.16 | 75.0 ± 4.77 | 0.37 ± 0.07 |
Range | 518–592 | 24.5–37.0 | 11.1–11.7 | 69.0–84.3 | 0.28–0.46 |
N (Nepal) | |||||
Concentration | 300 ± 21.1 | 32.3 ± 2.86 | 12.2 ± 0.21 | 48.1 ± 4.90 | 0.67 ± 0.02 |
Range | 270–340 | 27.5–36.1 | 11.9–12.4 | 40.7–56.7 | 0.64–0.68 |
SKJ (South Korea) | |||||
Concentration | 202 ± 6.90 | 37.6 ± 3.51 | 5.86 ± 0.11 | 51.0 ± 5.57 | 0.15 ± 0.02 |
Range | 193–213 | 32.4–42.1 | 5.70–6.00 | 44.4–58.2 | 0.13–0.17 |
JA (Japan) | |||||
Concentration | 505 ± 12.8 | 36.2 ± 3.67 | 8.49 ± 0.18 | 109 ± 6.52 | 0.31 ± 0.03 |
Range | 489–520 | 29.9–41.3 | 8.20–8.70 | 97.2–116 | 0.27–0.37 |
JM (Japan) | |||||
Concentration | 918 ± 40.6 | 22.9 ± 0.54 | 7.38 ± 0.13 | 154 ± 11.7 | 2.32 ± 0.18 |
Range | 857–1004 | 21.9–23.5 | 7.20–7.50 | 138–172 | 2.09–2.55 |
JS (Japan) | |||||
Concentration | 480 ± 10.0 | 41.8 ± 4.08 | 8.81 ± 0.14 | 56.6 ± 4.15 | 0.15 ± 0.01 |
Range | 461–489 | 36.1–47.4 | 8.50–8.90 | 52.1–64.9 | 0.14–0.16 |
Parameter | Heavy Metals | ||
---|---|---|---|
Pb (µg/kg) | Cd (µg/kg) | Ni (mg/kg) | |
CH (China) | |||
Concentration | 9.37 ± 0.99 | 4.66 ± 0.61 | 5.09 ± 0.50 |
Range | 8.30–11.23 | 3.98–5.72 | 4.32–5.80 |
CH1 (China) | |||
Concentration | 238 ± 46.7 | 16.9 ± 2.09 | 7.92 ± 0.83 |
Range | 168–311 | 12.6–19.2 | 6.89–9.10 |
I (India) | |||
Concentration | 233 ± 40.7 | 11.7 ± 1.73 | 4.76 ± 0.59 |
Range | 165–274 | 9.40–13.9 | 3.92–5.43 |
SL (Sri Lanka) | |||
Concentration | 3.24 ± 0.51 | 3.02 ± 0.28 | 3.10 ± 0.47 |
Range | 2.45–3.88 | 2.55–3.45 | 2.37–3.76 |
N (Nepal) | |||
Concentration | 2.31 ± 0.14 | 4.51 ± 0.18 | 4.07 ± 0.24 |
Range | 2.15–2.58 | 4.25–4.70 | 3.75–4.40 |
SKJ (South Korea) | |||
Concentration | 31.8 ± 6.83 | 4.70 ± 0.25 | 18.0 ± 0.84 |
Range | 20.2–41.3 | 4.25–4.95 | 17.0–19.2 |
JA (Japan) | |||
Concentration | 20.5 ± 2.47 | 2.61 ± 0.30 | 5.28 ± 0.53 |
Range | 17.4–24.6 | 2.23–3.13 | 4.66–5.97 |
JM (Japan) | |||
Concentration | 29.8 ± 5.53 | 2.39 ± 0.17 | 2.13 ± 0.1 |
Range | 22.0–37.0 | 2.13–2.60 | 1.97–2.28 |
JS (Japan) | |||
Concentration | <LOD | 3.38 ± 0.22 | 4.75 ± 0.24 |
Range | 3.10–3.80 | 4.53–5.19 |
Metal | Leaching Factor [%] | Appropriate Norm [mg] | Contribution to the Norm Regarding the Consumption of 2 g of Green Tea * [%] | |
---|---|---|---|---|
Average | Range | |||
Na | 25.3 | 1500 | 0.002 | 0.0006–0.004 |
K | 61.3 | 3500 | 0.50 | 0.33–0.70 |
Mg | 35.1 | 400 | 0.31 | 0.23–0.37 |
Ca | 17.6 | 1000 | 0.06 | 0.03–0.09 |
Mn | 25.9 | 2.3 | 15.1 | 4.5–32.9 |
Zn | 36.9 | 11 | 0.22 | 0.15–0.28 |
Cu | 22.4 | 0.9 | 0.55 | 0.29–0.87 |
Fe | 5.36 | 10 | 0.13 | 0.05–0.28 |
Cr | 45.4 | 0.035 | 1.96 | 0.39–6.02 |
Pb | 24.5 | 0.03 | 0.1 | 0.002–0.39 |
Cd | 23.8 | 0.0214 | 0.01 | 0.005–0.04 |
Ni | 51.3 | 0.3 | 2.09 | 0.73–6.16 |
Parameter | GA ** | C ** | EGC ** | EGCG ** | ECG ** | EC ** | Total |
---|---|---|---|---|---|---|---|
CH (China) | |||||||
Mean (mg/100 mL) | 6.34 | 24.9 | 76.7 | 107 | 86.2 | 41.7 | 343 |
SD | 1.10 | 2.28 | 8.21 | 10.9 | 2.02 | 4.11 | |
Range | 4.79–8.14 | 21.1–28.1 | 61.2–86.1 | 91.8–121 | 83.3–89.1 | 36.3–49.3 | |
CH1 (China) | |||||||
Mean (mg/100 mL) | 5.27 | 13.7 | 141 | 107 | 51.5 | 32.1 | 351 |
SD | 0.51 | 0.92 | 11.4 | 3.14 | 3.60 | 3.69 | |
Range | 4.16–5.81 | 11.9–14.9 | 128–160 | 103–113 | 44.8–56.2 | 26.4–37.8 | |
I (India) | |||||||
Mean (mg/100 mL) | 5.62 | 11.1 | 117 | 113 | 57.5 | 30.7 | 334 |
SD | 0.16 | 0.87 | 4.34 | 6.88 | 1.98 | 3.22 | |
Range | 5.35–5.85 | 9.87–12.2 | 109–124 | 103–123 | 53.1–59.4 | 25.8–35.8 | |
SL (Sri Lanka) | |||||||
Mean (mg/100 mL) | 10.6 | 19.8 | 157 | 123 | 59.0 | 35.1 | 404 |
SD | 2.37 | 3.57 | 18.5 | 10.4 | 8.36 | 5.76 | |
Range | 7.12–14.8 | 15.2–24.5 | 123–180 | 108–139 | 49.8–73.4 | 27.5–44.6 | |
N (Nepal) | |||||||
Mean (mg/100 mL) | 3.72 | 8.28 | 107 | 115 | 62.6 | 28.6 | 325 |
SD | 0.95 | 1.77 | 8.21 | 8.54 | 7.40 | 4.46 | |
Range | 2.81–5.35 | 6.15–11.5 | 96.5–119 | 102–129 | 52.3–74.5 | 22.6–34.8 | |
SKJ (South Korea) | |||||||
Mean (mg/100 mL) | 1.66 | 18.3 | 213 | 111 | 48.6 | 49.4 | 441 |
SD | 0.08 | 1.72 | 28.1 | 8.10 | 4.81 | 3.48 | |
Range | 1.54–1.83 | 15.8–21.3 | 175–249 | 101–123 | 43.3–56.2 | 44.2–54.5 | |
JA (Japan) | |||||||
Mean (mg/100 mL) | 2.46 | 17.8 | 180 | 110 | 50.9 | 41.8 | 403 |
SD | 0.34 | 1.15 | 21.3 | 5.99 | 4.67 | 4.64 | |
Range | 2.11–2.93 | 16.4–19.8 | 145–212 | 101–118 | 44.5–58.5 | 36.9–49.4 | |
JM (Japan) | |||||||
Mean (mg/100 mL) | 1.44 | 12.1 | 190 | 112 | 47.8 | 45.9 | 409 |
SD | 0.03 | 1.27 | 24.8 | 7.30 | 4.74 | 2.48 | |
Range | 1.39–1.48 | 10.1–13.9 | 158–231 | 99.4–122 | 41.1–54.8 | 41.8–50.8 | |
JS (Japan) | |||||||
Mean (mg/100 mL) | 1.65 | 12.1 | 200 | 124 | 54.5 | 43.5 | 435 |
SD | 0.07 | 0.67 | 12.0 | 3.43 | 1.09 | 0.96 | |
Range | 1.55–1.78 | 11.3–13.3 | 187–218 | 118–129 | 52.3–55.7 | 41.2–44.5 | |
Mean (mg/100 mL) | 4.30 | 15.4 | 153 | 114 | 57.6 | 38.8 | 383 |
SD | 2.98 | 5.22 | 47.0 | 9.26 | 12.1 | 7.87 | |
Range | 1.39–14.8 | 6.15–28.1 | 61.2–249 | 91.8–139 | 41.1–89.1 | 22.6–54.5 |
Tea | DPPH [%] | ABTS Trolox Equivalent [mM/L] | TPC [mg/100 mL] |
---|---|---|---|
CH (China) * | 85.5 ± 5.13 | 12.4 ± 0.72 | 85.5 ± 3.14 |
CH1 (China) * | 49.9 ± 2.07 | 7.12 ± 0.84 | 65.4 ± 2.52 |
I (India) * | 68.0 ± 3.15 | 9.48 ± 0.76 | 63.6 ± 2.05 |
SL (Sri Lanka) * | 85.6 ± 1.67 | 12.6 ± 1.08 | 97.3 ± 5.32 |
N (Nepal) * | 74.3 ± 4.71 | 10.6 ± 1.28 | 85.9 ± 4.42 |
SKJ (South Korea) * | 69.4 ± 5.34 | 9.72 ± 0.92 | 77.0 ± 4.05 |
JA (Japan) * | 71.7 ± 5.44 | 10.0 ± 0.84 | 78.6 ± 5.00 |
JM (Japan) * | 65.8 ± 0.7 | 9.12 ± 1.36 | 68.9 ± 6.67 |
JS (Japan) * | 62.4 ± 2.24 | 8.72 ± 0.64 | 68.3 ± 2.69 |
Parameter | Na | K | Ca | Mg | Mn | Zn | Cu | Fe | Cr | Ni | Cd | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference value [mg/kg] | 6300 | 10,260 | 3522 | 752.3 | 9.02 | 24.0 | 2.94 | 22.9 | 0.15 | 0.5 | 0.3 | 0.5 |
Determined value [mg/kg] | 5712 | 10,820 | 3681 | 714.8 | 8.81 | 24.5 | 3.11 | 21.8 | 0.14 | 0.48 | 0.34 | 0.48 |
SD | 211.2 | 678.4 | 224.5 | 62.1 | 0.44 | 1.14 | 0.12 | 1.05 | 0.01 | 0.04 | 0.03 | 0.02 |
RSD [%] | 3.70 | 6.27 | 6.10 | 8.69 | 4.99 | 4.65 | 3.86 | 4.82 | 7.14 | 8.33 | 8.82 | 4.17 |
Recovery [%] | 90.7 | 105.5 | 104.5 | 95.0 | 97.7 | 102.1 | 105.8 | 95.2 | 93.3 | 96.0 | 113.3 | 96.0 |
LOD [µg/kg] | 84.0 | 56.0 | 185 | 34.0 | 184 | 38.0 | 189 | 172 | 0.72 | 0.31 | 0.09 | 1.32 |
LOQ [µg/kg] | 286 | 242 | 612 | 116 | 634 | 141 | 661 | 558 | 2.78 | 1.27 | 0.34 | 4.84 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch, W.; Kukula-Koch, W.; Komsta, Ł.; Marzec, Z.; Szwerc, W.; Głowniak, K. Green Tea Quality Evaluation Based on Its Catechins and Metals Composition in Combination with Chemometric Analysis. Molecules 2018, 23, 1689. https://doi.org/10.3390/molecules23071689
Koch W, Kukula-Koch W, Komsta Ł, Marzec Z, Szwerc W, Głowniak K. Green Tea Quality Evaluation Based on Its Catechins and Metals Composition in Combination with Chemometric Analysis. Molecules. 2018; 23(7):1689. https://doi.org/10.3390/molecules23071689
Chicago/Turabian StyleKoch, Wojciech, Wirginia Kukula-Koch, Łukasz Komsta, Zbigniew Marzec, Wojciech Szwerc, and Kazimierz Głowniak. 2018. "Green Tea Quality Evaluation Based on Its Catechins and Metals Composition in Combination with Chemometric Analysis" Molecules 23, no. 7: 1689. https://doi.org/10.3390/molecules23071689
APA StyleKoch, W., Kukula-Koch, W., Komsta, Ł., Marzec, Z., Szwerc, W., & Głowniak, K. (2018). Green Tea Quality Evaluation Based on Its Catechins and Metals Composition in Combination with Chemometric Analysis. Molecules, 23(7), 1689. https://doi.org/10.3390/molecules23071689